2858 lines
154 KiB
C++
2858 lines
154 KiB
C++
#include "AABBTreeLines.hpp"
|
|
#include "BridgeDetector.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "Exception.hpp"
|
|
#include "Flow.hpp"
|
|
#include "KDTreeIndirect.hpp"
|
|
#include "Point.hpp"
|
|
#include "Polygon.hpp"
|
|
#include "Polyline.hpp"
|
|
#include "Print.hpp"
|
|
#include "BoundingBox.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ElephantFootCompensation.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "I18N.hpp"
|
|
#include "Layer.hpp"
|
|
#include "MutablePolygon.hpp"
|
|
#include "PrintBase.hpp"
|
|
#include "PrintConfig.hpp"
|
|
#include "SupportMaterial.hpp"
|
|
#include "TreeSupport.hpp"
|
|
#include "Surface.hpp"
|
|
#include "Slicing.hpp"
|
|
#include "Tesselate.hpp"
|
|
#include "TriangleMeshSlicer.hpp"
|
|
#include "Utils.hpp"
|
|
#include "Fill/FillAdaptive.hpp"
|
|
#include "Fill/FillLightning.hpp"
|
|
#include "Format/STL.hpp"
|
|
#include "SupportMaterial.hpp"
|
|
#include "SupportSpotsGenerator.hpp"
|
|
#include "TriangleSelectorWrapper.hpp"
|
|
#include "format.hpp"
|
|
#include "libslic3r.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <float.h>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <oneapi/tbb/blocked_range.h>
|
|
#include <oneapi/tbb/concurrent_vector.h>
|
|
#include <oneapi/tbb/parallel_for.h>
|
|
#include <string>
|
|
#include <string_view>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#include <tbb/parallel_for.h>
|
|
#include <vector>
|
|
|
|
using namespace std::literals;
|
|
|
|
//! macro used to mark string used at localization,
|
|
//! return same string
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
#define SLIC3R_DEBUG
|
|
#endif
|
|
|
|
// #define SLIC3R_DEBUG
|
|
|
|
// Make assert active if SLIC3R_DEBUG
|
|
#ifdef SLIC3R_DEBUG
|
|
#undef NDEBUG
|
|
#define DEBUG
|
|
#define _DEBUG
|
|
#include "SVG.hpp"
|
|
#undef assert
|
|
#include <cassert>
|
|
#endif
|
|
|
|
#include "SVG.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
// Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid.
|
|
PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) :
|
|
PrintObjectBaseWithState(print, model_object),
|
|
m_trafo(trafo)
|
|
{
|
|
// Compute centering offet to be applied to our meshes so that we work with smaller coordinates
|
|
// requiring less bits to represent Clipper coordinates.
|
|
|
|
// Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied.
|
|
// All the instances share the transformation matrix with the exception of translation in XY and rotation by Z,
|
|
// therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center,
|
|
// snug height and an approximate bounding box in XY.
|
|
BoundingBoxf3 bbox = model_object->raw_bounding_box();
|
|
Vec3d bbox_center = bbox.center();
|
|
// We may need to rotate the bbox / bbox_center from the original instance to the current instance.
|
|
double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_matrix(), instances.front().model_instance->get_matrix());
|
|
if (std::abs(z_diff) > EPSILON) {
|
|
auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ());
|
|
bbox = bbox.transformed(Transform3d(z_rot));
|
|
bbox_center = (z_rot * bbox_center).eval();
|
|
}
|
|
|
|
// Center of the transformed mesh (without translation).
|
|
m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y());
|
|
// Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z.
|
|
m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
|
|
m_size.z() = model_object->max_z();
|
|
|
|
this->set_instances(std::move(instances));
|
|
}
|
|
|
|
PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances)
|
|
{
|
|
for (PrintInstance &i : instances)
|
|
// Add the center offset, which will be subtracted from the mesh when slicing.
|
|
i.shift += m_center_offset;
|
|
// Invalidate and set copies.
|
|
PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
|
|
bool equal_length = instances.size() == m_instances.size();
|
|
bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(),
|
|
[](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; });
|
|
if (! equal) {
|
|
status = PrintBase::APPLY_STATUS_CHANGED;
|
|
if (m_print->invalidate_steps({ psSkirtBrim, psGCodeExport }) ||
|
|
(! equal_length && m_print->invalidate_step(psWipeTower)))
|
|
status = PrintBase::APPLY_STATUS_INVALIDATED;
|
|
m_instances = std::move(instances);
|
|
for (PrintInstance &i : m_instances)
|
|
i.print_object = this;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
std::vector<std::reference_wrapper<const PrintRegion>> PrintObject::all_regions() const
|
|
{
|
|
std::vector<std::reference_wrapper<const PrintRegion>> out;
|
|
out.reserve(m_shared_regions->all_regions.size());
|
|
for (const std::unique_ptr<Slic3r::PrintRegion> ®ion : m_shared_regions->all_regions)
|
|
out.emplace_back(*region.get());
|
|
return out;
|
|
}
|
|
|
|
// 1) Merges typed region slices into stInternal type.
|
|
// 2) Increases an "extra perimeters" counter at region slices where needed.
|
|
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
|
|
void PrintObject::make_perimeters()
|
|
{
|
|
// prerequisites
|
|
this->slice();
|
|
|
|
if (! this->set_started(posPerimeters))
|
|
return;
|
|
|
|
m_print->set_status(20, L("Generating perimeters"));
|
|
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
|
|
|
|
// Revert the typed slices into untyped slices.
|
|
if (m_typed_slices) {
|
|
for (Layer *layer : m_layers) {
|
|
layer->clear_fills();
|
|
layer->restore_untyped_slices();
|
|
m_print->throw_if_canceled();
|
|
}
|
|
m_typed_slices = false;
|
|
}
|
|
|
|
// compare each layer to the one below, and mark those slices needing
|
|
// one additional inner perimeter, like the top of domed objects-
|
|
|
|
// this algorithm makes sure that at least one perimeter is overlapping
|
|
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
|
|
// inside the object - infill_only_where_needed should be the method of choice for printing
|
|
// hollow objects
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
const PrintRegion ®ion = this->printing_region(region_id);
|
|
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
|
|
continue;
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
|
|
[this, ®ion, region_id](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
LayerRegion &layerm = *m_layers[layer_idx]->get_region(region_id);
|
|
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->get_region(region_id);
|
|
const Polygons upper_layerm_polygons = to_polygons(upper_layerm.slices().surfaces);
|
|
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
|
|
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
|
|
const double total_loop_length = total_length(upper_layerm_polygons);
|
|
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
|
|
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
|
|
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
|
|
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
|
|
|
|
// slice is not const because slice.extra_perimeters is being incremented.
|
|
for (Surface &slice : layerm.m_slices.surfaces) {
|
|
for (;;) {
|
|
// compute the total thickness of perimeters
|
|
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
|
|
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
|
|
// define a critical area where we don't want the upper slice to fall into
|
|
// (it should either lay over our perimeters or outside this area)
|
|
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
|
|
const Polygons critical_area = diff(
|
|
offset(slice.expolygon, float(- perimeters_thickness)),
|
|
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
|
|
);
|
|
// check whether a portion of the upper slices falls inside the critical area
|
|
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
|
|
// only add an additional loop if at least 30% of the slice loop would benefit from it
|
|
if (total_length(intersection) <= total_loop_length*0.3)
|
|
break;
|
|
/*
|
|
if (0) {
|
|
require "Slic3r/SVG.pm";
|
|
Slic3r::SVG::output(
|
|
"extra.svg",
|
|
no_arrows => 1,
|
|
expolygons => union_ex($critical_area),
|
|
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
|
|
);
|
|
}
|
|
*/
|
|
++ slice.extra_perimeters;
|
|
}
|
|
#ifdef DEBUG
|
|
if (slice.extra_perimeters > 0)
|
|
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
|
|
#endif
|
|
}
|
|
}
|
|
});
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
m_layers[layer_idx]->make_perimeters();
|
|
}
|
|
}
|
|
);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
|
|
|
|
this->set_done(posPerimeters);
|
|
}
|
|
|
|
void PrintObject::prepare_infill()
|
|
{
|
|
if (! this->set_started(posPrepareInfill))
|
|
return;
|
|
|
|
m_print->set_status(30, L("Preparing infill"));
|
|
|
|
if (m_typed_slices) {
|
|
// To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442.
|
|
// The preceding step (perimeter generator) only modifies extra_perimeters and the extra perimeters are only used by discover_vertical_shells()
|
|
// with more than a single region. If this step does not use Surface::extra_perimeters or Surface::extra_perimeters is always zero, it is safe
|
|
// to reset to the untyped slices before re-runnning detect_surfaces_type().
|
|
for (Layer* layer : m_layers) {
|
|
layer->restore_untyped_slices_no_extra_perimeters();
|
|
m_print->throw_if_canceled();
|
|
}
|
|
}
|
|
|
|
// This will assign a type (top/bottom/internal) to $layerm->slices.
|
|
// Then the classifcation of $layerm->slices is transfered onto
|
|
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
|
|
// by the cummulative area of the previous $layerm->fill_surfaces.
|
|
this->detect_surfaces_type();
|
|
m_print->throw_if_canceled();
|
|
|
|
// Decide what surfaces are to be filled.
|
|
// Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured.
|
|
// Also tiny stInternal surfaces are turned to stInternalSolid.
|
|
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
|
|
for (auto *layer : m_layers)
|
|
for (auto *region : layer->m_regions) {
|
|
region->prepare_fill_surfaces();
|
|
m_print->throw_if_canceled();
|
|
}
|
|
|
|
|
|
// Add solid fills to ensure the shell vertical thickness.
|
|
this->discover_vertical_shells();
|
|
m_print->throw_if_canceled();
|
|
|
|
// Debugging output.
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-final");
|
|
} // for each layer
|
|
} // for each region
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// this will detect bridges and reverse bridges
|
|
// and rearrange top/bottom/internal surfaces
|
|
// It produces enlarged overlapping bridging areas.
|
|
//
|
|
// 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
|
|
// 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
|
|
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
|
|
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
|
|
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
|
|
this->process_external_surfaces();
|
|
m_print->throw_if_canceled();
|
|
|
|
// Debugging output.
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("3_process_external_surfaces-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final");
|
|
} // for each layer
|
|
} // for each region
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// Detect, which fill surfaces are near external layers.
|
|
// They will be split in internal and internal-solid surfaces.
|
|
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
|
|
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
|
|
// to close these surfaces reliably.
|
|
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
|
|
this->discover_horizontal_shells();
|
|
m_print->throw_if_canceled();
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
|
|
} // for each layer
|
|
} // for each region
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
|
|
// so it acts as an internal support. It maintains all other infill types intact.
|
|
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
|
|
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
|
|
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
|
|
// Also one wishes the perimeters to be supported by a full infill.
|
|
this->clip_fill_surfaces();
|
|
m_print->throw_if_canceled();
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
|
|
} // for each layer
|
|
} // for each region
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// the following step needs to be done before combination because it may need
|
|
// to remove only half of the combined infill
|
|
this->bridge_over_infill();
|
|
m_print->throw_if_canceled();
|
|
|
|
// combine fill surfaces to honor the "infill every N layers" option
|
|
this->combine_infill();
|
|
m_print->throw_if_canceled();
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
|
|
} // for each layer
|
|
} // for each region
|
|
for (const Layer *layer : m_layers) {
|
|
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
|
|
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
|
|
} // for each layer
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
this->set_done(posPrepareInfill);
|
|
}
|
|
|
|
void PrintObject::clear_fills()
|
|
{
|
|
for (Layer *layer : m_layers)
|
|
layer->clear_fills();
|
|
}
|
|
|
|
void PrintObject::infill()
|
|
{
|
|
// prerequisites
|
|
this->prepare_infill();
|
|
|
|
if (this->set_started(posInfill)) {
|
|
m_print->set_status(45, L("making infill"));
|
|
const auto& adaptive_fill_octree = this->m_adaptive_fill_octrees.first;
|
|
const auto& support_fill_octree = this->m_adaptive_fill_octrees.second;
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get(), this->m_lightning_generator.get());
|
|
}
|
|
}
|
|
);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
|
|
/* we could free memory now, but this would make this step not idempotent
|
|
### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
|
|
*/
|
|
this->set_done(posInfill);
|
|
}
|
|
}
|
|
|
|
void PrintObject::ironing()
|
|
{
|
|
if (this->set_started(posIroning)) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start";
|
|
tbb::parallel_for(
|
|
// Ironing starting with layer 0 to support ironing all surfaces.
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
m_layers[layer_idx]->make_ironing();
|
|
}
|
|
}
|
|
);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end";
|
|
this->set_done(posIroning);
|
|
}
|
|
}
|
|
|
|
void PrintObject::generate_support_spots()
|
|
{
|
|
if (this->set_started(posSupportSpotsSearch)) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Searching support spots - start";
|
|
m_print->set_status(65, L("Searching support spots"));
|
|
if (!this->shared_regions()->generated_support_points.has_value()) {
|
|
PrintTryCancel cancel_func = m_print->make_try_cancel();
|
|
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values,
|
|
float(this->print()->m_config.perimeter_acceleration.getFloat()),
|
|
this->config().raft_layers.getInt(), this->config().brim_type.value,
|
|
float(this->config().brim_width.getFloat())};
|
|
auto [supp_points, partial_objects] = SupportSpotsGenerator::full_search(this, cancel_func, params);
|
|
Transform3d po_transform = this->trafo_centered();
|
|
if (this->layer_count() > 0) {
|
|
po_transform = Geometry::translation_transform(Vec3d{0, 0, this->layers().front()->bottom_z()}) * po_transform;
|
|
}
|
|
this->m_shared_regions->generated_support_points = {po_transform, supp_points, partial_objects};
|
|
m_print->throw_if_canceled();
|
|
}
|
|
BOOST_LOG_TRIVIAL(debug) << "Searching support spots - end";
|
|
this->set_done(posSupportSpotsSearch);
|
|
}
|
|
}
|
|
|
|
void PrintObject::generate_support_material()
|
|
{
|
|
if (this->set_started(posSupportMaterial)) {
|
|
this->clear_support_layers();
|
|
if ((this->has_support() && m_layers.size() > 1) || (this->has_raft() && ! m_layers.empty())) {
|
|
m_print->set_status(70, L("Generating support material"));
|
|
this->_generate_support_material();
|
|
m_print->throw_if_canceled();
|
|
} else {
|
|
#if 0
|
|
// Printing without supports. Empty layer means some objects or object parts are levitating,
|
|
// therefore they cannot be printed without supports.
