77d37f108c
based on the work by @fuchstraumer https://github.com/slic3r/Slic3r/pull/3825 https://gist.github.com/fuchstraumer/9421573fc281b946e5f561758961212a which was based on http://anis-moussa.blogspot.com/2014/03/ramer-douglas-peucker-algorithm-for.html
416 lines
13 KiB
C++
416 lines
13 KiB
C++
#include "MultiPoint.hpp"
|
|
#include "BoundingBox.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
MultiPoint::operator Points() const
|
|
{
|
|
return this->points;
|
|
}
|
|
|
|
void MultiPoint::scale(double factor)
|
|
{
|
|
for (Point &pt : points)
|
|
pt *= factor;
|
|
}
|
|
|
|
void MultiPoint::scale(double factor_x, double factor_y)
|
|
{
|
|
for (Point &pt : points)
|
|
{
|
|
pt(0) *= factor_x;
|
|
pt(1) *= factor_y;
|
|
}
|
|
}
|
|
|
|
void MultiPoint::translate(double x, double y)
|
|
{
|
|
Vector v(x, y);
|
|
for (Point &pt : points)
|
|
pt += v;
|
|
}
|
|
|
|
void MultiPoint::translate(const Point &v)
|
|
{
|
|
for (Point &pt : points)
|
|
pt += v;
|
|
}
|
|
|
|
void MultiPoint::rotate(double cos_angle, double sin_angle)
|
|
{
|
|
for (Point &pt : this->points) {
|
|
double cur_x = double(pt(0));
|
|
double cur_y = double(pt(1));
|
|
pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
|
|
pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
|
|
}
|
|
}
|
|
|
|
void MultiPoint::rotate(double angle, const Point ¢er)
|
|
{
|
|
double s = sin(angle);
|
|
double c = cos(angle);
|
|
for (Point &pt : points) {
|
|
Vec2crd v(pt - center);
|
|
pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]);
|
|
pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]);
|
|
}
|
|
}
|
|
|
|
void MultiPoint::reverse()
|
|
{
|
|
std::reverse(this->points.begin(), this->points.end());
|
|
}
|
|
|
|
Point MultiPoint::first_point() const
|
|
{
|
|
return this->points.front();
|
|
}
|
|
|
|
double
|
|
MultiPoint::length() const
|
|
{
|
|
Lines lines = this->lines();
|
|
double len = 0;
|
|
for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) {
|
|
len += it->length();
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int
|
|
MultiPoint::find_point(const Point &point) const
|
|
{
|
|
for (const Point &pt : this->points)
|
|
if (pt == point)
|
|
return &pt - &this->points.front();
|
|
return -1; // not found
|
|
}
|
|
|
|
bool
|
|
MultiPoint::has_boundary_point(const Point &point) const
|
|
{
|
|
double dist = (point.projection_onto(*this) - point).cast<double>().norm();
|
|
return dist < SCALED_EPSILON;
|
|
}
|
|
|
|
BoundingBox
|
|
MultiPoint::bounding_box() const
|
|
{
|
|
return BoundingBox(this->points);
|
|
}
|
|
|
|
bool
|
|
MultiPoint::has_duplicate_points() const
|
|
{
|
|
for (size_t i = 1; i < points.size(); ++i)
|
|
if (points[i-1] == points[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
MultiPoint::remove_duplicate_points()
|
|
{
|
|
size_t j = 0;
|
|
for (size_t i = 1; i < points.size(); ++i) {
|
|
if (points[j] == points[i]) {
|
|
// Just increase index i.
