PrusaSlicer-NonPlainar/src/libslic3r/Fill/Fill3DHoneycomb.cpp
Vojtech Bubnik 09a80d954c Further rework of ClipperUtils: Replaced many to_polygons() /
to_expolygons() calls with templated ClipperUtils variants to avoid
memory allocation and copying.
2021-05-03 11:39:53 +02:00

175 lines
6.8 KiB
C++

#include "../ClipperUtils.hpp"
#include "../ShortestPath.hpp"
#include "../Surface.hpp"
#include "Fill3DHoneycomb.hpp"
namespace Slic3r {
/*
Creates a contiguous sequence of points at a specified height that make
up a horizontal slice of the edges of a space filling truncated
octahedron tesselation. The octahedrons are oriented so that the
square faces are in the horizontal plane with edges parallel to the X
and Y axes.
Credits: David Eccles (gringer).
*/
// Generate an array of points that are in the same direction as the
// basic printing line (i.e. Y points for columns, X points for rows)
// Note: a negative offset only causes a change in the perpendicular
// direction
static std::vector<coordf_t> colinearPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
{
const coordf_t offset2 = std::abs(offset / coordf_t(2.));
std::vector<coordf_t> points;
points.push_back(baseLocation - offset2);
for (size_t i = 0; i < gridLength; ++i) {
points.push_back(baseLocation + i + offset2);
points.push_back(baseLocation + i + 1 - offset2);
}
points.push_back(baseLocation + gridLength + offset2);
return points;
}
// Generate an array of points for the dimension that is perpendicular to
// the basic printing line (i.e. X points for columns, Y points for rows)
static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
{
coordf_t offset2 = offset / coordf_t(2.);
coord_t side = 2 * (baseLocation & 1) - 1;
std::vector<coordf_t> points;
points.push_back(baseLocation - offset2 * side);
for (size_t i = 0; i < gridLength; ++i) {
side = 2*((i+baseLocation) & 1) - 1;
points.push_back(baseLocation + offset2 * side);
points.push_back(baseLocation + offset2 * side);
}
points.push_back(baseLocation - offset2 * side);
return points;
}
// Trims an array of points to specified rectangular limits. Point
// components that are outside these limits are set to the limits.
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
{
for (Vec2d &pt : pts) {
pt(0) = clamp(minX, maxX, pt(0));
pt(1) = clamp(minY, maxY, pt(1));
}
}
static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coordf_t> &y)
{
assert(x.size() == y.size());
Pointfs out;
out.reserve(x.size());
for (size_t i = 0; i < x.size(); ++ i)
out.push_back(Vec2d(x[i], y[i]));
return out;
}
// Generate a set of curves (array of array of 2d points) that describe a
// horizontal slice of a truncated regular octahedron with edge length 1.
// curveType specifies which lines to print, 1 for vertical lines
// (columns), 2 for horizontal lines (rows), and 3 for both.
static std::vector<Pointfs> makeNormalisedGrid(coordf_t z, size_t gridWidth, size_t gridHeight, size_t curveType)
{
// offset required to create a regular octagram
coordf_t octagramGap = coordf_t(0.5);
// sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
coordf_t a = std::sqrt(coordf_t(2.)); // period
coordf_t wave = fabs(fmod(z, a) - a/2.)/a*4. - 1.;
coordf_t offset = wave * octagramGap;
std::vector<Pointfs> points;
if ((curveType & 1) != 0) {
for (size_t x = 0; x <= gridWidth; ++x) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
perpendPoints(offset, x, gridHeight),
colinearPoints(offset, 0, gridHeight));
// trim points to grid edges
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
if (x & 1)
std::reverse(newPoints.begin(), newPoints.end());
}
}
if ((curveType & 2) != 0) {
for (size_t y = 0; y <= gridHeight; ++y) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
colinearPoints(offset, 0, gridWidth),
perpendPoints(offset, y, gridWidth));
// trim points to grid edges
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
if (y & 1)
std::reverse(newPoints.begin(), newPoints.end());
}
}
return points;
}
// Generate a set of curves (array of array of 2d points) that describe a
// horizontal slice of a truncated regular octahedron with a specified
// grid square size.
static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t gridHeight, size_t curveType)
{
coord_t scaleFactor = gridSize;
coordf_t normalisedZ = coordf_t(z) / coordf_t(scaleFactor);
std::vector<Pointfs> polylines = makeNormalisedGrid(normalisedZ, gridWidth, gridHeight, curveType);
Polylines result;
result.reserve(polylines.size());
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin(); it_polylines != polylines.end(); ++ it_polylines) {
result.push_back(Polyline());
Polyline &polyline = result.back();
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
polyline.points.push_back(Point(coord_t((*it)(0) * scaleFactor), coord_t((*it)(1) * scaleFactor)));
}
return result;
}
void Fill3DHoneycomb::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon expolygon,
Polylines &polylines_out)
{
// no rotation is supported for this infill pattern
BoundingBox bb = expolygon.contour.bounding_box();
coord_t distance = coord_t(scale_(this->spacing) / params.density);
// align bounding box to a multiple of our honeycomb grid module
// (a module is 2*$distance since one $distance half-module is
// growing while the other $distance half-module is shrinking)
bb.merge(align_to_grid(bb.min, Point(2*distance, 2*distance)));
// generate pattern
Polylines polylines = makeGrid(
scale_(this->z),
distance,
ceil(bb.size()(0) / distance) + 1,
ceil(bb.size()(1) / distance) + 1,
((this->layer_id/thickness_layers) % 2) + 1);
// move pattern in place
for (Polyline &pl : polylines)
pl.translate(bb.min);
// clip pattern to boundaries, chain the clipped polylines
polylines = intersection_pl(polylines, expolygon);
// connect lines if needed
if (params.dont_connect() || polylines.size() <= 1)
append(polylines_out, chain_polylines(std::move(polylines)));
else
this->connect_infill(std::move(polylines), expolygon, polylines_out, this->spacing, params);
}
} // namespace Slic3r