|
|
for (const Layer *layer : m_layers)
|
|
if (layer->empty())
|
|
throw Slic3r::SlicingError("Levitating objects cannot be printed without supports.");
|
|
#endif
|
|
}
|
|
this->set_done(posSupportMaterial);
|
|
}
|
|
}
|
|
|
|
void PrintObject::estimate_curled_extrusions()
|
|
{
|
|
if (this->set_started(posEstimateCurledExtrusions)) {
|
|
if (this->print()->config().avoid_crossing_curled_overhangs) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Estimating areas with curled extrusions - start";
|
|
m_print->set_status(88, L("Estimating curled extrusions"));
|
|
|
|
// Estimate curling of support material and add it to the malformaition lines of each layer
|
|
float support_flow_width = support_material_flow(this, this->config().layer_height).width();
|
|
SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values,
|
|
float(this->print()->m_config.perimeter_acceleration.getFloat()),
|
|
this->config().raft_layers.getInt(), this->config().brim_type.value,
|
|
float(this->config().brim_width.getFloat())};
|
|
SupportSpotsGenerator::estimate_supports_malformations(this->support_layers(), support_flow_width, params);
|
|
SupportSpotsGenerator::estimate_malformations(this->layers(), params);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Estimating areas with curled extrusions - end";
|
|
}
|
|
this->set_done(posEstimateCurledExtrusions);
|
|
}
|
|
}
|
|
|
|
std::pair<FillAdaptive::OctreePtr, FillAdaptive::OctreePtr> PrintObject::prepare_adaptive_infill_data(
|
|
const std::vector<std::pair<const Surface *, float>> &surfaces_w_bottom_z) const
|
|
{
|
|
using namespace FillAdaptive;
|
|
|
|
auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this);
|
|
if ((adaptive_line_spacing == 0. && support_line_spacing == 0.) || this->layers().empty())
|
|
return std::make_pair(OctreePtr(), OctreePtr());
|
|
|
|
indexed_triangle_set mesh = this->model_object()->raw_indexed_triangle_set();
|
|
// Rotate mesh and build octree on it with axis-aligned (standart base) cubes.
|
|
auto to_octree = transform_to_octree().toRotationMatrix();
|
|
its_transform(mesh, to_octree * this->trafo_centered(), true);
|
|
|
|
// Triangulate internal bridging surfaces.
|
|
std::vector<std::vector<Vec3d>> overhangs(surfaces_w_bottom_z.size());
|
|
tbb::parallel_for(tbb::blocked_range<int>(0, surfaces_w_bottom_z.size()),
|
|
[this, &to_octree, &overhangs, &surfaces_w_bottom_z](const tbb::blocked_range<int> &range) {
|
|
for (int surface_idx = range.begin(); surface_idx < range.end(); ++surface_idx) {
|
|
std::vector<Vec3d> &out = overhangs[surface_idx];
|
|
m_print->throw_if_canceled();
|
|
append(out, triangulate_expolygon_3d(surfaces_w_bottom_z[surface_idx].first->expolygon,
|
|
surfaces_w_bottom_z[surface_idx].second));
|
|
for (Vec3d &p : out)
|
|
p = (to_octree * p).eval();
|
|
}
|
|
});
|
|
// and gather them.
|
|
for (size_t i = 1; i < overhangs.size(); ++ i)
|
|
append(overhangs.front(), std::move(overhangs[i]));
|
|
|
|
return std::make_pair(
|
|
adaptive_line_spacing ? build_octree(mesh, overhangs.front(), adaptive_line_spacing, false) : OctreePtr(),
|
|
support_line_spacing ? build_octree(mesh, overhangs.front(), support_line_spacing, true) : OctreePtr());
|
|
}
|
|
|
|
FillLightning::GeneratorPtr PrintObject::prepare_lightning_infill_data()
|
|
{
|
|
bool has_lightning_infill = false;
|
|
coordf_t lightning_density = 0.;
|
|
size_t lightning_cnt = 0;
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id)
|
|
if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning) {
|
|
has_lightning_infill = true;
|
|
lightning_density += config.fill_density;
|
|
++lightning_cnt;
|
|
}
|
|
|
|
if (has_lightning_infill)
|
|
lightning_density /= coordf_t(lightning_cnt);
|
|
|
|
return has_lightning_infill ? FillLightning::build_generator(std::as_const(*this), lightning_density, [this]() -> void { this->throw_if_canceled(); }) : FillLightning::GeneratorPtr();
|
|
}
|
|
|
|
void PrintObject::clear_layers()
|
|
{
|
|
for (Layer *l : m_layers)
|
|
delete l;
|
|
m_layers.clear();
|
|
}
|
|
|
|
Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
|
|
{
|
|
m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
|
|
return m_layers.back();
|
|
}
|
|
|
|
void PrintObject::clear_support_layers()
|
|
{
|
|
for (Layer *l : m_support_layers)
|
|
delete l;
|
|
m_support_layers.clear();
|
|
}
|
|
|
|
SupportLayer* PrintObject::add_support_layer(int id, int interface_id, coordf_t height, coordf_t print_z)
|
|
{
|
|
m_support_layers.emplace_back(new SupportLayer(id, interface_id, this, height, print_z, -1));
|
|
return m_support_layers.back();
|
|
}
|
|
|
|
SupportLayerPtrs::iterator PrintObject::insert_support_layer(SupportLayerPtrs::iterator pos, size_t id, size_t interface_id, coordf_t height, coordf_t print_z, coordf_t slice_z)
|
|
{
|
|
return m_support_layers.insert(pos, new SupportLayer(id, interface_id, this, height, print_z, slice_z));
|
|
}
|
|
|
|
// Called by Print::apply().
|
|
// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
|
|
bool PrintObject::invalidate_state_by_config_options(
|
|
const ConfigOptionResolver &old_config, const ConfigOptionResolver &new_config, const std::vector<t_config_option_key> &opt_keys)
|
|
{
|
|
if (opt_keys.empty())
|
|
return false;
|
|
|
|
std::vector<PrintObjectStep> steps;
|
|
bool invalidated = false;
|
|
for (const t_config_option_key &opt_key : opt_keys) {
|
|
if ( opt_key == "brim_width"
|
|
|| opt_key == "brim_separation"
|
|
|| opt_key == "brim_type") {
|
|
steps.emplace_back(posSupportSpotsSearch);
|
|
// Brim is printed below supports, support invalidates brim and skirt.
|
|
steps.emplace_back(posSupportMaterial);
|
|
} else if (
|
|
opt_key == "perimeters"
|
|
|| opt_key == "extra_perimeters"
|
|
|| opt_key == "extra_perimeters_on_overhangs"
|
|
|| opt_key == "first_layer_extrusion_width"
|
|
|| opt_key == "perimeter_extrusion_width"
|
|
|| opt_key == "infill_overlap"
|
|
|| opt_key == "external_perimeters_first") {
|
|
steps.emplace_back(posPerimeters);
|
|
} else if (
|
|
opt_key == "gap_fill_enabled"
|
|
|| opt_key == "gap_fill_speed") {
|
|
// Return true if gap-fill speed has changed from zero value to non-zero or from non-zero value to zero.
|
|
auto is_gap_fill_changed_state_due_to_speed = [&opt_key, &old_config, &new_config]() -> bool {
|
|
if (opt_key == "gap_fill_speed") {
|
|
const auto *old_gap_fill_speed = old_config.option<ConfigOptionFloat>(opt_key);
|
|
const auto *new_gap_fill_speed = new_config.option<ConfigOptionFloat>(opt_key);
|
|
assert(old_gap_fill_speed && new_gap_fill_speed);
|
|
return (old_gap_fill_speed->value > 0.f && new_gap_fill_speed->value == 0.f) ||
|
|
(old_gap_fill_speed->value == 0.f && new_gap_fill_speed->value > 0.f);
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Filtering of unprintable regions in multi-material segmentation depends on if gap-fill is enabled or not.
|
|
// So step posSlice is invalidated when gap-fill was enabled/disabled by option "gap_fill_enabled" or by
|
|
// changing "gap_fill_speed" to force recomputation of the multi-material segmentation.
|
|
if (this->is_mm_painted() && (opt_key == "gap_fill_enabled" || (opt_key == "gap_fill_speed" && is_gap_fill_changed_state_due_to_speed())))
|
|
steps.emplace_back(posSlice);
|
|
steps.emplace_back(posPerimeters);
|
|
} else if (
|
|
opt_key == "layer_height"
|
|
|| opt_key == "mmu_segmented_region_max_width"
|
|
|| opt_key == "raft_layers"
|
|
|| opt_key == "raft_contact_distance"
|
|
|| opt_key == "slice_closing_radius"
|
|
|| opt_key == "slicing_mode") {
|
|
steps.emplace_back(posSlice);
|
|
} else if (
|
|
opt_key == "elefant_foot_compensation"
|
|
|| opt_key == "support_material_contact_distance"
|
|
|| opt_key == "xy_size_compensation") {
|
|
steps.emplace_back(posSlice);
|
|
} else if (opt_key == "support_material") {
|
|
steps.emplace_back(posSupportMaterial);
|
|
if (m_config.support_material_contact_distance == 0.) {
|
|
// Enabling / disabling supports while soluble support interface is enabled.
|
|
// This changes the bridging logic (bridging enabled without supports, disabled with supports).
|
|
// Reset everything.
|
|
// See GH #1482 for details.
|
|
steps.emplace_back(posSlice);
|
|
}
|
|
} else if (
|
|
opt_key == "support_material_auto"
|
|
|| opt_key == "support_material_angle"
|
|
|| opt_key == "support_material_buildplate_only"
|
|
|| opt_key == "support_material_enforce_layers"
|
|
|| opt_key == "support_material_extruder"
|
|
|| opt_key == "support_material_extrusion_width"
|
|
|| opt_key == "support_material_bottom_contact_distance"
|
|
|| opt_key == "support_material_interface_layers"
|
|
|| opt_key == "support_material_bottom_interface_layers"
|
|
|| opt_key == "support_material_interface_pattern"
|
|
|| opt_key == "support_material_interface_contact_loops"
|
|
|| opt_key == "support_material_interface_extruder"
|
|
|| opt_key == "support_material_interface_spacing"
|
|
|| opt_key == "support_material_pattern"
|
|
|| opt_key == "support_material_style"
|
|
|| opt_key == "support_material_xy_spacing"
|
|
|| opt_key == "support_material_spacing"
|
|
|| opt_key == "support_material_closing_radius"
|
|
|| opt_key == "support_material_synchronize_layers"
|
|
|| opt_key == "support_material_threshold"
|
|
|| opt_key == "support_material_with_sheath"
|
|
|| opt_key == "support_tree_angle"
|
|
|| opt_key == "support_tree_angle_slow"
|
|
|| opt_key == "support_tree_branch_diameter"
|
|
|| opt_key == "support_tree_branch_diameter_angle"
|
|
|| opt_key == "support_tree_top_rate"
|
|
|| opt_key == "support_tree_branch_distance"
|
|
|| opt_key == "support_tree_tip_diameter"
|
|
|| opt_key == "raft_expansion"
|
|
|| opt_key == "raft_first_layer_density"
|
|
|| opt_key == "raft_first_layer_expansion"
|
|
|| opt_key == "dont_support_bridges"
|
|
|| opt_key == "first_layer_extrusion_width") {
|
|
steps.emplace_back(posSupportMaterial);
|
|
} else if (opt_key == "bottom_solid_layers") {
|
|
steps.emplace_back(posPrepareInfill);
|
|
if (m_print->config().spiral_vase) {
|
|
// Changing the number of bottom layers when a spiral vase is enabled requires re-slicing the object again.
|
|
// Otherwise, holes in the bottom layers could be filled, as is reported in GH #5528.
|
|
steps.emplace_back(posSlice);
|
|
}
|
|
} else if (
|
|
opt_key == "interface_shells"
|
|
|| opt_key == "infill_only_where_needed"
|
|
|| opt_key == "infill_every_layers"
|
|
|| opt_key == "solid_infill_every_layers"
|
|
|| opt_key == "bottom_solid_min_thickness"
|
|
|| opt_key == "top_solid_layers"
|
|
|| opt_key == "top_solid_min_thickness"
|
|
|| opt_key == "solid_infill_below_area"
|
|
|| opt_key == "infill_extruder"
|
|
|| opt_key == "solid_infill_extruder"
|
|
|| opt_key == "infill_extrusion_width"
|
|
|| opt_key == "bridge_angle") {
|
|
steps.emplace_back(posPrepareInfill);
|
|
} else if (
|
|
opt_key == "top_fill_pattern"
|
|
|| opt_key == "bottom_fill_pattern"
|
|
|| opt_key == "external_fill_link_max_length"
|
|
|| opt_key == "fill_angle"
|
|
|| opt_key == "infill_anchor"
|
|
|| opt_key == "infill_anchor_max"
|
|
|| opt_key == "top_infill_extrusion_width"
|
|
|| opt_key == "first_layer_extrusion_width") {
|
|
steps.emplace_back(posInfill);
|
|
} else if (opt_key == "fill_pattern") {
|
|
steps.emplace_back(posPrepareInfill);
|
|
} else if (opt_key == "fill_density") {
|
|
// One likely wants to reslice only when switching between zero infill to simulate boolean difference (subtracting volumes),
|
|
// normal infill and 100% (solid) infill.
|
|
const auto *old_density = old_config.option<ConfigOptionPercent>(opt_key);
|
|
const auto *new_density = new_config.option<ConfigOptionPercent>(opt_key);
|
|
assert(old_density && new_density);
|
|
//FIXME Vojtech is not quite sure about the 100% here, maybe it is not needed.
|
|
if (is_approx(old_density->value, 0.) || is_approx(old_density->value, 100.) ||
|
|
is_approx(new_density->value, 0.) || is_approx(new_density->value, 100.))
|
|
steps.emplace_back(posPerimeters);
|
|
steps.emplace_back(posPrepareInfill);
|
|
} else if (opt_key == "solid_infill_extrusion_width") {
|
|
// This value is used for calculating perimeter - infill overlap, thus perimeters need to be recalculated.
|
|
steps.emplace_back(posPerimeters);
|
|
steps.emplace_back(posPrepareInfill);
|
|
} else if (
|
|
opt_key == "external_perimeter_extrusion_width"
|
|
|| opt_key == "perimeter_extruder"
|
|
|| opt_key == "fuzzy_skin"
|
|
|| opt_key == "fuzzy_skin_thickness"
|
|
|| opt_key == "fuzzy_skin_point_dist"
|
|
|| opt_key == "overhangs"
|
|
|| opt_key == "thin_walls"
|
|
|| opt_key == "thick_bridges") {
|
|
steps.emplace_back(posPerimeters);
|
|
steps.emplace_back(posSupportMaterial);
|
|
} else if (opt_key == "bridge_flow_ratio") {
|
|
if (m_config.support_material_contact_distance > 0.) {
|
|
// Only invalidate due to bridging if bridging is enabled.