|
|
} else {
|
|
++ j;
|
|
if (j < i)
|
|
points[j] = points[i];
|
|
}
|
|
}
|
|
if (++ j < points.size()) {
|
|
points.erase(points.begin() + j, points.end());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
MultiPoint::intersection(const Line& line, Point* intersection) const
|
|
{
|
|
Lines lines = this->lines();
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
|
|
if (it->intersection(line, intersection)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
|
|
{
|
|
bool found = false;
|
|
double dmin = 0.;
|
|
for (const Line &l : this->lines()) {
|
|
Point ip;
|
|
if (l.intersection(line, &ip)) {
|
|
if (! found) {
|
|
found = true;
|
|
dmin = (line.a - ip).cast<double>().norm();
|
|
*intersection = ip;
|
|
} else {
|
|
double d = (line.a - ip).cast<double>().norm();
|
|
if (d < dmin) {
|
|
dmin = d;
|
|
*intersection = ip;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
std::vector<Point> MultiPoint::_douglas_peucker(const std::vector<Point>& pts, const double tolerance)
|
|
{
|
|
std::vector<Point> result_pts;
|
|
if (! pts.empty()) {
|
|
const Point *anchor = &pts.front();
|
|
size_t anchor_idx = 0;
|
|
const Point *floater = &pts.back();
|
|
size_t floater_idx = pts.size() - 1;
|
|
result_pts.reserve(pts.size());
|
|
result_pts.emplace_back(*anchor);
|
|
if (anchor_idx != floater_idx) {
|
|
assert(pts.size() > 1);
|
|
std::vector<size_t> dpStack;
|
|
dpStack.reserve(pts.size());
|
|
dpStack.emplace_back(floater_idx);
|
|
for (;;) {
|
|
double max_distSq = 0.0;
|
|
size_t furthest_idx = anchor_idx;
|
|
// find point furthest from line seg created by (anchor, floater) and note it
|
|
for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) {
|
|
double dist = Line::distance_to_squared(pts[i], *anchor, *floater);
|
|
if (dist > max_distSq) {
|
|
max_distSq = dist;
|
|
furthest_idx = i;
|
|
}
|
|
}
|
|
// remove point if less than tolerance
|
|
if (max_distSq <= tolerance) {
|
|
result_pts.emplace_back(*floater);
|
|
anchor_idx = floater_idx;
|
|
anchor = floater;
|
|
assert(dpStack.back() == floater_idx);
|
|
dpStack.pop_back();
|
|
if (dpStack.empty())
|
|
break;
|
|
floater_idx = dpStack.back();
|
|
} else {
|
|
floater_idx = furthest_idx;
|
|
dpStack.emplace_back(floater_idx);
|
|
}
|
|
floater = &pts[floater_idx];
|
|
}
|
|
}
|
|
}
|
|
return result_pts;
|
|
}
|
|
|
|
// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
|
|
// thanks to @fuchstraumer
|
|
/*
|
|
struct - vis_node
|
|
Used with the visivalignam simplification algorithm, which needs to be able to find a points
|
|
successors and predecessors to operate succesfully. Since this struct is only used in one
|
|
location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace.
|
|
Source: https://github.com/shortsleeves/visvalingam_simplify
|
|
^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up
|
|
(i.e be more like my personal style), and managed to do this without requiring a binheap implementation
|
|
*/
|
|
struct vis_node{
|
|
vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {}
|
|
// Indices into a Points container, from which this object was constructed
|
|
size_t pt_idx, prev_idx, next_idx;
|
|
// Effective area of this "node"
|
|
double area;
|
|
// Overloaded operator used to sort the binheap
|
|
// Greater area = "more important" node. So, this node is less than the
|
|
// other node if it's area is less than the other node's area
|
|
bool operator<(const vis_node& other) { return (this->area < other.area); }
|
|
};
|
|
Points MultiPoint::visivalingam(const Points& pts, const double& tolerance)
|
|
{
|
|
// Make sure there's enough points in "pts" to bother with simplification.
|
|
assert(pts.size() >= 2);
|
|
// Result object
|
|
Points results;
|
|
// Lambda to calculate effective area spanned by a point and its immediate
|
|
// successor + predecessor.
|
|
auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t {
|
|
const Point& curr = pts[curr_pt_idx];
|
|
const Point& prev = pts[prev_pt_idx];
|
|
const Point& next = pts[next_pt_idx];
|
|
// Use point objects as vector-distances
|
|
const Vec2d curr_to_next = (next - curr).cast<double>();
|
|
const Vec2d prev_to_next = (prev - curr).cast<double>();
|
|
// Take cross product of these two vector distances
|
|
return 0.50 * abs(cross2(curr_to_next, prev_to_next));
|
|
};
|
|
// We store the effective areas for each node
|
|
std::vector<coordf_t> areas;
|
|
areas.reserve(pts.size());
|
|
// Construct the initial set of nodes. We will make a heap out of the "heap" vector using
|
|
// std::make_heap. node_list is used later.
|
|
std::vector<vis_node*> node_list;
|
|
node_list.resize(pts.size());
|
|
std::vector<vis_node*> heap;
|
|
heap.reserve(pts.size());
|
|
for (size_t i = 1; i < pts.size() - 1; ++ i) {
|
|
// Get effective area of current node.
|
|
coordf_t area = effective_area(i, i - 1, i + 1);
|
|
// If area is greater than some arbitrarily small value, use it.
|
|
node_list[i] = new vis_node(i, i - 1, i + 1, area);
|
|
heap.push_back(node_list[i]);
|
|
}
|
|
// Call std::make_heap, which uses the < operator by default to make "heap" into
|
|
// a binheap, sorted by the < operator we defind in the vis_node struct
|
|
std::make_heap(heap.begin(), heap.end());
|
|
// Start comparing areas. Set min_area to an outrageous value initially.
|
|
double min_area = -std::numeric_limits<double>::max();
|
|
while (!heap.empty()) {
|
|
// Get current node.
