079e63e190
The odd commands that lowered the speed override values for PVA, FLEX etc. were removed Now the wipe tower backups user speed override, sets it to 100%, does what is needed and restores the old value when finished. There are no special cases - lowering the speed for certain materials can be achieved by lowering the volumetric flow.
384 lines
16 KiB
C++
384 lines
16 KiB
C++
#ifndef WipeTowerPrusaMM_hpp_
|
|
#define WipeTowerPrusaMM_hpp_
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
|
|
#include "WipeTower.hpp"
|
|
#include "PrintConfig.hpp"
|
|
|
|
|
|
namespace Slic3r
|
|
{
|
|
|
|
namespace PrusaMultiMaterial {
|
|
class Writer;
|
|
};
|
|
|
|
|
|
|
|
class WipeTowerPrusaMM : public WipeTower
|
|
{
|
|
public:
|
|
enum material_type
|
|
{
|
|
INVALID = -1,
|
|
PLA = 0, // E:210C B:55C
|
|
ABS = 1, // E:255C B:100C
|
|
PET = 2, // E:240C B:90C
|
|
HIPS = 3, // E:220C B:100C
|
|
FLEX = 4, // E:245C B:80C
|
|
SCAFF = 5, // E:215C B:55C
|
|
EDGE = 6, // E:240C B:80C
|
|
NGEN = 7, // E:230C B:80C
|
|
PVA = 8, // E:210C B:80C
|
|
PC = 9
|
|
};
|
|
|
|
// Parse material name into material_type.
|
|
static material_type parse_material(const char *name);
|
|
static std::string to_string(material_type material);
|
|
|
|
// x -- x coordinates of wipe tower in mm ( left bottom corner )
|
|
// y -- y coordinates of wipe tower in mm ( left bottom corner )
|
|
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
|
|
// wipe_area -- space available for one toolchange in mm
|
|
WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
|
|
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move,
|
|
float bridging, bool set_extruder_trimpot, GCodeFlavor flavor,
|
|
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
|
|
m_wipe_tower_pos(x, y),
|
|
m_wipe_tower_width(width),
|
|
m_wipe_tower_rotation_angle(rotation_angle),
|
|
m_y_shift(0.f),
|
|
m_z_pos(0.f),
|
|
m_is_first_layer(false),
|
|
m_cooling_tube_retraction(cooling_tube_retraction),
|
|
m_cooling_tube_length(cooling_tube_length),
|
|
m_parking_pos_retraction(parking_pos_retraction),
|
|
m_extra_loading_move(extra_loading_move),
|
|
m_bridging(bridging),
|
|
m_set_extruder_trimpot(set_extruder_trimpot),
|
|
m_gcode_flavor(flavor),
|
|
m_current_tool(initial_tool),
|
|
wipe_volumes(wiping_matrix)
|
|
{}
|
|
|
|
virtual ~WipeTowerPrusaMM() {}
|
|
|
|
|
|
// Set the extruder properties.
|
|
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
|
|
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
|
|
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float max_volumetric_speed, float nozzle_diameter)
|
|
{
|
|
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
|
|
m_filpar.push_back(FilamentParameters());
|
|
|
|
m_filpar[idx].material = material;
|
|
m_filpar[idx].temperature = temp;
|
|
m_filpar[idx].first_layer_temperature = first_layer_temp;
|
|
m_filpar[idx].loading_speed = loading_speed;
|
|
m_filpar[idx].loading_speed_start = loading_speed_start;
|
|
m_filpar[idx].unloading_speed = unloading_speed;
|
|
m_filpar[idx].unloading_speed_start = unloading_speed_start;
|
|
m_filpar[idx].delay = delay;
|
|
m_filpar[idx].cooling_moves = cooling_moves;
|
|
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
|
|
m_filpar[idx].cooling_final_speed = cooling_final_speed;
|
|
if (max_volumetric_speed != 0.f)
|
|
m_filpar[idx].max_e_speed = (max_volumetric_speed / Filament_Area);
|
|
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
|
|
|
|
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
|
|
|
|
std::stringstream stream{ramming_parameters};
|
|
float speed = 0.f;
|
|
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
|
|
m_filpar[idx].ramming_line_width_multiplicator /= 100;
|
|
m_filpar[idx].ramming_step_multiplicator /= 100;
|
|
while (stream >> speed)
|
|
m_filpar[idx].ramming_speed.push_back(speed);
|
|
|
|
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
|
|
}
|
|
|
|
|
|
// Appends into internal structure m_plan containing info about the future wipe tower
|
|
// to be used before building begins. The entries must be added ordered in z.
|
|
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
|
|
|
|
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
|
|
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
|
|
|
|
float get_depth() const { return m_wipe_tower_depth; }
|
|
|
|
|
|
|
|
// Switch to a next layer.