|
|
// If later "support_material_contact_distance" is modified, the complete PrintObject is invalidated anyway.
|
|
steps.emplace_back(posPerimeters);
|
|
steps.emplace_back(posInfill);
|
|
steps.emplace_back(posSupportMaterial);
|
|
}
|
|
} else if (
|
|
opt_key == "perimeter_generator"
|
|
|| opt_key == "wall_transition_length"
|
|
|| opt_key == "wall_transition_filter_deviation"
|
|
|| opt_key == "wall_transition_angle"
|
|
|| opt_key == "wall_distribution_count"
|
|
|| opt_key == "min_feature_size"
|
|
|| opt_key == "min_bead_width") {
|
|
steps.emplace_back(posSlice);
|
|
} else if (
|
|
opt_key == "seam_position"
|
|
|| opt_key == "seam_preferred_direction"
|
|
|| opt_key == "seam_preferred_direction_jitter"
|
|
|| opt_key == "support_material_speed"
|
|
|| opt_key == "support_material_interface_speed"
|
|
|| opt_key == "bridge_speed"
|
|
|| opt_key == "enable_dynamic_overhang_speeds"
|
|
|| opt_key == "overhang_speed_0"
|
|
|| opt_key == "overhang_speed_1"
|
|
|| opt_key == "overhang_speed_2"
|
|
|| opt_key == "overhang_speed_3"
|
|
|| opt_key == "external_perimeter_speed"
|
|
|| opt_key == "infill_speed"
|
|
|| opt_key == "perimeter_speed"
|
|
|| opt_key == "small_perimeter_speed"
|
|
|| opt_key == "solid_infill_speed"
|
|
|| opt_key == "top_solid_infill_speed") {
|
|
invalidated |= m_print->invalidate_step(psGCodeExport);
|
|
} else if (
|
|
opt_key == "wipe_into_infill"
|
|
|| opt_key == "wipe_into_objects") {
|
|
invalidated |= m_print->invalidate_step(psWipeTower);
|
|
invalidated |= m_print->invalidate_step(psGCodeExport);
|
|
} else {
|
|
// for legacy, if we can't handle this option let's invalidate all steps
|
|
this->invalidate_all_steps();
|
|
invalidated = true;
|
|
}
|
|
}
|
|
|
|
sort_remove_duplicates(steps);
|
|
for (PrintObjectStep step : steps)
|
|
invalidated |= this->invalidate_step(step);
|
|
return invalidated;
|
|
}
|
|
|
|
bool PrintObject::invalidate_step(PrintObjectStep step)
|
|
{
|
|
bool invalidated = Inherited::invalidate_step(step);
|
|
|
|
// propagate to dependent steps
|
|
if (step == posPerimeters) {
|
|
invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill, posIroning, posSupportSpotsSearch, posEstimateCurledExtrusions });
|
|
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
|
|
} else if (step == posPrepareInfill) {
|
|
invalidated |= this->invalidate_steps({ posInfill, posIroning, posSupportSpotsSearch});
|
|
} else if (step == posInfill) {
|
|
invalidated |= this->invalidate_steps({ posIroning, posSupportSpotsSearch });
|
|
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
|
|
} else if (step == posSlice) {
|
|
invalidated |= this->invalidate_steps({posPerimeters, posPrepareInfill, posInfill, posIroning, posSupportSpotsSearch,
|
|
posSupportMaterial, posEstimateCurledExtrusions});
|
|
invalidated |= m_print->invalidate_steps({ psSkirtBrim });
|
|
m_slicing_params.valid = false;
|
|
} else if (step == posSupportMaterial) {
|
|
invalidated |= m_print->invalidate_steps({ psSkirtBrim, });
|
|
invalidated |= this->invalidate_steps({ posEstimateCurledExtrusions });
|
|
m_slicing_params.valid = false;
|
|
}
|
|
|
|
// invalidate alerts step always, since it depends on everything (except supports, but with supports enabled it is skipped anyway.)
|
|
invalidated |= m_print->invalidate_step(psAlertWhenSupportsNeeded);
|
|
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
|
|
// It also decides about what the wipe_into_infill / wipe_into_object features will do,
|
|
// and that too depends on many of the settings.
|
|
invalidated |= m_print->invalidate_step(psWipeTower);
|
|
// Invalidate G-code export in any case.
|
|
invalidated |= m_print->invalidate_step(psGCodeExport);
|
|
return invalidated;
|
|
}
|
|
|
|
bool PrintObject::invalidate_all_steps()
|
|
{
|
|
// First call the "invalidate" functions, which may cancel background processing.
|
|
bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
|
|
// Then reset some of the depending values.
|
|
m_slicing_params.valid = false;
|
|
return result;
|
|
}
|
|
|
|
// Called on main thread with stopped or paused background processing to let PrintObject release data for its milestones that were invalidated or canceled.
|
|
void PrintObject::cleanup()
|
|
{
|
|
if (this->query_reset_dirty_step_unguarded(posInfill))
|
|
this->clear_fills();
|
|
if (this->query_reset_dirty_step_unguarded(posSupportMaterial))
|
|
this->clear_support_layers();
|
|
}
|
|
|
|
// This function analyzes slices of a region (SurfaceCollection slices).
|
|
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
|
|
// Initially all slices are of type stInternal.
|
|
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
|
|
// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
|
|
// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
|
|
// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
|
|
// stInternal - Part of a region, which is supported by the same region type.
|
|
// If a part of a region is of stBottom and stTop, the stBottom wins.
|
|
void PrintObject::detect_surfaces_type()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
|
|
|
|
// Interface shells: the intersecting parts are treated as self standing objects supporting each other.
|
|
// Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
|
|
// are completely hidden inside a collective body of intersecting parts.
|
|
// This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
|
|
// should be visible.
|
|
bool spiral_vase = this->print()->config().spiral_vase.value;
|
|
bool interface_shells = ! spiral_vase && m_config.interface_shells.value;
|
|
size_t num_layers = spiral_vase ? std::min(size_t(this->printing_region(0).config().bottom_solid_layers), m_layers.size()) : m_layers.size();
|
|
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " in parallel - start";
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (Layer *layer : m_layers)
|
|
layer->m_regions[region_id]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
|
|
// Cache the result of the following parallel_loop.
|
|
std::vector<Surfaces> surfaces_new;
|
|
if (interface_shells)
|
|
surfaces_new.assign(num_layers, Surfaces());
|
|
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0,
|
|
spiral_vase ?
|
|
// In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom.
|
|
((num_layers > 1) ? num_layers - 1 : num_layers) :
|
|
// In non-spiral vase mode, go over all layers.
|
|
m_layers.size()),
|
|
[this, region_id, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
|
|
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
|
|
// the support from the print.
|
|
SurfaceType surface_type_bottom_other =
|
|
(this->has_support() && m_config.support_material_contact_distance.value == 0) ?
|
|
stBottom : stBottomBridge;
|
|
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
|
m_print->throw_if_canceled();
|
|
// BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << region_id << " and layer " << layer->print_z;
|
|
Layer *layer = m_layers[idx_layer];
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
// comparison happens against the *full* slices (considering all regions)
|
|
// unless internal shells are requested
|
|
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
|
|
Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
|
|
// collapse very narrow parts (using the safety offset in the diff is not enough)
|
|
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
|
|
|
|
// find top surfaces (difference between current surfaces
|
|
// of current layer and upper one)
|
|
Surfaces top;
|
|
if (upper_layer) {
|
|
ExPolygons upper_slices = interface_shells ?
|
|
diff_ex(layerm->slices().surfaces, upper_layer->m_regions[region_id]->slices().surfaces, ApplySafetyOffset::Yes) :
|
|
diff_ex(layerm->slices().surfaces, upper_layer->lslices, ApplySafetyOffset::Yes);
|
|
surfaces_append(top, opening_ex(upper_slices, offset), stTop);
|
|
} else {
|
|
// if no upper layer, all surfaces of this one are solid
|
|
// we clone surfaces because we're going to clear the slices collection
|
|
top = layerm->slices().surfaces;
|
|
for (Surface &surface : top)
|
|
surface.surface_type = stTop;
|
|
}
|
|
|
|
// Find bottom surfaces (difference between current surfaces of current layer and lower one).
|
|
Surfaces bottom;
|
|
if (lower_layer) {
|
|
#if 0
|
|
//FIXME Why is this branch failing t\multi.t ?
|
|
Polygons lower_slices = interface_shells ?
|
|
to_polygons(lower_layer->get_region(region_id)->slices.surfaces) :
|
|
to_polygons(lower_layer->slices);
|
|
surfaces_append(bottom,
|
|
opening_ex(diff(layerm->slices.surfaces, lower_slices, true), offset),
|
|
surface_type_bottom_other);
|
|
#else
|
|
// Any surface lying on the void is a true bottom bridge (an overhang)
|
|
surfaces_append(
|
|
bottom,
|
|
opening_ex(
|
|
diff_ex(layerm->slices().surfaces, lower_layer->lslices, ApplySafetyOffset::Yes),
|
|
offset),
|
|
surface_type_bottom_other);
|
|
// if user requested internal shells, we need to identify surfaces
|
|
// lying on other slices not belonging to this region
|
|
if (interface_shells) {
|
|
// non-bridging bottom surfaces: any part of this layer lying
|
|
// on something else, excluding those lying on our own region
|
|
surfaces_append(
|
|
bottom,
|
|
opening_ex(
|
|
diff_ex(
|
|
intersection(layerm->slices().surfaces, lower_layer->lslices), // supported
|
|
lower_layer->m_regions[region_id]->slices().surfaces,
|
|
ApplySafetyOffset::Yes),
|
|
offset),
|
|
stBottom);
|
|
}
|
|
#endif
|
|
} else {
|
|
// if no lower layer, all surfaces of this one are solid
|
|
// we clone surfaces because we're going to clear the slices collection
|
|
bottom = layerm->slices().surfaces;
|
|
for (Surface &surface : bottom)
|
|
surface.surface_type = stBottom;
|
|
}
|
|
|
|
// now, if the object contained a thin membrane, we could have overlapping bottom
|
|
// and top surfaces; let's do an intersection to discover them and consider them
|
|
// as bottom surfaces (to allow for bridge detection)
|
|
if (! top.empty() && ! bottom.empty()) {
|
|
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
|
|
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
|
|
// if $Slic3r::debug;
|
|
Polygons top_polygons = to_polygons(std::move(top));
|
|
top.clear();
|
|
surfaces_append(top, diff_ex(top_polygons, bottom), stTop);
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
static int iRun = 0;
|
|
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
|
|
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
|
|
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
|
|
expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices().surfaces), SVG::ExPolygonAttributes("black")));
|
|
SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, region_id, layer->print_z).c_str(), expolygons_with_attributes);
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// save surfaces to layer
|
|
Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->m_slices.surfaces;
|
|
Surfaces surfaces_backup;
|
|
if (! interface_shells) {
|
|
surfaces_backup = std::move(surfaces_out);
|
|
surfaces_out.clear();
|
|
}
|
|
const Surfaces &surfaces_prev = interface_shells ? layerm->slices().surfaces : surfaces_backup;
|
|
|
|
// find internal surfaces (difference between top/bottom surfaces and others)
|
|
{
|
|
Polygons topbottom = to_polygons(top);
|
|
polygons_append(topbottom, to_polygons(bottom));
|
|
surfaces_append(surfaces_out, diff_ex(surfaces_prev, topbottom), stInternal);
|
|
}
|
|
|
|
surfaces_append(surfaces_out, std::move(top));
|
|
surfaces_append(surfaces_out, std::move(bottom));
|
|
|
|
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
|
|
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
}
|
|
}
|
|
); // for each layer of a region
|
|
m_print->throw_if_canceled();
|
|
|
|
if (interface_shells) {
|
|
// Move surfaces_new to layerm->slices.surfaces
|
|
for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer)
|
|
m_layers[idx_layer]->m_regions[region_id]->m_slices.set(std::move(surfaces_new[idx_layer]));
|
|
}
|
|
|
|
if (spiral_vase) {
|
|
if (num_layers > 1)
|
|
// Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern.
|
|
m_layers[num_layers - 1]->m_regions[region_id]->m_slices.set_type(stTop);
|
|
for (size_t i = num_layers; i < m_layers.size(); ++ i)
|
|
m_layers[i]->m_regions[region_id]->m_slices.set_type(stInternal);
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - start";
|
|
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this, region_id](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
|
m_print->throw_if_canceled();
|
|
LayerRegion *layerm = m_layers[idx_layer]->m_regions[region_id];
|
|
layerm->slices_to_fill_surfaces_clipped();
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
} // for each layer of a region
|
|
});
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - end";
|
|
} // for each this->print->region_count
|
|
|
|
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
|
|
m_typed_slices = true;
|
|
}
|
|
|
|
void PrintObject::process_external_surfaces()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
|
|
|
|
// Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand.
|
|
std::vector<Polygons> surfaces_covered;
|
|
// Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only
|
|
// over voids, which are supported by the layer below.
|
|
bool has_voids = false;
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id)
|
|
if (this->printing_region(region_id).config().fill_density == 0) {
|
|
has_voids = true;
|
|
break;
|
|
}
|
|
if (has_voids && m_layers.size() > 1) {
|
|
// All but stInternal fill surfaces will get expanded and possibly trimmed.
|
|
std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false);
|
|
for (size_t layer_idx = 1; layer_idx < m_layers.size(); ++ layer_idx) {
|
|
const Layer *layer = m_layers[layer_idx];
|
|
bool expansions = false;
|
|
bool voids = false;
|
|
for (const LayerRegion *layerm : layer->regions()) {
|
|
for (const Surface &surface : layerm->fill_surfaces()) {
|
|
if (surface.surface_type == stInternal)
|
|
voids = true;
|
|
else
|
|
expansions = true;
|
|
if (voids && expansions) {
|
|
layer_expansions_and_voids[layer_idx] = true;
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
end:;
|
|
}
|
|
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start";
|
|
surfaces_covered.resize(m_layers.size() - 1, Polygons());
|
|
auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN));
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
|
|
[this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
|
|
if (layer_expansions_and_voids[layer_idx + 1]) {
|
|
// Layer above is partially filled with solid infill (top, bottom, bridging...),
|
|
// while some sparse inill regions are empty (0% infill).
|
|
m_print->throw_if_canceled();
|
|
Polygons voids;
|
|
for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) {
|
|
if (layerm->region().config().fill_density.value == 0.)
