Reworked polygon sampling for SLA auto support generation.
Conditional compilation of an igl winding number tree for SLA support generator, as it is not used as of now and initialization of the tree is expensive. Fixed issue with passing the new SLA point definition to the back end and back to the UI.
This commit is contained in:
parent
d0553ece0e
commit
fcc1b2ad69
7 changed files with 225 additions and 76 deletions
|
@ -9,6 +9,8 @@
|
|||
#include "SVG.hpp"
|
||||
#include "Point.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
#include "Tesselate.hpp"
|
||||
#include "libslic3r.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
@ -121,15 +123,15 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
Structure& top = structures_new.back();
|
||||
//FIXME This has a quadratic time complexity, it will be excessively slow for many tiny islands.
|
||||
// At least it is now using a bounding box check for pre-filtering.
|
||||
for (Structure& bottom : structures_old)
|
||||
if (top.overlaps(bottom)) {
|
||||
top.structures_below.push_back(&bottom);
|
||||
for (Structure& bottom : structures_old)
|
||||
if (top.overlaps(bottom)) {
|
||||
top.structures_below.push_back(&bottom);
|
||||
float centroids_dist = (bottom.centroid - top.centroid).norm();
|
||||
// Penalization resulting from centroid offset:
|
||||
// bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, (1600.f * layer_height) * centroids_dist * centroids_dist / bottom.area));
|
||||
// bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, (1600.f * layer_height) * centroids_dist * centroids_dist / bottom.area));
|
||||
bottom.supports_force *= std::min(1.f, 1.f - std::min(1.f, 80.f * centroids_dist * centroids_dist / bottom.area));
|
||||
// Penalization resulting from increasing polygon area:
|
||||
bottom.supports_force *= std::min(1.f, 20.f * bottom.area / top.area);
|
||||
bottom.supports_force *= std::min(1.f, 20.f * bottom.area / top.area);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -154,7 +156,7 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
else
|
||||
// Let's see if there's anything that overlaps enough to need supports:
|
||||
// What we now have in polygons needs support, regardless of what the forces are, so we can add them.
|
||||
for (const ExPolygon& p : diff_ex(to_polygons(*s.polygon), offset(s.expolygons_below(), between_layers_offset)))
|
||||
for (const ExPolygon& p : diff_ex(to_polygons(*s.polygon), offset(s.expolygons_below(), between_layers_offset)))
|
||||
//FIXME is it an island point or not? Vojtech thinks it is.
|
||||
uniformly_cover(p, s);
|
||||
}
|
||||
|
@ -163,12 +165,12 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
for (Structure& s : structures_new) {
|
||||
// Areas not supported by the areas below.
|
||||
ExPolygons e = diff_ex(to_polygons(*s.polygon), s.polygons_below());
|
||||
float e_area = 0.f;
|
||||
for (const ExPolygon &ex : e)
|
||||
e_area += float(ex.area());
|
||||
float e_area = 0.f;
|
||||
for (const ExPolygon &ex : e)
|
||||
e_area += float(ex.area());
|
||||
// Penalization resulting from large diff from the last layer:
|
||||
// s.supports_force /= std::max(1.f, (layer_height / 0.3f) * e_area / s.area);
|
||||
s.supports_force /= std::max(1.f, 0.17f * (e_area * float(SCALING_FACTOR * SCALING_FACTOR)) / s.area);
|
||||
s.supports_force /= std::max(1.f, 0.17f * (e_area * float(SCALING_FACTOR * SCALING_FACTOR)) / s.area);
|
||||
|
||||
if (s.area * m_config.tear_pressure > s.supports_force) {
|
||||
//FIXME Don't calculate area inside the compare function!
|
||||
|
@ -196,64 +198,204 @@ void SLAAutoSupports::process(const std::vector<ExPolygons>& slices, const std::
|
|||
}
|
||||
}
|
||||
|
||||
std::vector<Vec2f> sample_expolygon(const ExPolygon &expoly, float samples_per_mm2, std::mt19937 &rng)
|
||||
{
|
||||
// Triangulate the polygon with holes into triplets of 3D points.