|
|
virtual void set_layer(
|
|
// Print height of this layer.
|
|
float print_z,
|
|
// Layer height, used to calculate extrusion the rate.
|
|
float layer_height,
|
|
// Maximum number of tool changes on this layer or the layers below.
|
|
size_t max_tool_changes,
|
|
// Is this the first layer of the print? In that case print the brim first.
|
|
bool is_first_layer,
|
|
// Is this the last layer of the waste tower?
|
|
bool is_last_layer)
|
|
{
|
|
m_z_pos = print_z;
|
|
m_layer_height = layer_height;
|
|
m_is_first_layer = is_first_layer;
|
|
m_print_brim = is_first_layer;
|
|
m_depth_traversed = 0.f;
|
|
m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL;
|
|
if (is_first_layer) {
|
|
this->m_num_layer_changes = 0;
|
|
this->m_num_tool_changes = 0;
|
|
}
|
|
else
|
|
++ m_num_layer_changes;
|
|
|
|
// Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height:
|
|
m_extrusion_flow = extrusion_flow(layer_height);
|
|
|
|
// Advance m_layer_info iterator, making sure we got it right
|
|
while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end())
|
|
++m_layer_info;
|
|
}
|
|
|
|
// Return the wipe tower position.
|
|
virtual const xy& position() const { return m_wipe_tower_pos; }
|
|
// Return the wipe tower width.
|
|
virtual float width() const { return m_wipe_tower_width; }
|
|
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
|
|
virtual bool finished() const { return m_max_color_changes == 0; }
|
|
|
|
// Returns gcode to prime the nozzles at the front edge of the print bed.
|
|
virtual ToolChangeResult prime(
|
|
// print_z of the first layer.
|
|
float first_layer_height,
|
|
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
|
|
const std::vector<unsigned int> &tools,
|
|
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
|
|
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
|
|
bool last_wipe_inside_wipe_tower);
|
|
|
|
// Returns gcode for a toolchange and a final print head position.
|
|
// On the first layer, extrude a brim around the future wipe tower first.
|
|
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer);
|
|
|
|
// Fill the unfilled space with a sparse infill.
|
|
// Call this method only if layer_finished() is false.
|
|
virtual ToolChangeResult finish_layer();
|
|
|
|
// Is the current layer finished?
|
|
virtual bool layer_finished() const {
|
|
return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed);
|
|
}
|
|
|
|
virtual std::vector<float> get_used_filament() const override { return m_used_filament_length; }
|
|
virtual int get_number_of_toolchanges() const override { return m_num_tool_changes; }
|
|
|
|
struct FilamentParameters {
|
|
material_type material = PLA;
|
|
int temperature = 0;
|
|
int first_layer_temperature = 0;
|
|
float loading_speed = 0.f;
|
|
float loading_speed_start = 0.f;
|
|
float unloading_speed = 0.f;
|
|
float unloading_speed_start = 0.f;
|
|
float delay = 0.f ;
|
|
int cooling_moves = 0;
|
|
float cooling_initial_speed = 0.f;
|
|
float cooling_final_speed = 0.f;
|
|
float ramming_line_width_multiplicator = 0.f;
|
|
float ramming_step_multiplicator = 0.f;
|
|
float max_e_speed = std::numeric_limits<float>::max();
|
|
std::vector<float> ramming_speed;
|
|
float nozzle_diameter;
|
|
};
|
|
|
|
private:
|
|
WipeTowerPrusaMM();
|
|
|
|
enum wipe_shape // A fill-in direction
|
|
{
|
|
SHAPE_NORMAL = 1,
|
|
SHAPE_REVERSED = -1
|
|
};
|
|
|
|
|
|
const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet
|
|
const float Filament_Area = float(M_PI * 1.75f * 1.75f / 4.f); // filament area in mm^2
|
|
const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust
|
|
const float WT_EPSILON = 1e-3f;
|
|
|
|
|
|
xy m_wipe_tower_pos; // Left front corner of the wipe tower in mm.
|
|
float m_wipe_tower_width; // Width of the wipe tower.
|
|
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
|
|
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
|
|
float m_internal_rotation = 0.f;
|
|
float m_y_shift = 0.f; // y shift passed to writer
|
|
float m_z_pos = 0.f; // Current Z position.
|
|
float m_layer_height = 0.f; // Current layer height.
|
|
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
|
|
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
|
|
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
|
|
|
|
// G-code generator parameters.
|
|
float m_cooling_tube_retraction = 0.f;
|
|
float m_cooling_tube_length = 0.f;
|
|
float m_parking_pos_retraction = 0.f;
|
|
float m_extra_loading_move = 0.f;
|
|
float m_bridging = 0.f;
|
|
bool m_set_extruder_trimpot = false;
|
|
bool m_adhesion = true;
|
|
GCodeFlavor m_gcode_flavor;
|
|
|
|
float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill.