|
|
for (const Surface &surface : layerm->fill_surfaces())
|
|
// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
|
|
polygons_append(voids, offset(surface.expolygon, unsupported_width));
|
|
}
|
|
surfaces_covered[layer_idx] = diff(m_layers[layer_idx]->lslices, voids);
|
|
}
|
|
}
|
|
);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end";
|
|
}
|
|
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
// BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
|
|
m_layers[layer_idx]->get_region(int(region_id))->process_external_surfaces(
|
|
// lower layer
|
|
(layer_idx == 0) ? nullptr : m_layers[layer_idx - 1],
|
|
// lower layer polygons with density > 0%
|
|
(layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]);
|
|
}
|
|
}
|
|
);
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
|
|
}
|
|
|
|
if (this->has_raft() && ! m_layers.empty()) {
|
|
// Adjust bridge direction of 1st object layer over raft to be perpendicular to the raft contact layer direction.
|
|
Layer &layer = *m_layers.front();
|
|
assert(layer.id() > 0);
|
|
for (LayerRegion *layerm : layer.regions())
|
|
for (Surface &fill : layerm->m_fill_surfaces)
|
|
fill.bridge_angle = -1;
|
|
}
|
|
} // void PrintObject::process_external_surfaces()
|
|
|
|
void PrintObject::discover_vertical_shells()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
|
|
|
|
struct DiscoverVerticalShellsCacheEntry
|
|
{
|
|
// Collected polygons, offsetted
|
|
Polygons top_surfaces;
|
|
Polygons bottom_surfaces;
|
|
Polygons holes;
|
|
};
|
|
bool spiral_vase = this->print()->config().spiral_vase.value;
|
|
size_t num_layers = spiral_vase ? std::min(size_t(this->printing_region(0).config().bottom_solid_layers), m_layers.size()) : m_layers.size();
|
|
coordf_t min_layer_height = this->slicing_parameters().min_layer_height;
|
|
// Does this region possibly produce more than 1 top or bottom layer?
|
|
auto has_extra_layers_fn = [min_layer_height](const PrintRegionConfig &config) {
|
|
auto num_extra_layers = [min_layer_height](int num_solid_layers, coordf_t min_shell_thickness) {
|
|
if (num_solid_layers == 0)
|
|
return 0;
|
|
int n = num_solid_layers - 1;
|
|
int n2 = int(ceil(min_shell_thickness / min_layer_height));
|
|
return std::max(n, n2 - 1);
|
|
};
|
|
return num_extra_layers(config.top_solid_layers, config.top_solid_min_thickness) +
|
|
num_extra_layers(config.bottom_solid_layers, config.bottom_solid_min_thickness) > 0;
|
|
};
|
|
std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry());
|
|
bool top_bottom_surfaces_all_regions = this->num_printing_regions() > 1 && ! m_config.interface_shells.value;
|
|
// static constexpr const float top_bottom_expansion_coeff = 1.05f;
|
|
// Just a tiny fraction of an infill extrusion width to merge neighbor regions reliably.
|
|
static constexpr const float top_bottom_expansion_coeff = 0.05f;
|
|
if (top_bottom_surfaces_all_regions) {
|
|
// This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
|
|
// is calculated over all materials.
|
|
// Is the "ensure vertical wall thickness" applicable to any region?
|
|
bool has_extra_layers = false;
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
|
|
const PrintRegionConfig &config = this->printing_region(region_id).config();
|
|
if (has_extra_layers_fn(config)) {
|
|
has_extra_layers = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! has_extra_layers)
|
|
// The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
|
|
return;
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
|
|
//FIXME Improve the heuristics for a grain size.
|
|
size_t grain_size = std::max(num_layers / 16, size_t(1));
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, num_layers, grain_size),
|
|
[this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
|
|
const std::initializer_list<SurfaceType> surfaces_bottom { stBottom, stBottomBridge };
|
|
const size_t num_regions = this->num_printing_regions();
|
|
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
|
m_print->throw_if_canceled();
|
|
const Layer &layer = *m_layers[idx_layer];
|
|
DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
|
|
// Simulate single set of perimeters over all merged regions.
|
|
float perimeter_offset = 0.f;
|
|
float perimeter_min_spacing = FLT_MAX;
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
static size_t debug_idx = 0;
|
|
++ debug_idx;
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
for (size_t region_id = 0; region_id < num_regions; ++ region_id) {
|
|
LayerRegion &layerm = *layer.m_regions[region_id];
|
|
float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff;
|
|
// Top surfaces.
|
|
append(cache.top_surfaces, offset(layerm.slices().filter_by_type(stTop), top_bottom_expansion));
|
|
// append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion));
|
|
// Bottom surfaces.
|
|
append(cache.bottom_surfaces, offset(layerm.slices().filter_by_types(surfaces_bottom), top_bottom_expansion));
|
|
// append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion));
|
|
// Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
|
|
// First find the maxium number of perimeters per region slice.
|
|
unsigned int perimeters = 0;
|
|
for (const Surface &s : layerm.slices())
|
|
perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
|
|
perimeters += layerm.region().config().perimeters.value;
|
|
// Then calculate the infill offset.
|
|
if (perimeters > 0) {
|
|
Flow extflow = layerm.flow(frExternalPerimeter);
|
|
Flow flow = layerm.flow(frPerimeter);
|
|
perimeter_offset = std::max(perimeter_offset,
|
|
0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
|
|
perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
|
|
}
|
|
polygons_append(cache.holes, to_polygons(layerm.fill_expolygons()));
|
|
}
|
|
// Save some computing time by reducing the number of polygons.
|
|
cache.top_surfaces = union_(cache.top_surfaces);
|
|
cache.bottom_surfaces = union_(cache.bottom_surfaces);
|
|
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
|
|
if (perimeter_offset > 0.) {
|
|
// The layer.lslices are forced to merge by expanding them first.
|
|
polygons_append(cache.holes, offset2(layer.lslices, 0.3f * perimeter_min_spacing, - perimeter_offset - 0.3f * perimeter_min_spacing));
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices));
|
|
svg.draw(layer.lslices, "blue");
|
|
svg.draw(union_ex(cache.holes), "red");
|
|
svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
}
|
|
cache.holes = union_(cache.holes);
|
|
}
|
|
});
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
|
|
}
|
|
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
const PrintRegion ®ion = this->printing_region(region_id);
|
|
if (! has_extra_layers_fn(region.config()))
|
|
// Zero or 1 layer, there is no additional vertical wall thickness enforced.
|
|
continue;
|
|
|
|
//FIXME Improve the heuristics for a grain size.
|
|
size_t grain_size = std::max(num_layers / 16, size_t(1));
|
|
|
|
if (! top_bottom_surfaces_all_regions) {
|
|
// This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
|
|
// is calculated over a single material.
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : cache top / bottom";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, num_layers, grain_size),
|
|
[this, region_id, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
|
|
const std::initializer_list<SurfaceType> surfaces_bottom { stBottom, stBottomBridge };
|
|
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
|
m_print->throw_if_canceled();
|
|
Layer &layer = *m_layers[idx_layer];
|
|
LayerRegion &layerm = *layer.m_regions[region_id];
|
|
float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff;
|
|
// Top surfaces.
|
|
auto &cache = cache_top_botom_regions[idx_layer];
|
|
cache.top_surfaces = offset(layerm.slices().filter_by_type(stTop), top_bottom_expansion);
|
|
// append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion));
|
|
// Bottom surfaces.
|
|
cache.bottom_surfaces = offset(layerm.slices().filter_by_types(surfaces_bottom), top_bottom_expansion);
|
|
// append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion));
|
|
// Holes over all regions. Only collect them once, they are valid for all region_id iterations.
|
|
if (cache.holes.empty()) {
|
|
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id)
|
|
polygons_append(cache.holes, to_polygons(layer.regions()[region_id]->fill_expolygons()));
|
|
}
|
|
}
|
|
});
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end : cache top / bottom";
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : ensure vertical wall thickness";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, num_layers, grain_size),
|
|
[this, region_id, &cache_top_botom_regions]
|
|
(const tbb::blocked_range<size_t>& range) {
|
|
// printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
|
|
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
|
m_print->throw_if_canceled();
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
static size_t debug_idx = 0;
|
|
++ debug_idx;
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
Layer *layer = m_layers[idx_layer];
|
|
LayerRegion *layerm = layer->m_regions[region_id];
|
|
const PrintRegionConfig ®ion_config = layerm->region().config();
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-initial");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-initial");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
Flow solid_infill_flow = layerm->flow(frSolidInfill);
|
|
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
|
|
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
|
|
Polygons shell;
|
|
Polygons holes;
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
ExPolygons shell_ex;
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
|
|
#if 0
|
|
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
|
|
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
|
|
if (n < 0 || n >= (int)m_layers.size())
|
|
continue;
|
|
ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
|
|
for (size_t i = 0; i < expolys.size(); ++ i) {
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
|
|
svg.draw(expolys[i]);
|
|
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
|
|
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
|
|
svg.Close();
|
|
|
|
svg_cummulative.draw(expolys[i]);
|
|
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
|
|
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
|
|
}
|
|
}
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
polygons_append(holes, cache_top_botom_regions[idx_layer].holes);
|
|
if (int n_top_layers = region_config.top_solid_layers.value; n_top_layers > 0) {
|
|
// Gather top regions projected to this layer.
|
|
coordf_t print_z = layer->print_z;
|
|
for (int i = int(idx_layer) + 1;
|
|
i < int(cache_top_botom_regions.size()) &&
|
|
(i < int(idx_layer) + n_top_layers ||
|
|
m_layers[i]->print_z - print_z < region_config.top_solid_min_thickness - EPSILON);
|
|
++ i) {
|
|
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
|
|
if (! holes.empty())
|
|
holes = intersection(holes, cache.holes);
|
|
if (! cache.top_surfaces.empty()) {
|
|
polygons_append(shell, cache.top_surfaces);
|
|
// Running the union_ using the Clipper library piece by piece is cheaper
|
|
// than running the union_ all at once.
|
|
shell = union_(shell);
|
|
}
|
|
}
|
|
}
|
|
if (int n_bottom_layers = region_config.bottom_solid_layers.value; n_bottom_layers > 0) {
|
|
// Gather bottom regions projected to this layer.
|
|
coordf_t bottom_z = layer->bottom_z();
|
|
for (int i = int(idx_layer) - 1;
|
|
i >= 0 &&
|
|
(i > int(idx_layer) - n_bottom_layers ||
|
|
bottom_z - m_layers[i]->bottom_z() < region_config.bottom_solid_min_thickness - EPSILON);
|
|
-- i) {
|
|
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
|
|
if (! holes.empty())
|
|
holes = intersection(holes, cache.holes);
|
|
if (! cache.bottom_surfaces.empty()) {
|
|
polygons_append(shell, cache.bottom_surfaces);
|
|
// Running the union_ using the Clipper library piece by piece is cheaper
|
|
// than running the union_ all at once.
|
|
shell = union_(shell);
|
|
}
|
|
}
|
|
}
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
|
|
svg.draw(shell);
|
|
svg.draw_outline(shell, "black", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
#if 0
|
|
// shell = union_(shell, true);
|
|
shell = union_(shell, false);
|
|
#endif
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
shell_ex = union_safety_offset_ex(shell);
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
//if (shell.empty())
|
|
// continue;
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
|
|
svg.draw(shell_ex);
|
|
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
|
|
svg.draw(layerm->fill_surfaces().filter_by_type(stInternal), "yellow", 0.5);
|
|
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternal), "black", "blue", scale_(0.05));
|
|
svg.draw(shell_ex, "blue", 0.5);
|
|
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
|
|
svg.draw(layerm->fill_surfaces().filter_by_type(stInternalVoid), "yellow", 0.5);
|
|
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
|
|
svg.draw(shell_ex, "blue", 0.5);
|
|
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalsolid-wshell-%d.svg", debug_idx), get_extents(shell));
|
|
svg.draw(layerm->fill_surfaces().filter_by_type(stInternalSolid), "yellow", 0.5);
|
|
svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalSolid), "black", "blue", scale_(0.05));
|
|
svg.draw(shell_ex, "blue", 0.5);
|
|
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// Trim the shells region by the internal & internal void surfaces.
|
|
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces().filter_by_types({ stInternal, stInternalVoid, stInternalSolid }));
|
|
shell = intersection(shell, polygonsInternal, ApplySafetyOffset::Yes);
|
|
polygons_append(shell, diff(polygonsInternal, holes));
|
|
if (shell.empty())
|
|
continue;
|
|
|
|
// Append the internal solids, so they will be merged with the new ones.
|
|
polygons_append(shell, to_polygons(layerm->fill_surfaces().filter_by_type(stInternalSolid)));
|
|
|
|
// These regions will be filled by a rectilinear full infill. Currently this type of infill
|
|
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
|
|
// make sure that this region does not contain parts narrower than the infill spacing width.