|
||||
std::vector<Vec2f> triangles = Slic3r::triangulate_expolygon_2f(expoly);
|
||||
|
||||
std::vector<Vec2f> out;
|
||||
if (! triangles.empty())
|
||||
{
|
||||
// Calculate area of each triangle.
|
||||
std::vector<float> areas;
|
||||
areas.reserve(triangles.size() / 3);
|
||||
for (size_t i = 0; i < triangles.size(); ) {
|
||||
const Vec2f &a = triangles[i ++];
|
||||
const Vec2f v1 = triangles[i ++] - a;
|
||||
const Vec2f v2 = triangles[i ++] - a;
|
||||
areas.emplace_back(0.5f * std::abs(cross2(v1, v2)));
|
||||
if (i != 3)
|
||||
// Prefix sum of the areas.
|
||||
areas.back() += areas[areas.size() - 2];
|
||||
}
|
||||
|
||||
size_t num_samples = size_t(ceil(areas.back() * samples_per_mm2));
|
||||
std::uniform_real_distribution<> random_triangle(0., double(areas.back()));
|
||||
std::uniform_real_distribution<> random_float(0., 1.);
|
||||
for (size_t i = 0; i < num_samples; ++ i) {
|
||||
double r = random_triangle(rng);
|
||||
size_t idx_triangle = std::min<size_t>(std::upper_bound(areas.begin(), areas.end(), (float)r) - areas.begin(), areas.size() - 1) * 3;
|
||||
// Select a random point on the triangle.
|
||||
double u = float(sqrt(random_float(rng)));
|
||||
double v = float(random_float(rng));
|
||||
const Vec2f &a = triangles[idx_triangle ++];
|
||||
const Vec2f &b = triangles[idx_triangle++];
|
||||
const Vec2f &c = triangles[idx_triangle];
|
||||
const Vec2f x = a * (1.f - u) + b * (u * (1.f - v)) + c * (v * u);
|
||||
out.emplace_back(x);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::vector<Vec2f> sample_expolygon_with_boundary(const ExPolygon &expoly, float samples_per_mm2, float samples_per_mm_boundary, std::mt19937 &rng)
|
||||
{
|
||||
std::vector<Vec2f> out = sample_expolygon(expoly, samples_per_mm2, rng);
|
||||
double point_stepping_scaled = scale_(1.f) / samples_per_mm_boundary;
|
||||
for (size_t i_contour = 0; i_contour <= expoly.holes.size(); ++ i_contour) {
|
||||
const Polygon &contour = (i_contour == 0) ? expoly.contour : expoly.holes[i_contour - 1];
|
||||
const Points pts = contour.equally_spaced_points(point_stepping_scaled);
|
||||
for (size_t i = 0; i < pts.size(); ++ i)
|
||||
out.emplace_back(unscale<float>(pts[i].x()), unscale<float>(pts[i].y()));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::vector<Vec2f> poisson_disk_from_samples(const std::vector<Vec2f> &raw_samples, float radius)
|
||||
{
|
||||
Vec2f corner_min(FLT_MAX, FLT_MAX);
|
||||
for (const Vec2f &pt : raw_samples) {
|
||||
corner_min.x() = std::min(corner_min.x(), pt.x());
|
||||
corner_min.y() = std::min(corner_min.y(), pt.y());
|
||||
}
|
||||
|
||||
// Assign the raw samples to grid cells, sort the grid cells lexicographically.