|
|
float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter.
|
|
|
|
// Extruder specific parameters.
|
|
std::vector<FilamentParameters> m_filpar;
|
|
|
|
|
|
// State of the wipe tower generator.
|
|
unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics.
|
|
unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics.
|
|
///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes.
|
|
bool m_print_brim = true;
|
|
// A fill-in direction (positive Y, negative Y) alternates with each layer.
|
|
wipe_shape m_current_shape = SHAPE_NORMAL;
|
|
unsigned int m_current_tool = 0;
|
|
const std::vector<std::vector<float>> wipe_volumes;
|
|
|
|
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
|
|
bool m_left_to_right = true;
|
|
float m_extra_spacing = 1.f;
|
|
|
|
// Calculates extrusion flow needed to produce required line width for given layer height
|
|
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
|
|
{
|
|
if ( layer_height < 0 )
|
|
return m_extrusion_flow;
|
|
return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / Filament_Area;
|
|
}
|
|
|
|
// Calculates length of extrusion line to extrude given volume
|
|
float volume_to_length(float volume, float line_width, float layer_height) const {
|
|
return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))));
|
|
}
|
|
|
|
// Calculates depth for all layers and propagates them downwards
|
|
void plan_tower();
|
|
|
|
// Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental
|
|
void make_wipe_tower_square();
|
|
|
|
// Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe
|
|
void save_on_last_wipe();
|
|
|
|
|
|
struct box_coordinates
|
|
{
|
|
box_coordinates(float left, float bottom, float width, float height) :
|
|
ld(left , bottom ),
|
|
lu(left , bottom + height),
|
|
rd(left + width, bottom ),
|
|
ru(left + width, bottom + height) {}
|
|
box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {}
|
|
void translate(const xy &shift) {
|
|
ld += shift; lu += shift;
|
|
rd += shift; ru += shift;
|
|
}
|
|
void translate(const float dx, const float dy) { translate(xy(dx, dy)); }
|
|
void expand(const float offset) {
|
|
ld += xy(- offset, - offset);
|
|
lu += xy(- offset, offset);
|
|
rd += xy( offset, - offset);
|
|
ru += xy( offset, offset);
|
|
}
|
|
void expand(const float offset_x, const float offset_y) {
|
|
ld += xy(- offset_x, - offset_y);
|
|
lu += xy(- offset_x, offset_y);
|
|
rd += xy( offset_x, - offset_y);
|
|
ru += xy( offset_x, offset_y);
|
|
}
|
|
xy ld; // left down
|
|
xy lu; // left upper
|
|
xy rd; // right lower
|
|
xy ru; // right upper
|
|
};
|
|
|
|
|
|
// to store information about tool changes for a given layer
|
|
struct WipeTowerInfo{
|
|
struct ToolChange {
|
|
unsigned int old_tool;
|
|
unsigned int new_tool;
|
|
float required_depth;
|
|
float ramming_depth;
|
|
float first_wipe_line;
|
|
float wipe_volume;
|
|
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
|
|
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
|
|
};
|
|
float z; // z position of the layer
|
|
float height; // layer height
|
|
float depth; // depth of the layer based on all layers above
|
|
float extra_spacing;
|
|
float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; }
|
|
|
|
std::vector<ToolChange> tool_changes;
|
|
|
|
WipeTowerInfo(float z_par, float layer_height_par)
|
|
: z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {}
|
|
};
|
|
|
|
std::vector<WipeTowerInfo> m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...))
|
|
std::vector<WipeTowerInfo>::iterator m_layer_info = m_plan.end();
|
|
|
|
// Stores information about used filament length per extruder:
|
|
std::vector<float> m_used_filament_length;
|
|
|
|
|
|
// Returns gcode for wipe tower brim
|
|
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
|
|
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
|
|
ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f);
|
|
|
|
void toolchange_Unload(
|
|
PrusaMultiMaterial::Writer &writer,
|
|
const box_coordinates &cleaning_box,
|
|
const material_type current_material,
|
|
const int new_temperature);
|
|
|
|
void toolchange_Change(
|
|
PrusaMultiMaterial::Writer &writer,
|
|
const unsigned int new_tool,
|
|
material_type new_material);
|
|
|
|
void toolchange_Load(
|
|
PrusaMultiMaterial::Writer &writer,
|
|
const box_coordinates &cleaning_box);
|
|
|
|
void toolchange_Wipe(
|
|
PrusaMultiMaterial::Writer &writer,
|
|
const box_coordinates &cleaning_box,
|
|
float wipe_volume);
|
|
};
|
|
|
|
|
|
|
|
|
|
}; // namespace Slic3r
|
|
|
|
#endif /* WipeTowerPrusaMM_hpp_ */
|