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
Polygons shell_before = shell;
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
ExPolygons regularized_shell;
|
|
{
|
|
// Open to remove (filter out) regions narrower than a bit less than an infill extrusion line width.
|
|
// Such narrow regions are difficult to fill in with a gap fill algorithm (or Arachne), however they are most likely
|
|
// not needed for print stability / quality.
|
|
const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing;
|
|
// Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill,
|
|
// thus they will be merged into the solid infill.
|
|
const float narrow_sparse_infill_region_radius = 0.5f * 1.2f * min_perimeter_infill_spacing;
|
|
// Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions.
|
|
const float tiny_overlap_radius = 0.2f * min_perimeter_infill_spacing;
|
|
regularized_shell = shrink_ex(offset2_ex(union_ex(shell),
|
|
// Open to remove (filter out) regions narrower than an infill extrusion line width.
|
|
-narrow_ensure_vertical_wall_thickness_region_radius,
|
|
// Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill.
|
|
narrow_ensure_vertical_wall_thickness_region_radius + narrow_sparse_infill_region_radius, ClipperLib::jtSquare),
|
|
// Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions.
|
|
narrow_sparse_infill_region_radius - tiny_overlap_radius, ClipperLib::jtSquare);
|
|
|
|
// The opening operation may cause scattered tiny drops on the smooth parts of the model, filter them out
|
|
regularized_shell.erase(std::remove_if(regularized_shell.begin(), regularized_shell.end(),
|
|
[&min_perimeter_infill_spacing](const ExPolygon &p) {
|
|
return p.area() < min_perimeter_infill_spacing * scaled(8.0);
|
|
}),
|
|
regularized_shell.end());
|
|
}
|
|
if (regularized_shell.empty())
|
|
continue;
|
|
|
|
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, regularized_shell);
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
|
|
// Source shell.
|
|
svg.draw(union_safety_offset_ex(shell_before));
|
|
// Shell trimmed to the internal surfaces.
|
|
svg.draw_outline(union_safety_offset_ex(shell), "black", "blue", scale_(0.05));
|
|
// Regularized infill region.
|
|
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// Trim the internal & internalvoid by the shell.
|
|
Slic3r::ExPolygons new_internal = diff_ex(layerm->fill_surfaces().filter_by_type(stInternal), regularized_shell);
|
|
Slic3r::ExPolygons new_internal_void = diff_ex(layerm->fill_surfaces().filter_by_type(stInternalVoid), regularized_shell);
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
|
|
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
|
|
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
// Assign resulting internal surfaces to layer.
|
|
layerm->m_fill_surfaces.keep_types({ stTop, stBottom, stBottomBridge });
|
|
layerm->m_fill_surfaces.append(new_internal, stInternal);
|
|
layerm->m_fill_surfaces.append(new_internal_void, stInternalVoid);
|
|
layerm->m_fill_surfaces.append(new_internal_solid, stInternalSolid);
|
|
} // for each layer
|
|
});
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end";
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
|
|
LayerRegion *layerm = m_layers[idx_layer]->get_region(region_id);
|
|
layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-final");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-final");
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
} // for each region
|
|
} // void PrintObject::discover_vertical_shells()
|
|
|
|
// #define DEBUG_BRIDGE_OVER_INFILL
|
|
#ifdef DEBUG_BRIDGE_OVER_INFILL
|
|
template<typename T> void debug_draw(std::string name, const T& a, const T& b, const T& c, const T& d)
|
|
{
|
|
std::vector<std::string> colors = {"red", "blue", "orange", "green"};
|
|
BoundingBox bbox = get_extents(a);
|
|
bbox.merge(get_extents(b));
|
|
bbox.merge(get_extents(c));
|
|
bbox.merge(get_extents(d));
|
|
bbox.offset(scale_(1.));
|
|
::Slic3r::SVG svg(debug_out_path(name.c_str()).c_str(), bbox);
|
|
svg.draw(a, colors[0], scale_(0.3));
|
|
svg.draw(b, colors[1], scale_(0.23));
|
|
svg.draw(c, colors[2], scale_(0.16));
|
|
svg.draw(d, colors[3], scale_(0.10));
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
|
|
// This method applies bridge flow to the first internal solid layer above sparse infill.
|
|
void PrintObject::bridge_over_infill()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info();
|
|
|
|
struct CandidateSurface
|
|
{
|
|
CandidateSurface(const Surface *original_surface,
|
|
Polygons new_polys,
|
|
const LayerRegion *region,
|
|
double bridge_angle,
|
|
bool supported_by_lightning)
|
|
: original_surface(original_surface)
|
|
, new_polys(new_polys)
|
|
, region(region)
|
|
, bridge_angle(bridge_angle)
|
|
, supported_by_lightning(supported_by_lightning)
|
|
{}
|
|
const Surface *original_surface;
|
|
Polygons new_polys;
|
|
const LayerRegion *region;
|
|
double bridge_angle;
|
|
bool supported_by_lightning;
|
|
};
|
|
|
|
std::map<size_t, std::vector<CandidateSurface>> surfaces_by_layer;
|
|
|
|
// SECTION to gather and filter surfaces for expanding, and then cluster them by layer
|
|
{
|
|
tbb::concurrent_vector<CandidateSurface> candidate_surfaces;
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = static_cast<const PrintObject *>(this),
|
|
&candidate_surfaces](tbb::blocked_range<size_t> r) {
|
|
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
|
|
const Layer *layer = po->get_layer(lidx);
|
|
if (layer->lower_layer == nullptr) {
|
|
continue;
|
|
}
|
|
auto spacing = layer->regions().front()->flow(frSolidInfill).scaled_spacing();
|
|
Polygons unsupported_area;
|
|
Polygons lower_layer_solids;
|
|
bool contains_only_lightning = true;
|
|
for (const LayerRegion *region : layer->lower_layer->regions()) {
|
|
if (region->region().config().fill_pattern.value != ipLightning) {
|
|
contains_only_lightning = false;
|
|
}
|
|
Polygons fill_polys = to_polygons(region->fill_expolygons());
|
|
unsupported_area = union_(unsupported_area, expand(fill_polys, spacing));
|
|
for (const Surface &surface : region->fill_surfaces()) {
|
|
if (surface.surface_type != stInternal || region->region().config().fill_density.value == 100) {
|
|
Polygons p = to_polygons(surface.expolygon);
|
|
lower_layer_solids.insert(lower_layer_solids.end(), p.begin(), p.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
lower_layer_solids = expand(lower_layer_solids, 4 * spacing);
|
|
unsupported_area = shrink(unsupported_area, 5 * spacing);
|
|
unsupported_area = diff(unsupported_area, lower_layer_solids);
|
|
|
|
for (const LayerRegion *region : layer->regions()) {
|
|
SurfacesPtr region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid);
|
|
for (const Surface *s : region_internal_solids) {
|
|
Polygons unsupported = intersection(to_polygons(s->expolygon), unsupported_area);
|
|
bool partially_supported = area(unsupported) < area(to_polygons(s->expolygon)) - EPSILON;
|
|
if (!unsupported.empty() && (!partially_supported || area(unsupported) > 5 * 5 * spacing * spacing)) {
|
|
Polygons worth_bridging = intersection(to_polygons(s->expolygon), expand(unsupported, 5 * spacing));
|
|
candidate_surfaces.push_back(CandidateSurface(s, worth_bridging, region, 0, contains_only_lightning));
|
|
|
|
#ifdef DEBUG_BRIDGE_OVER_INFILL
|
|
debug_draw(std::to_string(region->layer()->id()) + "_candidate_surface_" + std::to_string(area(s->expolygon)),
|
|
to_lines(region->layer()->lslices), to_lines(s->expolygon), to_lines(worth_bridging),
|
|
to_lines(unsupported_area));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
for (const CandidateSurface &c : candidate_surfaces) {
|
|
surfaces_by_layer[c.region->layer()->id()].push_back(c);
|
|
}
|
|
}
|
|
|
|
std::map<size_t, Polylines> infill_lines;
|
|
// SECTION to generate infill polylines
|
|
{
|
|
std::vector<std::pair<const Surface *, float>> surfaces_w_bottom_z;
|
|
for (const auto &pair : surfaces_by_layer) {
|
|
for (const CandidateSurface &c : pair.second) {
|
|
surfaces_w_bottom_z.emplace_back(c.original_surface, c.region->m_layer->bottom_z());
|
|
}
|
|
}
|
|
|
|
this->m_adaptive_fill_octrees = this->prepare_adaptive_infill_data(surfaces_w_bottom_z);
|
|
this->m_lightning_generator = this->prepare_lightning_infill_data();
|
|
|
|
std::vector<size_t> layers_to_generate_infill;
|
|
for (const auto &pair : surfaces_by_layer) {
|
|
assert(pair.first > 0);
|
|
infill_lines[pair.first - 1] = {};
|
|
layers_to_generate_infill.push_back(pair.first - 1);
|
|
}
|
|
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_to_generate_infill.size()), [po = static_cast<const PrintObject *>(this),
|
|
&layers_to_generate_infill,
|
|
&infill_lines](tbb::blocked_range<size_t> r) {
|
|
for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) {
|
|
size_t lidx = layers_to_generate_infill[job_idx];
|
|
infill_lines.at(
|
|
lidx) = po->get_layer(lidx)->generate_sparse_infill_polylines_for_anchoring(po->m_adaptive_fill_octrees.first.get(),
|
|
po->m_adaptive_fill_octrees.second.get(),
|
|
po->m_lightning_generator.get());
|
|
}
|
|
});
|
|
#ifdef DEBUG_BRIDGE_OVER_INFILL
|
|
for (const auto &il : infill_lines) {
|
|
debug_draw(std::to_string(il.first) + "_infill_lines", to_lines(get_layer(il.first)->lslices), to_lines(il.second), {}, {});
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// cluster layers by depth needed for thick bridges. Each cluster is to be processed by single thread sequentially, so that bridges cannot appear one on another
|
|
std::vector<std::vector<size_t>> clustered_layers_for_threads;
|
|
{
|
|
std::vector<size_t> layers_with_candidates;
|
|
std::map<size_t, Polygons> layer_area_covered_by_candidates;
|
|
for (const auto& pair : surfaces_by_layer) {
|
|
layers_with_candidates.push_back(pair.first);
|
|
layer_area_covered_by_candidates[pair.first] = {};
|
|
}
|
|
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_with_candidates.size()), [&layers_with_candidates, &surfaces_by_layer,
|
|
&layer_area_covered_by_candidates](
|
|
tbb::blocked_range<size_t> r) {
|
|
for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) {
|
|
size_t lidx = layers_with_candidates[job_idx];
|
|
for (const auto &candidate : surfaces_by_layer.at(lidx)) {
|
|
Polygon candiate_inflated_aabb = get_extents(candidate.new_polys)
|
|
.inflated(candidate.region->flow(frSolidInfill, true).scaled_spacing() * 5)
|
|
.polygon();
|
|
layer_area_covered_by_candidates.at(lidx) = union_(layer_area_covered_by_candidates.at(lidx),
|
|
Polygons{candiate_inflated_aabb});
|
|
}
|
|
}
|
|
});
|
|
|
|
// note: surfaces_by_layer is ordered map
|
|
for (auto pair : surfaces_by_layer) {
|
|
if (clustered_layers_for_threads.empty() ||
|
|
this->get_layer(clustered_layers_for_threads.back().back())->print_z <
|
|
this->get_layer(pair.first)->print_z - this->get_layer(pair.first)->regions()[0]->flow(frSolidInfill, true).height() -
|
|
EPSILON ||
|
|
intersection(layer_area_covered_by_candidates[clustered_layers_for_threads.back().back()],
|
|
layer_area_covered_by_candidates[pair.first])
|
|
.empty()) {
|
|
clustered_layers_for_threads.push_back({pair.first});
|
|
} else {
|
|
clustered_layers_for_threads.back().push_back(pair.first);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_BRIDGE_OVER_INFILL
|
|
std::cout << "BRIDGE OVER INFILL CLUSTERED LAYERS FOR SINGLE THREAD" << std::endl;
|
|
for (auto cluster : clustered_layers_for_threads) {
|
|
std::cout << "CLUSTER: ";
|
|
for (auto l : cluster) {
|
|
std::cout << l << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// LAMBDA to gather areas with sparse infill deep enough that we can fit thick bridges there.
|
|
auto gather_areas_w_depth =
|
|
[](const PrintObject *po, int lidx, float target_flow_height) {
|
|
// Gather lower layers sparse infill areas, to depth defined by used bridge flow
|
|
Polygons lower_layers_sparse_infill{};
|
|
Polygons not_sparse_infill{};
|
|
double bottom_z = po->get_layer(lidx)->print_z - target_flow_height - EPSILON;
|
|
for (int i = int(lidx) - 1; i >= 0; --i) {
|
|
// Stop iterating if layer is lower than bottom_z.
|
|
const Layer *layer = po->get_layer(i);
|
|
if (layer->print_z < bottom_z)
|
|
break;
|
|
|
|
for (const LayerRegion *region : layer->regions()) {
|
|
bool has_low_density = region->region().config().fill_density.value < 100;
|
|
for (const Surface &surface : region->fill_surfaces()) {
|
|
if (surface.surface_type == stInternal && has_low_density) {
|
|
Polygons p = to_polygons(surface.expolygon);
|
|
lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end());
|
|
} else {
|
|
Polygons p = to_polygons(surface.expolygon);
|
|
not_sparse_infill.insert(not_sparse_infill.end(), p.begin(), p.end());
|
|
}
|
|
}
|
|
}
|
|
lower_layers_sparse_infill = union_(lower_layers_sparse_infill);
|
|
}
|
|
|
|
return diff(lower_layers_sparse_infill, not_sparse_infill);
|
|
};
|
|
|
|
// LAMBDA do determine optimal bridging angle
|
|
auto determine_bridging_angle = [](const Polygons &bridged_area, const Lines &anchors, InfillPattern dominant_pattern) {
|
|
AABBTreeLines::LinesDistancer<Line> lines_tree(anchors);
|
|
|
|
std::map<double, int> counted_directions;
|
|
for (const Polygon &p : bridged_area) {
|
|
for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) {
|
|
Vec2d start = p.points[point_idx].cast<double>();
|
|
Vec2d next = p.points[point_idx + 1].cast<double>();
|
|
Vec2d v = next - start; // vector from next to current
|
|
double dist_to_next = v.norm();
|
|
v.normalize();
|
|
int lines_count = int(std::ceil(dist_to_next / scaled(3.0)));
|
|
float step_size = dist_to_next / lines_count;
|
|
for (int i = 0; i < lines_count; ++i) {
|
|
Point a = (start + v * (i * step_size)).cast<coord_t>();
|
|
auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a);
|
|
double angle = lines_tree.get_line(index).orientation();
|
|
if (angle > PI) {
|
|
angle -= PI;
|
|
}
|
|
angle += PI * 0.5;
|
|
counted_directions[angle]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<double, int> best_dir{0, 0};
|
|
// sliding window accumulation
|
|
for (const auto &dir : counted_directions) {
|
|
int score_acc = 0;
|
|
double dir_acc = 0;
|
|
double window_start_angle = dir.first - PI * 0.1;
|
|
double window_end_angle = dir.first + PI * 0.1;
|
|
for (auto dirs_window = counted_directions.lower_bound(window_start_angle);
|
|
dirs_window != counted_directions.upper_bound(window_end_angle); dirs_window++) {
|
|
dir_acc += dirs_window->first * dirs_window->second;
|
|
score_acc += dirs_window->second;
|
|
}
|
|
// current span of directions is 0.5 PI to 1.5 PI (due to the aproach.). Edge values should also account for the
|
|
// opposite direction.