|
||||
struct RawSample {
|
||||
Vec2f coord;
|
||||
Vec2i cell_id;
|
||||
};
|
||||
std::vector<RawSample> raw_samples_sorted;
|
||||
RawSample sample;
|
||||
for (const Vec2f &pt : raw_samples) {
|
||||
sample.coord = pt;
|
||||
sample.cell_id = ((pt - corner_min) / radius).cast<int>();
|
||||
raw_samples_sorted.emplace_back(sample);
|
||||
}
|
||||
std::sort(raw_samples_sorted.begin(), raw_samples_sorted.end(), [](const RawSample &lhs, const RawSample &rhs)
|
||||
{ return lhs.cell_id.x() < rhs.cell_id.x() || (lhs.cell_id.x() == rhs.cell_id.x() && lhs.cell_id.y() < rhs.cell_id.y()); });
|
||||
|
||||
struct PoissonDiskGridEntry {
|
||||
// Resulting output sample points for this cell:
|
||||
enum {
|
||||
max_positions = 4
|
||||
};
|
||||
Vec2f poisson_samples[max_positions];
|
||||
int num_poisson_samples = 0;
|
||||
|
||||
// Index into raw_samples:
|
||||
int first_sample_idx;
|
||||
int sample_cnt;
|
||||
};
|
||||
|
||||
struct CellIDHash {
|
||||
std::size_t operator()(const Vec2i &cell_id) {
|
||||
return std::hash<int>()(cell_id.x()) ^ std::hash<int>()(cell_id.y() * 593);
|
||||
}
|
||||
};
|
||||
|
||||
// Map from cell IDs to hash_data. Each hash_data points to the range in raw_samples corresponding to that cell.
|
||||
// (We could just store the samples in hash_data. This implementation is an artifact of the reference paper, which
|
||||
// is optimizing for GPU acceleration that we haven't implemented currently.)
|
||||
typedef std::unordered_map<Vec2i, PoissonDiskGridEntry, CellIDHash> Cells;
|
||||
std::unordered_map<Vec2i, PoissonDiskGridEntry, CellIDHash> cells;
|
||||
{
|
||||
Cells::iterator last_cell_id_it;
|
||||
Vec2i last_cell_id(-1, -1);
|
||||
for (int i = 0; i < raw_samples_sorted.size(); ++ i) {
|
||||
const RawSample &sample = raw_samples_sorted[i];
|
||||
if (sample.cell_id == last_cell_id) {
|
||||
// This sample is in the same cell as the previous, so just increase the count. Cells are
|
||||
// always contiguous, since we've sorted raw_samples_sorted by cell ID.
|
||||
++ last_cell_id_it->second.sample_cnt;
|
||||
} else {
|
||||
// This is a new cell.
|
||||
PoissonDiskGridEntry data;
|
||||
data.first_sample_idx = i;
|
||||
data.sample_cnt = 1;
|
||||
auto result = cells.insert({sample.cell_id, data});
|
||||
last_cell_id = sample.cell_id;
|
||||
last_cell_id_it = result.first;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int max_trials = 5;
|
||||
const float radius_squared = radius * radius;
|
||||
for (int trial = 0; trial < max_trials; ++ trial) {
|
||||
// Create sample points for each entry in cells.
|
||||
for (auto &it : cells) {
|
||||
const Vec2i &cell_id = it.first;
|
||||
PoissonDiskGridEntry &cell_data = it.second;
|
||||
// This cell's raw sample points start at first_sample_idx. On trial 0, try the first one. On trial 1, try first_sample_idx + 1.
|
||||
int next_sample_idx = cell_data.first_sample_idx + trial;
|
||||
if (trial >= cell_data.sample_cnt)
|
||||
// There are no more points to try for this cell.
|
||||
continue;
|
||||
const RawSample &candidate = raw_samples_sorted[next_sample_idx];
|
||||
// See if this point conflicts with any other points in this cell, or with any points in
|
||||
// neighboring cells. Note that it's possible to have more than one point in the same cell.
|
||||
bool conflict = false;
|
||||
for (int i = -1; i < 2 && ! conflict; ++ i) {
|
||||
for (int j = -1; j < 2; ++ j) {
|
||||
const auto &it_neighbor = cells.find(cell_id + Vec2i(i, j));
|
||||
if (it_neighbor != cells.end()) {
|
||||
const PoissonDiskGridEntry &neighbor = it_neighbor->second;
|
||||
for (int i_sample = 0; i_sample < neighbor.num_poisson_samples; ++ i_sample)
|
||||
if ((neighbor.poisson_samples[i_sample] - candidate.coord).squaredNorm() < radius_squared) {
|
||||
conflict = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (! conflict) {
|
||||
// Store the new sample.
