90 lines
3.1 KiB
GLSL
90 lines
3.1 KiB
GLSL
// version 120 is needed for gl_PointCoord
|
|
#version 120
|
|
|
|
#define INTENSITY_CORRECTION 0.6
|
|
|
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SHININESS 20.0
|
|
|
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
|
|
|
#define INTENSITY_AMBIENT 0.3
|
|
|
|
uniform vec3 uniform_color;
|
|
|
|
uniform ivec4 viewport;
|
|
uniform float point_size;
|
|
uniform mat4 inv_proj_matrix;
|
|
|
|
varying vec3 eye_center;
|
|
// x = tainted, y = specular;
|
|
vec2 intensity;
|
|
|
|
float radius = 0.5 * point_size;
|
|
|
|
vec3 eye_position_from_fragment()
|
|
{
|
|
// Convert screen coordinates to normalized device coordinates (NDC)
|
|
vec4 ndc = vec4((gl_FragCoord.x / viewport.z - 0.5) * 2.0,
|
|
(gl_FragCoord.y / viewport.w - 0.5) * 2.0,
|
|
(gl_FragCoord.z - 0.5) * 2.0,
|
|
gl_FragCoord.w);
|
|
// Convert NDC throuch inverse clip coordinates to view coordinates
|
|
vec4 clip = inv_proj_matrix * ndc;
|
|
return clip.xyz;
|
|
}
|
|
|
|
vec3 eye_position_on_sphere(vec3 eye_fragment_position)
|
|
{
|
|
vec3 eye_dir = normalize(eye_fragment_position);
|
|
float a = dot(eye_dir, eye_dir);
|
|
float b = 2.0 * dot(-eye_center, eye_dir);
|
|
float c = dot(eye_center, eye_center) - radius * radius;
|
|
float discriminant = b * b - 4 * a * c;
|
|
float t = -(b + sqrt(discriminant)) / (2.0 * a);
|
|
return t * eye_dir;
|
|
}
|
|
|
|
vec4 on_sphere_color(vec3 eye_on_sphere_position)
|
|
{
|
|
vec3 eye_normal = normalize(eye_on_sphere_position - eye_center);
|
|
|
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
|
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
|
|
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
|
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_on_sphere_position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
|
|
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
|
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
|
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
|
|
|
return vec4(intensity.y + uniform_color.rgb * intensity.x, 1.0);
|
|
}
|
|
|
|
float fragment_depth(vec3 eye_pos)
|
|
{
|
|
vec4 clip_pos = gl_ProjectionMatrix * vec4(eye_pos, 1.0);
|
|
float ndc_depth = clip_pos.z / clip_pos.w;
|
|
return ((gl_DepthRange.far - gl_DepthRange.near) * ndc_depth + gl_DepthRange.near + gl_DepthRange.far) / 2.0;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
vec2 pos = (gl_PointCoord - 0.5) * 2.0;
|
|
float radius = length(pos);
|
|
if (radius > 1.0)
|
|
discard;
|
|
|
|
vec3 eye_on_sphere_position = eye_position_on_sphere(eye_position_from_fragment());
|
|
|
|
// gl_FragDepth = fragment_depth(eye_on_sphere_position);
|
|
gl_FragColor = on_sphere_color(eye_on_sphere_position);
|
|
}
|