|
|
if (window_start_angle < 0.5 * PI) {
|
|
for (auto dirs_window = counted_directions.lower_bound(1.5 * PI - (0.5 * PI - window_start_angle));
|
|
dirs_window != counted_directions.end(); dirs_window++) {
|
|
dir_acc += dirs_window->first * dirs_window->second;
|
|
score_acc += dirs_window->second;
|
|
}
|
|
}
|
|
if (window_start_angle > 1.5 * PI) {
|
|
for (auto dirs_window = counted_directions.begin();
|
|
dirs_window != counted_directions.upper_bound(window_start_angle - 1.5 * PI); dirs_window++) {
|
|
dir_acc += dirs_window->first * dirs_window->second;
|
|
score_acc += dirs_window->second;
|
|
}
|
|
}
|
|
|
|
if (score_acc > best_dir.second) {
|
|
best_dir = {dir_acc / score_acc, score_acc};
|
|
}
|
|
}
|
|
double bridging_angle = best_dir.first;
|
|
if (bridging_angle == 0) {
|
|
bridging_angle = 0.001;
|
|
}
|
|
switch (dominant_pattern) {
|
|
case ipHilbertCurve: bridging_angle += 0.25 * PI; break;
|
|
case ipOctagramSpiral: bridging_angle += (1.0 / 16.0) * PI; break;
|
|
default: break;
|
|
}
|
|
|
|
return bridging_angle;
|
|
};
|
|
|
|
// LAMBDA that will fill given polygons with lines, exapand the lines to the nearest anchor, and reconstruct polygons from the newly
|
|
// generated lines
|
|
auto construct_anchored_polygon = [](Polygons bridged_area, Lines anchors, const Flow &bridging_flow, double bridging_angle) {
|
|
auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) {
|
|
for (Line &l : lines) {
|
|
double ax = double(l.a.x());
|
|
double ay = double(l.a.y());
|
|
l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay));
|
|
l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax));
|
|
double bx = double(l.b.x());
|
|
double by = double(l.b.y());
|
|
l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by));
|
|
l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx));
|
|
}
|
|
};
|
|
|
|
auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) {
|
|
return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) ||
|
|
(bhigh >= alow && bhigh <= ahigh);
|
|
};
|
|
|
|
Polygons expanded_bridged_area{};
|
|
double aligning_angle = -bridging_angle + PI * 0.5;
|
|
{
|
|
polygons_rotate(bridged_area, aligning_angle);
|
|
lines_rotate(anchors, cos(aligning_angle), sin(aligning_angle));
|
|
BoundingBox bb_x = get_extents(bridged_area);
|
|
BoundingBox bb_y = get_extents(anchors);
|
|
|
|
const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + bridging_flow.scaled_spacing() - 1) / bridging_flow.scaled_spacing();
|
|
std::vector<Line> vertical_lines(n_vlines);
|
|
for (size_t i = 0; i < n_vlines; i++) {
|
|
coord_t x = bb_x.min.x() + i * bridging_flow.scaled_spacing();
|
|
coord_t y_min = bb_y.min.y() - bridging_flow.scaled_spacing();
|
|
coord_t y_max = bb_y.max.y() + bridging_flow.scaled_spacing();
|
|
vertical_lines[i].a = Point{x, y_min};
|
|
vertical_lines[i].b = Point{x, y_max};
|
|
}
|
|
|
|
auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors)};
|
|
auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)};
|
|
|
|
std::vector<std::vector<Line>> polygon_sections(n_vlines);
|
|
for (size_t i = 0; i < n_vlines; i++) {
|
|
auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]);
|
|
for (int intersection_idx = 0; intersection_idx < int(area_intersections.size()) - 1; intersection_idx++) {
|
|
if (bridged_area_tree.outside(
|
|
(area_intersections[intersection_idx].first + area_intersections[intersection_idx + 1].first) / 2) < 0) {
|
|
polygon_sections[i].emplace_back(area_intersections[intersection_idx].first,
|
|
area_intersections[intersection_idx + 1].first);
|
|
}
|
|
}
|
|
auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]);
|
|
|
|
for (Line §ion : polygon_sections[i]) {
|
|
auto maybe_below_anchor = std::upper_bound(anchors_intersections.rbegin(), anchors_intersections.rend(), section.a,
|
|
[](const Point &a, const std::pair<Point, size_t> &b) {
|
|
return a.y() > b.first.y();
|
|
});
|
|
if (maybe_below_anchor != anchors_intersections.rend()) {
|
|
section.a = maybe_below_anchor->first;
|
|
section.a.y() -= bridging_flow.scaled_width() * (0.5 + 1.0);
|
|
}
|
|
|
|
auto maybe_upper_anchor = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), section.b,
|
|
[](const Point &a, const std::pair<Point, size_t> &b) {
|
|
return a.y() < b.first.y();
|
|
});
|
|
if (maybe_upper_anchor != anchors_intersections.end()) {
|
|
section.b = maybe_upper_anchor->first;
|
|
section.b.y() += bridging_flow.scaled_width() * (0.5 + 1.0);
|
|
}
|
|
}
|
|
|
|
for (int section_idx = 0; section_idx < int(polygon_sections[i].size()) - 1; section_idx++) {
|
|
Line §ion_a = polygon_sections[i][section_idx];
|
|
Line §ion_b = polygon_sections[i][section_idx + 1];
|
|
if (segments_overlap(section_a.a.y(), section_a.b.y(), section_b.a.y(), section_b.b.y())) {
|
|
section_b.a = section_a.a.y() < section_b.a.y() ? section_a.a : section_b.a;
|
|
section_b.b = section_a.b.y() < section_b.b.y() ? section_b.b : section_a.b;
|
|
section_a.a = section_a.b;
|
|
}
|
|
}
|
|
|
|
polygon_sections[i].erase(std::remove_if(polygon_sections[i].begin(), polygon_sections[i].end(),
|
|
[](const Line &s) { return s.a == s.b; }),
|
|
polygon_sections[i].end());
|
|
}
|
|
|
|
// reconstruct polygon from polygon sections
|
|
struct TracedPoly
|
|
{
|
|
std::vector<Point> lows;
|
|
std::vector<Point> highs;
|
|
};
|
|
|
|
std::vector<TracedPoly> current_traced_polys;
|
|
for (const auto &polygon_slice : polygon_sections) {
|
|
std::unordered_set<const Line *> used_segments;
|
|
for (TracedPoly &traced_poly : current_traced_polys) {
|
|
auto maybe_first_overlap = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(),
|
|
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
|
|
|
|
if (maybe_first_overlap != polygon_slice.end() && // segment exists
|
|
segments_overlap(traced_poly.lows.back().y(), traced_poly.highs.back().y(), maybe_first_overlap->a.y(),
|
|
maybe_first_overlap->b.y())) // segment is overlapping
|
|
{
|
|
// Overlapping segment. In that case, add it
|
|
// to the traced polygon and add segment to used segments
|
|
if ((traced_poly.lows.back() - maybe_first_overlap->a).cast<double>().squaredNorm() <
|
|
36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) {
|
|
traced_poly.lows.push_back(maybe_first_overlap->a);
|
|
} else {
|
|
traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
traced_poly.lows.push_back(maybe_first_overlap->a - Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
traced_poly.lows.push_back(maybe_first_overlap->a);
|
|
}
|
|
|
|
if ((traced_poly.highs.back() - maybe_first_overlap->b).cast<double>().squaredNorm() <
|
|
36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) {
|
|
traced_poly.highs.push_back(maybe_first_overlap->b);
|
|
} else {
|
|
traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
traced_poly.highs.push_back(maybe_first_overlap->b - Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
traced_poly.highs.push_back(maybe_first_overlap->b);
|
|
}
|
|
used_segments.insert(&(*maybe_first_overlap));
|
|
} else {
|
|
// Zero or multiple overlapping segments. Resolving this is nontrivial,
|
|
// so we just close this polygon and maybe open several new. This will hopefully happen much less often
|
|
traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
|
|
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
|
traced_poly.lows.clear();
|
|
traced_poly.highs.clear();
|
|
}
|
|
}
|
|
|
|
current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
|
|
[](const TracedPoly &tp) { return tp.lows.empty(); }),
|
|
current_traced_polys.end());
|
|
|
|
for (const auto &segment : polygon_slice) {
|
|
if (used_segments.find(&segment) == used_segments.end()) {
|
|
TracedPoly &new_tp = current_traced_polys.emplace_back();
|
|
new_tp.lows.push_back(segment.a - Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
new_tp.lows.push_back(segment.a);
|
|
new_tp.highs.push_back(segment.b - Point{bridging_flow.scaled_spacing() / 2, 0});
|
|
new_tp.highs.push_back(segment.b);
|
|
}
|
|
}
|
|
}
|
|
|
|
// add not closed polys
|
|
for (TracedPoly &traced_poly : current_traced_polys) {
|
|
Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows));
|
|
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
|
|
}
|
|
}
|
|
|
|
polygons_rotate(expanded_bridged_area, -aligning_angle);
|
|
return expanded_bridged_area;
|
|
};
|
|
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, clustered_layers_for_threads.size()), [po = this, &surfaces_by_layer,
|
|
&clustered_layers_for_threads,
|
|
&gather_areas_w_depth, &infill_lines,
|
|
&determine_bridging_angle,
|
|
&construct_anchored_polygon](
|
|
tbb::blocked_range<size_t> r) {
|
|
for (size_t cluster_idx = r.begin(); cluster_idx < r.end(); cluster_idx++) {
|
|
for (size_t job_idx = 0; job_idx < clustered_layers_for_threads[cluster_idx].size(); job_idx++) {
|
|
size_t lidx = clustered_layers_for_threads[cluster_idx][job_idx];
|
|
const Layer *layer = po->get_layer(lidx);
|
|
// this thread has exclusive access to all surfaces in layers enumerated in
|
|
// clustered_layers_for_threads[cluster_idx]
|
|
|
|
// Presort the candidate polygons. This will help choose the same angle for neighbournig surfaces, that
|
|
// would otherwise compete over anchoring sparse infill lines, leaving one area unachored
|
|
std::sort(surfaces_by_layer[lidx].begin(), surfaces_by_layer[lidx].end(),
|
|
[](const CandidateSurface &left, const CandidateSurface &right) {
|
|
auto a = get_extents(left.new_polys);
|
|
auto b = get_extents(right.new_polys);
|
|
|
|
if (a.min.x() == b.min.x()) {
|
|
return a.min.y() < b.min.y();
|
|
};
|
|
return a.min.x() < b.min.x();
|
|
});
|
|
|
|
// Gather deep infill areas, where thick bridges fit
|
|
coordf_t thick_bridges_depth = surfaces_by_layer[lidx].front().region->flow(frSolidInfill, true).height();
|
|
Polygons deep_infill_area = gather_areas_w_depth(po, lidx, thick_bridges_depth);
|
|
|
|
// Now also remove area that has been already filled on lower layers by bridging expansion - For this
|
|
// reason we did the clustering of layers per thread.
|
|
double bottom_z = po->get_layer(lidx)->print_z - thick_bridges_depth - EPSILON;
|
|
if (job_idx > 0) {
|
|
for (int lower_job_idx = job_idx - 1; lower_job_idx >= 0; lower_job_idx--) {
|
|
size_t lower_layer_idx = clustered_layers_for_threads[cluster_idx][lower_job_idx];
|
|
const Layer *lower_layer = po->get_layer(lower_layer_idx);
|
|
if (lower_layer->print_z >= bottom_z) {
|
|
for (const auto &c : surfaces_by_layer[lower_layer_idx]) {
|
|
deep_infill_area = diff(deep_infill_area, c.new_polys);
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now gather expansion polygons - internal infill on current layer, from which we can cut off anchors
|
|
Polygons expansion_area;
|
|
for (const LayerRegion *region : layer->regions()) {
|
|
auto polys = to_polygons(region->fill_surfaces().filter_by_type(stInternal));
|
|
expansion_area.insert(expansion_area.end(), polys.begin(), polys.end());
|
|
}
|
|
expansion_area = closing(expansion_area, SCALED_EPSILON);
|
|
expansion_area = intersection(expansion_area, deep_infill_area);
|
|
Polylines anchors = intersection_pl(infill_lines[lidx - 1], expansion_area);
|
|
|
|
std::vector<CandidateSurface> expanded_surfaces;
|
|
expanded_surfaces.reserve(surfaces_by_layer[lidx].size());
|
|
for (const CandidateSurface &candidate : surfaces_by_layer[lidx]) {
|
|
const Flow &flow = candidate.region->bridging_flow(frSolidInfill, true);
|
|
Polygons area_to_be_bridge = intersection(candidate.new_polys, deep_infill_area);
|
|
|
|
if (area_to_be_bridge.empty())
|
|
continue;
|
|
|
|
Polygons boundary_area = union_(expansion_area, expand(area_to_be_bridge, flow.scaled_spacing()));
|
|
Polylines boundary_plines = to_polylines(boundary_area);
|
|
double bridging_angle = 0;
|
|
Polygons tmp_expanded_area = expand(area_to_be_bridge, 3.0 * flow.scaled_spacing());
|
|
for (const CandidateSurface &s : expanded_surfaces) {
|
|
if (!intersection(s.new_polys, tmp_expanded_area).empty()) {
|
|
bridging_angle = s.bridge_angle;
|
|
break;
|
|
}
|
|
}
|
|
if (bridging_angle == 0) {
|
|
if (!anchors.empty()) {
|
|
bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(anchors),
|
|
candidate.region->region().config().fill_pattern.value);
|
|
} else {
|
|
// use expansion boundaries as anchors.
|
|
// Also, use Infill pattern that is neutral for angle determination, since there are no infill lines.
|
|
bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(boundary_plines), InfillPattern::ipLine);
|
|
}
|
|
}
|
|
|
|
boundary_plines.insert(boundary_plines.end(), anchors.begin(), anchors.end());
|
|
if (candidate.supported_by_lightning) {
|
|
boundary_plines = intersection_pl(boundary_plines, expand(area_to_be_bridge, scale_(10)));
|
|
}
|
|
Polygons bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle);
|
|
bridging_area = intersection(bridging_area, boundary_area);
|
|
bridging_area = opening(bridging_area, flow.scaled_spacing());
|
|
expansion_area = diff(expansion_area, bridging_area);
|
|
|
|
#ifdef DEBUG_BRIDGE_OVER_INFILL
|
|
debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) +
|
|
"_expanded_bridging",
|
|
to_lines(layer->lslices), to_lines(candidate.original_surface->expolygon), to_lines(candidate.new_polys),
|
|
to_lines(bridging_area));
|
|
#endif
|
|
|
|
expanded_surfaces.push_back(
|
|
CandidateSurface(candidate.original_surface, bridging_area, candidate.region, bridging_angle, candidate.supported_by_lightning));
|
|
}
|
|
surfaces_by_layer[lidx].swap(expanded_surfaces);
|
|
expanded_surfaces.clear();
|
|
}
|
|
}
|
|
});
|
|
|
|
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Directions and expanded surfaces computed" << log_memory_info();
|
|
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this, &surfaces_by_layer](tbb::blocked_range<size_t> r) {
|
|
for (size_t lidx = r.begin(); lidx < r.end(); lidx++) {
|
|
if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end())
|
|
continue;
|
|
Layer *layer = po->get_layer(lidx);
|
|
|
|
Polygons cut_from_infill{};
|
|
for (const auto &surface : surfaces_by_layer.at(lidx)) {
|
|
cut_from_infill.insert(cut_from_infill.end(), surface.new_polys.begin(), surface.new_polys.end());
|
|
}
|
|
|
|
for (LayerRegion *region : layer->regions()) {
|
|
Surfaces new_surfaces;
|
|
|
|
for (const CandidateSurface &cs : surfaces_by_layer.at(lidx)) {
|
|
for (Surface &surface : region->m_fill_surfaces.surfaces) {
|
|
if (cs.original_surface == &surface) {
|
|
Surface tmp(surface, {});
|
|
for (const ExPolygon &expoly : diff_ex(surface.expolygon, cs.new_polys)) {
|
|
if (expoly.area() > region->flow(frSolidInfill).scaled_width() * scale_(4.0)) {
|
|
new_surfaces.emplace_back(tmp, expoly);
|
|
}
|
|
}
|
|
tmp.surface_type = stInternalBridge;
|
|
tmp.bridge_angle = cs.bridge_angle;
|
|
for (const ExPolygon &expoly : union_ex(cs.new_polys)) {
|
|
new_surfaces.emplace_back(tmp, expoly);
|
|
}
|
|
surface.clear();
|
|
} else if (surface.surface_type == stInternal) {
|
|
Surface tmp(surface, {});
|
|
for (const ExPolygon &expoly : diff_ex(surface.expolygon, cut_from_infill)) {
|
|
new_surfaces.emplace_back(tmp, expoly);
|
|
}
|
|
surface.clear();
|
|
}
|
|
}
|
|
}
|
|
region->m_fill_surfaces.surfaces.insert(region->m_fill_surfaces.surfaces.end(), new_surfaces.begin(), new_surfaces.end());
|
|
region->m_fill_surfaces.surfaces.erase(std::remove_if(region->m_fill_surfaces.surfaces.begin(),
|
|
region->m_fill_surfaces.surfaces.end(),
|
|
[](const Surface &s) { return s.empty(); }),
|
|
region->m_fill_surfaces.surfaces.end());
|
|
}
|
|
}
|
|
});
|
|
|
|
BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info();
|
|
|
|
} // void PrintObject::bridge_over_infill()
|
|
|
|
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
|
|
{
|
|
if (opt.value > (int)num_extruders)
|
|
// assign the default extruder
|
|
opt.value = 1;
|
|
}
|
|
|
|
PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
|
|
{
|
|
PrintObjectConfig config = default_object_config;
|
|
{
|
|
DynamicPrintConfig src_normalized(object.config.get());
|
|
src_normalized.normalize_fdm();
|
|
config.apply(src_normalized, true);
|
|
}
|
|
// Clamp invalid extruders to the default extruder (with index 1).