|
||||
assert(cell_data.num_poisson_samples < cell_data.max_positions);
|
||||
if (cell_data.num_poisson_samples < cell_data.max_positions)
|
||||
cell_data.poisson_samples[cell_data.num_poisson_samples ++] = candidate.coord;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the results to the output.
|
||||
std::vector<Vec2f> out;
|
||||
for (const auto it : cells)
|
||||
for (int i = 0; i < it.second.num_poisson_samples; ++ i)
|
||||
out.emplace_back(it.second.poisson_samples[i]);
|
||||
return out;
|
||||
}
|
||||
|
||||
void SLAAutoSupports::uniformly_cover(const ExPolygon& island, Structure& structure, bool is_new_island, bool just_one)
|
||||
{
|
||||
//int num_of_points = std::max(1, (int)((island.area()*pow(SCALING_FACTOR, 2) * m_config.tear_pressure)/m_config.support_force));
|
||||
|
||||
|
||||
const float density_horizontal = m_config.tear_pressure / m_config.support_force;
|
||||
//FIXME why?
|
||||
const float poisson_radius = 1.f / (5.f * density_horizontal);
|
||||
// const float poisson_radius = 1.f / (15.f * density_horizontal);
|
||||
const float samples_per_mm2 = 30.f / (float(M_PI) * poisson_radius * poisson_radius);
|
||||
|
||||
// We will cover the island another way.
|
||||
// For now we'll just place the points randomly not too close to the others.
|
||||
//FIXME share the random generator. The random generator may be not so cheap to initialize, also we don't want the random generator to be restarted for each polygon.
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::uniform_real_distribution<> dis(0., 1.);
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
std::vector<Vec2f> raw_samples = sample_expolygon_with_boundary(island, samples_per_mm2, 5.f / poisson_radius, rng);
|
||||
std::vector<Vec2f> poisson_samples = poisson_disk_from_samples(raw_samples, poisson_radius);
|
||||
|
||||
std::vector<Vec3d> island_new_points;
|
||||
const BoundingBox bb = get_extents(island);
|
||||
const int refused_limit = (int)floor(30.f * ((float)bb.size()(0)*bb.size()(1) / (float)island.area()) + 0.5f);
|
||||
int refused_points = 0;
|
||||
//FIXME this is very inefficient (may be blind) for long narrow polygons (thin crescent, thin ring). Use some search structure: Triangulate the polygon first?
|
||||
//FIXME use a low discrepancy sequence, Poisson sampling.
|
||||
// Poisson sampling (adapt from 3D to 2D by triangulation): https://github.com/zewt/maya-implicit-skinning/blob/master/src/meshes/vcg_lib/utils_sampling.cpp
|
||||
while (refused_points < refused_limit) {
|
||||
Point out;
|
||||
if (refused_points == 0 && island_new_points.empty()) // first iteration
|
||||
out = island.contour.centroid();
|
||||
else
|
||||
out = Point(bb.min(0) + bb.size()(0) * dis(gen), bb.min(1) + bb.size()(1) * dis(gen));
|
||||
#ifdef SLA_AUTOSUPPORTS_DEBUG
|
||||
{
|
||||
static int irun = 0;
|
||||
Slic3r::SVG svg(debug_out_path("SLA_supports-uniformly_cover-%d.svg", irun ++), get_extents(island));
|
||||
svg.draw(island);
|
||||
for (const Vec2f &pt : raw_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "red");
|
||||
for (const Vec2f &pt : poisson_samples)
|
||||
svg.draw(Point(scale_(pt.x()), scale_(pt.y())), "blue");
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
|
||||
Vec3d unscaled_out = unscale(out(0), out(1), 0);
|
||||
bool add_it = true;
|
||||
|
||||
if (!island.contour.contains(out))
|
||||
add_it = false;
|
||||
else
|
||||
for (const Polygon& hole : island.holes)
|
||||
if (hole.contains(out)) {
|
||||
add_it = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (add_it) {
|
||||
for (const Vec3d& p : island_new_points) {
|
||||
if ((p - unscaled_out).squaredNorm() < 1./(2.4*density_horizontal)) {
|
||||
add_it = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (add_it) {
|
||||
island_new_points.emplace_back(unscaled_out);
|
||||