|
|
vis_node* curr = heap.front();
|
|
// Pop node we just retrieved off the heap. pop_heap moves front element in vector
|
|
// to the back, so we can call pop_back()
|
|
std::pop_heap(heap.begin(), heap.end());
|
|
heap.pop_back();
|
|
// Sanity assert check
|
|
assert(curr == node_list[curr->pt_idx]);
|
|
// If the current pt'ss area is less than that of the previous pt's area
|
|
// use the last pt's area instead. This ensures we don't elimate the current
|
|
// point without eliminating the previous
|
|
min_area = std::max(min_area, curr->area);
|
|
// Update prev
|
|
vis_node* prev = node_list[curr->prev_idx];
|
|
if(prev != nullptr){
|
|
prev->next_idx = curr->next_idx;
|
|
prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx);
|
|
// For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing.
|
|
std::make_heap(heap.begin(), heap.end());
|
|
}
|
|
// Update next
|
|
vis_node* next = node_list[curr->next_idx];
|
|
if(next != nullptr){
|
|
next->prev_idx = curr->prev_idx;
|
|
next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx);
|
|
std::make_heap(heap.begin(), heap.end());
|
|
}
|
|
areas[curr->pt_idx] = min_area;
|
|
node_list[curr->pt_idx] = nullptr;
|
|
delete curr;
|
|
}
|
|
// Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed.
|
|
node_list.clear();
|
|
node_list.shrink_to_fit();
|
|
// This lambda is how we test whether or not to keep a point.
|
|
auto use_point = [areas, tolerance](const size_t& idx)->bool {
|
|
assert(idx < areas.size());
|
|
// Return true at front/back of path/areas
|
|
if(idx == 0 || idx == areas.size() - 1){
|
|
return true;
|
|
}
|
|
// Return true if area at idx is greater than minimum area to consider "valid"
|
|
else{
|
|
return areas[idx] > tolerance;
|
|
}
|
|
};
|
|
// Use previously defined lambda to build results.
|
|
for (size_t i = 0; i < pts.size(); ++i) {
|
|
if (use_point(i)){
|
|
results.push_back(pts[i]);
|
|
}
|
|
}
|
|
// Check that results has at least two points
|
|
assert(results.size() >= 2);
|
|
// Return simplified vector of points
|
|
return results;
|
|
}
|
|
|
|
void MultiPoint3::translate(double x, double y)
|
|
{
|
|
for (Vec3crd &p : points) {
|
|
p(0) += x;
|
|
p(1) += y;
|
|
}
|
|
}
|
|
|
|
void MultiPoint3::translate(const Point& vector)
|
|
{
|
|
this->translate(vector(0), vector(1));
|
|
}
|
|
|
|
double MultiPoint3::length() const
|
|
{
|
|
double len = 0.0;
|
|
for (const Line3& line : this->lines())
|
|
len += line.length();
|
|
return len;
|
|
}
|
|
|
|
BoundingBox3 MultiPoint3::bounding_box() const
|
|
{
|
|
return BoundingBox3(points);
|
|
}
|
|
|
|
bool MultiPoint3::remove_duplicate_points()
|
|
{
|
|
size_t j = 0;
|
|
for (size_t i = 1; i < points.size(); ++i) {
|
|
if (points[j] == points[i]) {
|
|
// Just increase index i.
|
|
} else {
|
|
++ j;
|
|
if (j < i)
|
|
points[j] = points[i];
|
|
}
|
|
}
|
|
|
|
if (++j < points.size())
|
|
{
|
|
points.erase(points.begin() + j, points.end());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
BoundingBox get_extents(const MultiPoint &mp)
|
|
{
|
|
return BoundingBox(mp.points);
|
|
}
|
|
|
|
BoundingBox get_extents_rotated(const Points &points, double angle)
|
|
{
|
|
BoundingBox bbox;
|
|
if (! points.empty()) {
|
|
double s = sin(angle);
|
|
double c = cos(angle);
|
|
Points::const_iterator it = points.begin();
|
|
double cur_x = (double)(*it)(0);
|
|
double cur_y = (double)(*it)(1);
|
|
bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y);
|
|
bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x);
|
|
for (++it; it != points.end(); ++it) {
|
|
double cur_x = (double)(*it)(0);
|
|
double cur_y = (double)(*it)(1);
|
|
coord_t x = (coord_t)round(c * cur_x - s * cur_y);
|
|
coord_t y = (coord_t)round(c * cur_y + s * cur_x);
|
|
bbox.min(0) = std::min(x, bbox.min(0));
|
|
bbox.min(1) = std::min(y, bbox.min(1));
|
|
bbox.max(0) = std::max(x, bbox.max(0));
|
|
bbox.max(1) = std::max(y, bbox.max(1));
|
|
}
|
|
bbox.defined = true;
|
|
}
|
|
return bbox;
|
|
}
|
|
|
|
BoundingBox get_extents_rotated(const MultiPoint &mp, double angle)
|
|
{
|
|
return get_extents_rotated(mp.points, angle);
|
|
}
|
|
|
|
}
|