|
|
clamp_exturder_to_default(config.support_material_extruder, num_extruders);
|
|
clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
|
|
return config;
|
|
}
|
|
|
|
const std::string key_extruder { "extruder" };
|
|
static constexpr const std::initializer_list<const std::string_view> keys_extruders { "infill_extruder"sv, "solid_infill_extruder"sv, "perimeter_extruder"sv };
|
|
|
|
static void apply_to_print_region_config(PrintRegionConfig &out, const DynamicPrintConfig &in)
|
|
{
|
|
// 1) Copy the "extruder key to infill_extruder and perimeter_extruder.
|
|
auto *opt_extruder = in.opt<ConfigOptionInt>(key_extruder);
|
|
if (opt_extruder)
|
|
if (int extruder = opt_extruder->value; extruder != 0) {
|
|
// Not a default extruder.
|
|
out.infill_extruder .value = extruder;
|
|
out.solid_infill_extruder.value = extruder;
|
|
out.perimeter_extruder .value = extruder;
|
|
}
|
|
// 2) Copy the rest of the values.
|
|
for (auto it = in.cbegin(); it != in.cend(); ++ it)
|
|
if (it->first != key_extruder)
|
|
if (ConfigOption* my_opt = out.option(it->first, false); my_opt != nullptr) {
|
|
if (one_of(it->first, keys_extruders)) {
|
|
// Ignore "default" extruders.
|
|
int extruder = static_cast<const ConfigOptionInt*>(it->second.get())->value;
|
|
if (extruder > 0)
|
|
my_opt->setInt(extruder);
|
|
} else
|
|
my_opt->set(it->second.get());
|
|
}
|
|
}
|
|
|
|
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
|
|
{
|
|
PrintRegionConfig config = default_or_parent_region_config;
|
|
if (volume.is_model_part()) {
|
|
// default_or_parent_region_config contains the Print's PrintRegionConfig.
|
|
// Override with ModelObject's PrintRegionConfig values.
|
|
apply_to_print_region_config(config, volume.get_object()->config.get());
|
|
} else {
|
|
// default_or_parent_region_config contains parent PrintRegion config, which already contains ModelVolume's config.
|
|
}
|
|
if (layer_range_config != nullptr) {
|
|
// Not applicable to modifiers.
|
|
assert(volume.is_model_part());
|
|
apply_to_print_region_config(config, *layer_range_config);
|
|
}
|
|
apply_to_print_region_config(config, volume.config.get());
|
|
if (! volume.material_id().empty())
|
|
apply_to_print_region_config(config, volume.material()->config.get());
|
|
// Clamp invalid extruders to the default extruder (with index 1).
|
|
clamp_exturder_to_default(config.infill_extruder, num_extruders);
|
|
clamp_exturder_to_default(config.perimeter_extruder, num_extruders);
|
|
clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
|
|
if (config.fill_density.value < 0.00011f)
|
|
// Switch of infill for very low infill rates, also avoid division by zero in infill generator for these very low rates.
|
|
// See GH issue #5910.
|
|
config.fill_density.value = 0;
|
|
else
|
|
config.fill_density.value = std::min(config.fill_density.value, 100.);
|
|
if (config.fuzzy_skin.value != FuzzySkinType::None && (config.fuzzy_skin_point_dist.value < 0.01 || config.fuzzy_skin_thickness.value < 0.001))
|
|
config.fuzzy_skin.value = FuzzySkinType::None;
|
|
return config;
|
|
}
|
|
|
|
void PrintObject::update_slicing_parameters()
|
|
{
|
|
if (!m_slicing_params.valid)
|
|
m_slicing_params = SlicingParameters::create_from_config(
|
|
this->print()->config(), m_config, this->model_object()->max_z(), this->object_extruders());
|
|
}
|
|
|
|
SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z)
|
|
{
|
|
PrintConfig print_config;
|
|
PrintObjectConfig object_config;
|
|
PrintRegionConfig default_region_config;
|
|
print_config.apply(full_config, true);
|
|
object_config.apply(full_config, true);
|
|
default_region_config.apply(full_config, true);
|
|
size_t num_extruders = print_config.nozzle_diameter.size();
|
|
object_config = object_config_from_model_object(object_config, model_object, num_extruders);
|
|
|
|
std::vector<unsigned int> object_extruders;
|
|
for (const ModelVolume* model_volume : model_object.volumes)
|
|
if (model_volume->is_model_part()) {
|
|
PrintRegion::collect_object_printing_extruders(
|
|
print_config,
|
|
region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders),
|
|
object_config.brim_type != btNoBrim && object_config.brim_width > 0.,
|
|
object_extruders);
|
|
for (const std::pair<const t_layer_height_range, ModelConfig> &range_and_config : model_object.layer_config_ranges)
|
|
if (range_and_config.second.has("perimeter_extruder") ||
|
|
range_and_config.second.has("infill_extruder") ||
|
|
range_and_config.second.has("solid_infill_extruder"))
|
|
PrintRegion::collect_object_printing_extruders(
|
|
print_config,
|
|
region_config_from_model_volume(default_region_config, &range_and_config.second.get(), *model_volume, num_extruders),
|
|
object_config.brim_type != btNoBrim && object_config.brim_width > 0.,
|
|
object_extruders);
|
|
}
|
|
sort_remove_duplicates(object_extruders);
|
|
//FIXME add painting extruders
|
|
|
|
if (object_max_z <= 0.f)
|
|
object_max_z = (float)model_object.raw_bounding_box().size().z();
|
|
return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
|
|
}
|
|
|
|
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
|
|
std::vector<unsigned int> PrintObject::object_extruders() const
|
|
{
|
|
std::vector<unsigned int> extruders;
|
|
extruders.reserve(this->all_regions().size() * 3);
|
|
for (const PrintRegion ®ion : this->all_regions())
|
|
region.collect_object_printing_extruders(*this->print(), extruders);
|
|
sort_remove_duplicates(extruders);
|
|
return extruders;
|
|
}
|
|
|
|
bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
|
|
{
|
|
bool updated = false;
|
|
|
|
if (layer_height_profile.empty()) {
|
|
// use the constructor because the assignement is crashing on ASAN OsX
|
|
layer_height_profile = std::vector<coordf_t>(model_object.layer_height_profile.get());
|
|
// layer_height_profile = model_object.layer_height_profile;
|
|
// The layer height returned is sampled with high density for the UI layer height painting
|
|
// and smoothing tool to work.
|
|
updated = true;
|
|
}
|
|
|
|
// Verify the layer_height_profile.
|
|
if (!layer_height_profile.empty() &&
|
|
// Must not be of even length.
|
|
((layer_height_profile.size() & 1) != 0 ||
|
|
// Last entry must be at the top of the object.
|
|
std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_max + slicing_parameters.object_print_z_min) > 1e-3))
|
|
layer_height_profile.clear();
|
|
|
|
if (layer_height_profile.empty()) {
|
|
//layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes);
|
|
layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges);
|
|
// The layer height profile is already compressed.
|
|
updated = true;
|
|
}
|
|
return updated;
|
|
}
|
|
|
|
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
|
|
// so it acts as an internal support. It maintains all other infill types intact.
|
|
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
|
|
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
|
|
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
|
|
// Also one wishes the perimeters to be supported by a full infill.
|
|
// Idempotence of this method is guaranteed by the fact that we don't remove things from
|
|
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
|
|
void PrintObject::clip_fill_surfaces()
|
|
{
|
|
bool has_lightning_infill = false;
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id)
|
|
if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning)
|
|
has_lightning_infill = true;
|
|
|
|
// For Lightning infill, infill_only_where_needed is ignored because both
|
|
// do a similar thing, and their combination doesn't make much sense.
|
|
if (! m_config.infill_only_where_needed.value || has_lightning_infill)
|
|
return;
|
|
bool has_infill = false;
|
|
for (size_t i = 0; i < this->num_printing_regions(); ++ i)
|
|
if (this->printing_region(i).config().fill_density > 0) {
|
|
has_infill = true;
|
|
break;
|
|
}
|
|
if (! has_infill)
|
|
return;
|
|
|
|
// We only want infill under ceilings; this is almost like an
|
|
// internal support material.
|
|
// Proceed top-down, skipping the bottom layer.
|
|
Polygons upper_internal;
|
|
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
|
|
Layer *layer = m_layers[layer_id];
|
|
Layer *lower_layer = m_layers[layer_id - 1];
|
|
// Detect things that we need to support.
|
|
// Cummulative fill surfaces.
|
|
Polygons fill_surfaces;
|
|
// Solid surfaces to be supported.
|
|
Polygons overhangs;
|
|
for (const LayerRegion *layerm : layer->m_regions)
|
|
for (const Surface &surface : layerm->fill_surfaces()) {
|
|
Polygons polygons = to_polygons(surface.expolygon);
|
|
if (surface.is_solid())
|
|
polygons_append(overhangs, polygons);
|
|
polygons_append(fill_surfaces, std::move(polygons));
|
|
}
|
|
Polygons lower_layer_fill_surfaces;
|
|
Polygons lower_layer_internal_surfaces;
|
|
for (const LayerRegion *layerm : lower_layer->m_regions)
|
|
for (const Surface &surface : layerm->fill_surfaces()) {
|
|
Polygons polygons = to_polygons(surface.expolygon);
|
|
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
|
|
polygons_append(lower_layer_internal_surfaces, polygons);
|
|
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
|
|
}
|
|
// We also need to support perimeters when there's at least one full unsupported loop
|
|
{
|
|
// Get perimeters area as the difference between slices and fill_surfaces
|
|
// Only consider the area that is not supported by lower perimeters
|
|
Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces);
|
|
// Only consider perimeter areas that are at least one extrusion width thick.
|
|
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
|
|
//Should the pw not be half of the current value?
|
|
float pw = FLT_MAX;
|
|
for (const LayerRegion *layerm : layer->m_regions)
|
|
pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
|
|
// Append such thick perimeters to the areas that need support
|
|
polygons_append(overhangs, opening(perimeters, pw));
|
|
}
|
|
// Merge the new overhangs, find new internal infill.
|
|
polygons_append(upper_internal, std::move(overhangs));
|
|
static constexpr const auto closing_radius = scaled<float>(2.f);
|
|
upper_internal = intersection(
|
|
// Regularize the overhang regions, so that the infill areas will not become excessively jagged.
|
|
smooth_outward(
|
|
closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.),
|
|
scaled<coord_t>(0.1)),
|
|
lower_layer_internal_surfaces);
|
|
// Apply new internal infill to regions.
|
|
for (LayerRegion *layerm : lower_layer->m_regions) {
|
|
if (layerm->region().config().fill_density.value == 0)
|
|
continue;
|
|
Polygons internal;
|
|
for (Surface &surface : layerm->m_fill_surfaces.surfaces)
|
|
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
|
|
polygons_append(internal, std::move(surface.expolygon));
|
|
layerm->m_fill_surfaces.remove_types({ stInternal, stInternalVoid });
|
|
layerm->m_fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal);
|
|
layerm->m_fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid);
|
|
// If there are voids it means that our internal infill is not adjacent to
|
|
// perimeters. In this case it would be nice to add a loop around infill to
|
|
// make it more robust and nicer. TODO.
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
|
|
#endif
|
|
}
|
|
m_print->throw_if_canceled();
|
|
}
|
|
} // void PrintObject::clip_fill_surfaces()
|
|
|
|
void PrintObject::discover_horizontal_shells()
|
|
{
|
|
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
|
|
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
|
|
for (size_t i = 0; i < m_layers.size(); ++i) {
|
|
m_print->throw_if_canceled();
|
|
Layer *layer = m_layers[i];
|
|
LayerRegion *layerm = layer->regions()[region_id];
|
|
const PrintRegionConfig ®ion_config = layerm->region().config();
|
|
if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
|
|
(i % region_config.solid_infill_every_layers) == 0) {
|
|
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
|
|
SurfaceType type = (region_config.fill_density == 100 || region_config.solid_infill_every_layers == 1) ? stInternalSolid :
|
|
stInternalBridge;
|
|
for (Surface &surface : layerm->m_fill_surfaces.surfaces)
|
|
if (surface.surface_type == stInternal)
|
|
surface.surface_type = type;
|
|
}
|
|
// The rest has already been performed by discover_vertical_shells().
|
|
} // for each layer
|
|
} // for each region
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) {
|
|
for (const Layer *layer : m_layers) {
|
|
const LayerRegion *layerm = layer->m_regions[region_id];
|
|
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
|
|
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
|
|
} // for each layer
|
|
} // for each region
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
} // void PrintObject::discover_horizontal_shells()
|
|
|
|
// combine fill surfaces across layers to honor the "infill every N layers" option
|
|
// Idempotence of this method is guaranteed by the fact that we don't remove things from
|
|
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
|
|
void PrintObject::combine_infill()
|
|
{
|
|
// Work on each region separately.
|
|
for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) {
|
|
const PrintRegion ®ion = this->printing_region(region_id);
|
|
const size_t every = region.config().infill_every_layers.value;
|
|
if (every < 2 || region.config().fill_density == 0.)
|
|
continue;
|
|
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
|
|
//FIXME limit the layer height to max_layer_height
|
|
double nozzle_diameter = std::min(
|
|
this->print()->config().nozzle_diameter.get_at(region.config().infill_extruder.value - 1),
|
|
this->print()->config().nozzle_diameter.get_at(region.config().solid_infill_extruder.value - 1));
|
|
// define the combinations
|
|
std::vector<size_t> combine(m_layers.size(), 0);
|
|
{
|
|
double current_height = 0.;
|
|
size_t num_layers = 0;
|
|
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
const Layer *layer = m_layers[layer_idx];
|
|
if (layer->id() == 0)
|
|
// Skip first print layer (which may not be first layer in array because of raft).
|
|
continue;
|
|
// Check whether the combination of this layer with the lower layers' buffer
|
|
// would exceed max layer height or max combined layer count.
|
|
if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
|
|
// Append combination to lower layer.
|
|
combine[layer_idx - 1] = num_layers;
|
|
current_height = 0.;
|
|
num_layers = 0;
|
|
}
|
|
current_height += layer->height;
|
|
++ num_layers;
|
|
}
|
|
|
|
// Append lower layers (if any) to uppermost layer.
|
|
combine[m_layers.size() - 1] = num_layers;
|
|
}
|
|
|
|
// loop through layers to which we have assigned layers to combine
|
|
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
size_t num_layers = combine[layer_idx];
|
|
if (num_layers <= 1)
|
|
continue;
|
|
// Get all the LayerRegion objects to be combined.
|
|
std::vector<LayerRegion*> layerms;
|
|
layerms.reserve(num_layers);
|
|
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
|
|
layerms.emplace_back(m_layers[i]->regions()[region_id]);
|
|
// We need to perform a multi-layer intersection, so let's split it in pairs.
|
|
// Initialize the intersection with the candidates of the lowest layer.
|
|
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces().filter_by_type(stInternal));
|
|
// Start looping from the second layer and intersect the current intersection with it.
|
|
for (size_t i = 1; i < layerms.size(); ++ i)
|
|
intersection = intersection_ex(layerms[i]->fill_surfaces().filter_by_type(stInternal), intersection);
|
|
double area_threshold = layerms.front()->infill_area_threshold();
|
|
if (! intersection.empty() && area_threshold > 0.)
|
|
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
|
|
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
|
|
intersection.end());
|
|
if (intersection.empty())
|
|
continue;
|
|
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
|
|
// scalar(@$intersection),
|
|
// ($type == stInternal ? 'internal' : 'internal-solid'),
|
|
// $layer_idx-($every-1), $layer_idx;
|
|
// intersection now contains the regions that can be combined across the full amount of layers,
|
|
// so let's remove those areas from all layers.
|
|
Polygons intersection_with_clearance;
|
|
intersection_with_clearance.reserve(intersection.size());
|
|
float clearance_offset =
|
|
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
|
|
// Because fill areas for rectilinear and honeycomb are grown
|
|
// later to overlap perimeters, we need to counteract that too.
|
|
((region.config().fill_pattern == ipRectilinear ||
|
|
region.config().fill_pattern == ipMonotonic ||
|
|
region.config().fill_pattern == ipGrid ||
|
|
region.config().fill_pattern == ipLine ||
|
|
region.config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
|
|
layerms.back()->flow(frSolidInfill).scaled_width();
|
|
for (ExPolygon &expoly : intersection)
|
|
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
|
|
for (LayerRegion *layerm : layerms) {
|
|
Polygons internal = to_polygons(std::move(layerm->fill_surfaces().filter_by_type(stInternal)));
|
|
layerm->m_fill_surfaces.remove_type(stInternal);
|
|
layerm->m_fill_surfaces.append(diff_ex(internal, intersection_with_clearance), stInternal);
|
|
if (layerm == layerms.back()) {
|
|
// Apply surfaces back with adjusted depth to the uppermost layer.
|
|
Surface templ(stInternal, ExPolygon());
|
|
templ.thickness = 0.;
|
|
for (LayerRegion *layerm2 : layerms)
|
|
templ.thickness += layerm2->layer()->height;
|
|
templ.thickness_layers = (unsigned short)layerms.size();
|
|
layerm->m_fill_surfaces.append(intersection, templ);
|
|
} else {
|
|
// Save void surfaces.
|
|
layerm->m_fill_surfaces.append(
|
|
intersection_ex(internal, intersection_with_clearance),
|
|
stInternalVoid);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // void PrintObject::combine_infill()
|
|
|
|
void PrintObject::_generate_support_material()
|
|
{
|
|
if (this->has_support() && (m_config.support_material_style == smsTree || m_config.support_material_style == smsOrganic)) {
|
|
fff_tree_support_generate(*this, std::function<void()>([this](){ this->throw_if_canceled(); }));
|
|
} else {
|
|
// If support style is set to Organic however only raft will be built but no support,
|
|
// build snug raft instead.
|
|
PrintObjectSupportMaterial support_material(this, m_slicing_params);
|
|
support_material.generate(*this);
|
|
}
|
|
}
|
|
|
|
static void project_triangles_to_slabs(SpanOfConstPtrs<Layer> layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
|
|
{
|
|
if (custom_facets.indices.empty())
|
|
return;
|
|
|
|
const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f);
|
|
|
|
// The projection will be at most a pentagon. Let's minimize heap
|
|
// reallocations by saving in in the following struct.
|
|
// Points are used so that scaling can be done in parallel
|
|
// and they can be moved from to create an ExPolygon later.
|
|
struct LightPolygon {
|
|
LightPolygon() { pts.reserve(5); }
|
|
LightPolygon(const std::array<Vec2f, 3>& tri) {
|
|
pts.reserve(3);
|
|
pts.emplace_back(scaled<coord_t>(tri.front()));
|
|
pts.emplace_back(scaled<coord_t>(tri[1]));
|
|
pts.emplace_back(scaled<coord_t>(tri.back()));
|
|
}
|
|
|
|
Points pts;
|
|
|
|
void add(const Vec2f& pt) {
|
|
pts.emplace_back(scaled<coord_t>(pt));
|
|
assert(pts.size() <= 5);
|
|
}
|
|
};
|
|
|
|
// Structure to collect projected polygons. One element for each triangle.
|
|
// Saves vector of polygons and layer_id of the first one.
|
|
struct TriangleProjections {
|
|
size_t first_layer_id;
|
|
std::vector<LightPolygon> polygons;
|
|
};
|
|
|
|
// Vector to collect resulting projections from each triangle.
|
|
std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size());
|
|
|
|
// Iterate over all triangles.
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, custom_facets.indices.size()),
|
|
[&custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
|
|
|
|
std::array<Vec3f, 3> facet;
|
|
|
|
// Transform the triangle into worlds coords.
|
|
for (int i=0; i<3; ++i)
|
|
facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)];
|
|
|
|
// Ignore triangles with upward-pointing normal. Don't forget about mirroring.
|
|
float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z();
|
|
if (! seam && tr_det_sign * z_comp > 0.)
|
|
continue;
|
|
|
|
// The algorithm does not process vertical triangles, but it should for seam.
|
|
// In that case, tilt the triangle a bit so the projection does not degenerate.
|
|
if (seam && z_comp == 0.f)
|
|
facet[0].x() += float(EPSILON);
|
|
|
|
// Sort the three vertices according to z-coordinate.
|
|
std::sort(facet.begin(), facet.end(),
|
|
[](const Vec3f& pt1, const Vec3f&pt2) {
|
|
return pt1.z() < pt2.z();
|
|
});
|
|
|
|
std::array<Vec2f, 3> trianglef;
|
|
for (int i=0; i<3; ++i)
|
|
trianglef[i] = to_2d(facet[i]);
|
|
|
|
// Find lowest slice not below the triangle.
|
|
auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON,
|
|
[](const Layer* l1, float z) {
|
|
return l1->slice_z < z;
|
|
});
|
|
|
|
// Count how many projections will be generated for this triangle
|
|
// and allocate respective amount in projections_of_triangles.
|
|
size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin();
|
|
size_t last_layer_id = first_layer_id;
|
|
// The cast in the condition below is important. The comparison must
|
|
// be an exact opposite of the one lower in the code where
|
|
// the polygons are appended. And that one is on floats.
|
|
while (last_layer_id + 1 < layers.size()
|
|
&& float(layers[last_layer_id]->slice_z) <= facet[2].z())
|
|
++last_layer_id;
|
|
|
|
if (first_layer_id == last_layer_id) {
|
|
// The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles.
|
|
float dz = facet[2].z() - facet[0].z();
|
|
assert(dz >= 0);
|
|
// The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1.
|
|
// Rather add this face to both the planes.
|
|
bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON;
|
|
projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1);
|
|
projections_of_triangles[idx].polygons.emplace_back(trianglef);
|
|
if (add_below) {
|
|
-- projections_of_triangles[idx].first_layer_id;
|
|
projections_of_triangles[idx].polygons.emplace_back(trianglef);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1);
|
|
|
|
// Calculate how to move points on triangle sides per unit z increment.
|
|
Vec2f ta(trianglef[1] - trianglef[0]);
|
|
Vec2f tb(trianglef[2] - trianglef[0]);
|
|
ta *= 1.f/(facet[1].z() - facet[0].z());
|
|
tb *= 1.f/(facet[2].z() - facet[0].z());
|
|
|
|
// Projection on current slice will be built directly in place.
|
|
LightPolygon* proj = &projections_of_triangles[idx].polygons[0];
|
|
proj->add(trianglef[0]);
|
|
|
|
bool passed_first = false;
|
|
bool stop = false;
|
|
|
|
// Project a sub-polygon on all slices intersecting the triangle.
|
|
while (it != layers.end()) {
|
|
const float z = float((*it)->slice_z);
|
|
|
|
// Projections of triangle sides intersections with slices.
|
|
// a moves along one side, b tracks the other.
|
|
Vec2f a;
|
|
Vec2f b;
|
|
|
|
// If the middle vertex was already passed, append the vertex
|
|
// and use ta for tracking the remaining side.
|
|
if (z > facet[1].z() && ! passed_first) {
|
|
proj->add(trianglef[1]);
|
|
ta = trianglef[2]-trianglef[1];
|
|
ta *= 1.f/(facet[2].z() - facet[1].z());
|
|
passed_first = true;
|
|
}
|
|
|
|
// This slice is above the triangle already.
|
|
if (z > facet[2].z() || it+1 == layers.end()) {
|
|
proj->add(trianglef[2]);
|
|
stop = true;
|
|
}
|
|
else {
|
|
// Move a, b along the side it currently tracks to get
|
|
// projected intersection with current slice.
|
|
a = passed_first ? (trianglef[1]+ta*(z-facet[1].z()))
|
|
: (trianglef[0]+ta*(z-facet[0].z()));
|
|
b = trianglef[0]+tb*(z-facet[0].z());
|
|
proj->add(a);
|
|
proj->add(b);
|
|
}
|
|
|
|
if (stop)
|
|
break;
|
|
|
|
// Advance to the next layer.
|
|
++it;
|
|
++proj;
|
|
assert(proj <= &projections_of_triangles[idx].polygons.back() );
|
|
|
|
// a, b are first two points of the polygon for the next layer.
|
|
proj->add(b);
|
|
proj->add(a);
|
|
}
|
|
}
|
|
}); // end of parallel_for
|
|
|
|
// Make sure that the output vector can be used.
|
|
out.resize(layers.size());
|
|
|
|
// Now append the collected polygons to respective layers.
|
|
for (auto& trg : projections_of_triangles) {
|
|
int layer_id = int(trg.first_layer_id);
|
|
for (LightPolygon &poly : trg.polygons) {
|
|
if (layer_id >= int(out.size()))
|
|
break; // part of triangle could be projected above top layer
|
|
assert(! poly.pts.empty());
|
|
// The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well.
|
|
// if (cross2(Vec2d((poly.pts[1] - poly.pts[0]).cast<double>()), Vec2d((poly.pts[2] - poly.pts[1]).cast<double>())) < 0)
|
|
// std::swap(poly.pts.front(), poly.pts.back());
|
|
|
|
out[layer_id].emplace_back(std::move(poly.pts));
|
|
++layer_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintObject::project_and_append_custom_facets(
|
|
bool seam, EnforcerBlockerType type, std::vector<Polygons>& out) const
|
|
{
|
|
for (const ModelVolume* mv : this->model_object()->volumes)
|
|
if (mv->is_model_part()) {
|
|
const indexed_triangle_set custom_facets = seam
|
|
? mv->seam_facets.get_facets_strict(*mv, type)
|
|
: mv->supported_facets.get_facets_strict(*mv, type);
|
|
if (! custom_facets.indices.empty()) {
|
|
if (seam)
|
|
project_triangles_to_slabs(this->layers(), custom_facets,
|
|
(this->trafo_centered() * mv->get_matrix()).cast<float>(),
|
|
seam, out);
|
|
else {
|
|
std::vector<Polygons> projected;
|
|
// Support blockers or enforcers. Project downward facing painted areas upwards to their respective slicing plane.
|
|
slice_mesh_slabs(custom_facets, zs_from_layers(this->layers()), this->trafo_centered() * mv->get_matrix(), nullptr, &projected, [](){});
|
|
// Merge these projections with the output, layer by layer.
|
|
assert(! projected.empty());
|
|
assert(out.empty() || out.size() == projected.size());
|
|
if (out.empty())
|
|
out = std::move(projected);
|
|
else
|
|
for (size_t i = 0; i < out.size(); ++ i)
|
|
append(out[i], std::move(projected[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const {
|
|
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; });
|
|
return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it;
|
|
}
|
|
|
|
|
|
|
|
Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z)); }
|
|
|
|
|
|
|
|
// Get a layer approximately at print_z.
|
|
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const {
|
|
coordf_t limit = print_z - epsilon;
|
|
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
|
|
return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it;
|
|
}
|
|
|
|
|
|
|
|
Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); }
|
|
|
|
const Layer *PrintObject::get_first_layer_bellow_printz(coordf_t print_z, coordf_t epsilon) const
|
|
{
|
|
coordf_t limit = print_z + epsilon;
|
|
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
|
|
return (it == m_layers.begin()) ? nullptr : *(--it);
|
|
}
|
|
|
|
} // namespace Slic3r
|