if (just_one)
|
||||
break;
|
||||
}
|
||||
else
|
||||
++refused_points;
|
||||
}
|
||||
|
||||
for (const Vec3d& p : island_new_points) {
|
||||
m_output.emplace_back(float(p(0)), float(p(1)), structure.height, 0.4f, is_new_island);
|
||||
assert(! poisson_samples.empty());
|
||||
for (const Vec2f &pt : poisson_samples) {
|
||||
m_output.emplace_back(float(pt(0)), float(pt(1)), structure.height, 0.4f, is_new_island);
|
||||
structure.supports_force += m_config.support_force;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
|
||||
#include <Eigen/Geometry>
|
||||
|
||||
// #define SLIC3R_SLA_NEEDS_WINDTREE
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
@ -11,6 +12,7 @@ typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
|||
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
||||
|
||||
class TriangleMesh;
|
||||
|
||||
namespace sla {
|
||||
|
||||
struct SupportPoint {
|
||||
|
@ -115,11 +117,13 @@ public:
|
|||
int F_idx() const { return m_fidx; }
|
||||
};
|
||||
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
// The signed distance from a point to the mesh. Outputs the distance,
|
||||
// the index of the triangle and the closest point in mesh coordinate space.
|
||||
si_result signed_distance(const Vec3d& p) const;
|
||||
|
||||
bool inside(const Vec3d& p) const;
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -552,14 +552,12 @@ enum { // For indexing Eigen vectors as v(X), v(Y), v(Z) instead of numbers
|
|||
|
||||
PointSet to_point_set(const std::vector<SupportPoint> &v)
|
||||
{
|
||||
PointSet ret(v.size(), 5);
|
||||
PointSet ret(v.size(), 3);
|
||||
long i = 0;
|
||||
for(const SupportPoint& support_point : v) {
|
||||
ret.row(i)(0) = support_point.pos(0);
|
||||
ret.row(i)(1) = support_point.pos(1);
|
||||
ret.row(i)(2) = support_point.pos(2);
|
||||
ret.row(i)(3) = support_point.head_front_radius;
|
||||
ret.row(i)(4) = (float)support_point.is_new_island;
|
||||
++i;
|
||||
}
|
||||
return ret;
|
||||
|
|
|
@ -95,7 +95,9 @@ size_t SpatIndex::size() const
|
|||
|
||||
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
|
||||
public:
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
};
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
|
||||
|
@ -136,7 +138,9 @@ EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
|
|||
|
||||
// Build the AABB accelaration tree
|
||||
m_aabb->init(m_V, m_F);
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
m_aabb->windtree.set_mesh(m_V, m_F);
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
}
|
||||
|
||||
EigenMesh3D::~EigenMesh3D() {}
|
||||
|
@ -168,6 +172,7 @@ EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
|
|||
return ret;
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
|
||||
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
|
||||
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
|
||||
|
@ -179,6 +184,7 @@ EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
|
|||
bool EigenMesh3D::inside(const Vec3d &p) const {
|
||||
return m_aabb->windtree.inside(p);
|
||||
}
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
|
||||
/* ****************************************************************************
|
||||
* Misc functions
|
||||
|
|
|
@ -25,7 +25,7 @@ using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
|
|||
class SLAPrintObject::SupportData {
|
||||
public:
|
||||
sla::EigenMesh3D emesh; // index-triangle representation
|
||||
sla::PointSet support_points; // all the support points (manual/auto)
|
||||
std::vector<sla::SupportPoint> support_points; // all the support points (manual/auto)
|
||||
SupportTreePtr support_tree_ptr; // the supports
|
||||
SlicedSupports support_slices; // sliced supports
|
||||
std::vector<LevelID> level_ids;
|
||||
|
@ -548,18 +548,17 @@ void SLAPrint::process()
|
|||
// Now let's extract the result.
|
||||
const std::vector<sla::SupportPoint>& points = auto_supports.output();
|
||||
this->throw_if_canceled();
|
||||
po.m_supportdata->support_points = sla::to_point_set(points);
|
||||
po.m_supportdata->support_points = points;
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "Automatic support points: "
|
||||
<< po.m_supportdata->support_points.rows();
|
||||
<< po.m_supportdata->support_points.size();
|
||||
|
||||
// Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass the update status to GLGizmoSlaSupports
|
||||
report_status(*this, -1, L("Generating support points"), SlicingStatus::RELOAD_SLA_SUPPORT_POINTS);
|
||||
}
|
||||
else {
|
||||
// There are some points on the front-end, no calculation will be done.
|
||||
po.m_supportdata->support_points =
|
||||
sla::to_point_set(po.transformed_support_points());
|
||||
po.m_supportdata->support_points = po.transformed_support_points();
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -597,7 +596,7 @@ void SLAPrint::process()
|
|||
ctl.cancelfn = [this]() { throw_if_canceled(); };
|
||||
|
||||
po.m_supportdata->support_tree_ptr.reset(
|
||||
new SLASupportTree(po.m_supportdata->support_points,
|
||||
new SLASupportTree(sla::to_point_set(po.m_supportdata->support_points),
|
||||
po.m_supportdata->emesh, scfg, ctl));
|
||||
|
||||
// Create the unified mesh
|
||||
|
@ -608,7 +607,7 @@ void SLAPrint::process()
|
|||
po.m_supportdata->support_tree_ptr->merged_mesh();
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "Processed support point count "
|
||||
<< po.m_supportdata->support_points.rows();
|
||||
<< po.m_supportdata->support_points.size();
|
||||
|
||||
// Check the mesh for later troubleshooting.
|
||||
if(po.support_mesh().empty())
|
||||
|
@ -1168,7 +1167,7 @@ const std::vector<ExPolygons> EMPTY_SLICES;
|
|||
const TriangleMesh EMPTY_MESH;
|
||||
}
|
||||
|
||||
const Eigen::MatrixXd& SLAPrintObject::get_support_points() const
|
||||
const std::vector<sla::SupportPoint>& SLAPrintObject::get_support_points() const
|
||||
{
|
||||
return m_supportdata->support_points;
|
||||
}
|
||||
|
|
|
@ -91,7 +91,7 @@ public:
|
|||
const std::vector<ExPolygons>& get_support_slices() const;
|
||||
|
||||
// This method returns the support points of this SLAPrintObject.
|
||||
const Eigen::MatrixXd& get_support_points() const;
|
||||
const std::vector<sla::SupportPoint>& get_support_points() const;
|
||||
|
||||
// An index record referencing the slices
|
||||
// (get_model_slices(), get_support_slices()) where the keys are the height
|
||||
|
|
|
@ -1793,10 +1793,10 @@ void GLGizmoSlaSupports::set_sla_support_data(ModelObject* model_object, const G
|
|||
if (m_editing_mode_cache.empty() && m_parent.sla_print()->is_step_done(slaposSupportPoints)) {
|
||||
for (const SLAPrintObject* po : m_parent.sla_print()->objects()) {
|
||||
if (po->model_object()->id() == model_object->id()) {
|
||||
const Eigen::MatrixXd& points = po->get_support_points();
|
||||
for (unsigned int i=0; i<points.rows();++i)
|
||||
m_editing_mode_cache.emplace_back(po->trafo().inverse().cast<float>() * Vec3f(points(i,0), points(i,1), points(i,2)),
|
||||
points(i, 3), points(i, 4));
|
||||
const std::vector<sla::SupportPoint>& points = po->get_support_points();
|
||||
auto mat = po->trafo().inverse().cast<float>();
|
||||
for (unsigned int i=0; i<points.size();++i)
|
||||
m_editing_mode_cache.emplace_back(mat * points[i].pos, points[i].head_front_radius, points[i].is_new_island);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue