437 lines
15 KiB
Perl
437 lines
15 KiB
Perl
package Slic3r::Layer;
|
|
use Moo;
|
|
|
|
use Math::Clipper ':all';
|
|
use Slic3r::Geometry qw(scale collinear X Y A B PI rad2deg_dir bounding_box_center);
|
|
use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex xor_ex is_counter_clockwise);
|
|
use XXX;
|
|
|
|
# a sequential number of layer, starting at 0
|
|
has 'id' => (
|
|
is => 'rw',
|
|
#isa => 'Int',
|
|
required => 1,
|
|
);
|
|
|
|
has 'slicing_errors' => (is => 'rw');
|
|
|
|
# collection of spare segments generated by slicing the original geometry;
|
|
# these need to be merged in continuos (closed) polylines
|
|
has 'lines' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::TriangleMesh::IntersectionLine]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# collection of surfaces generated by slicing the original geometry
|
|
has 'slices' => (is => 'ro', default => sub { [] });
|
|
|
|
# collection of polygons or polylines representing thin walls contained
|
|
# in the original geometry
|
|
has 'thin_walls' => (is => 'ro', default => sub { [] });
|
|
|
|
# collection of expolygons generated by offsetting the innermost perimeter(s)
|
|
# they represent boundaries of areas to fill
|
|
has 'fill_boundaries' => (is => 'ro', default => sub { [] });
|
|
|
|
# collection of polygons or polylines representing thin infill regions that
|
|
# need to be filled with a medial axis
|
|
has 'thin_fills' => (is => 'ro', default => sub { [] });
|
|
|
|
# collection of surfaces generated by clipping the slices to the fill boundaries
|
|
has 'surfaces' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::Surface]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# collection of surfaces for infill
|
|
has 'fill_surfaces' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::Surface]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# ordered collection of extrusion paths to build all perimeters
|
|
has 'perimeters' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# ordered collection of extrusion paths to build skirt loops
|
|
has 'skirts' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# ordered collection of extrusion paths to fill surfaces for support material
|
|
has 'support_fills' => (
|
|
is => 'rw',
|
|
#isa => 'Slic3r::ExtrusionPath::Collection',
|
|
);
|
|
|
|
# ordered collection of extrusion paths to fill surfaces
|
|
has 'fills' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::ExtrusionPath::Collection]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# Z used for slicing
|
|
sub slice_z {
|
|
my $self = shift;
|
|
if ($self->id == 0) {
|
|
return ($Slic3r::layer_height * $Slic3r::first_layer_height_ratio) / 2 / $Slic3r::resolution;
|
|
}
|
|
return (($Slic3r::layer_height * $Slic3r::first_layer_height_ratio)
|
|
+ (($self->id-1) * $Slic3r::layer_height)
|
|
+ ($Slic3r::layer_height/2)) / $Slic3r::resolution;
|
|
}
|
|
|
|
# Z used for printing
|
|
sub print_z {
|
|
my $self = shift;
|
|
return (($Slic3r::layer_height * $Slic3r::first_layer_height_ratio)
|
|
+ ($self->id * $Slic3r::layer_height)) / $Slic3r::resolution;
|
|
}
|
|
|
|
sub height {
|
|
my $self = shift;
|
|
return $self->id == 0
|
|
? ($Slic3r::layer_height * $Slic3r::first_layer_height_ratio)
|
|
: $Slic3r::layer_height;
|
|
}
|
|
|
|
sub add_line {
|
|
my $self = shift;
|
|
my ($line) = @_;
|
|
|
|
push @{ $self->lines }, $line;
|
|
return $line;
|
|
}
|
|
|
|
# build polylines from lines
|
|
sub make_surfaces {
|
|
my $self = shift;
|
|
my ($loops) = @_;
|
|
|
|
{
|
|
# merge everything
|
|
my $expolygons = union_ex($loops);
|
|
|
|
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
|
|
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
|
|
|
|
push @{$self->slices},
|
|
map Slic3r::Surface->new(expolygon => $_, surface_type => 'internal'),
|
|
@$expolygons;
|
|
}
|
|
|
|
# the contours must be offsetted by half extrusion width inwards
|
|
{
|
|
my $distance = scale $Slic3r::flow_width / 2;
|
|
my @surfaces = @{$self->slices};
|
|
@{$self->slices} = ();
|
|
foreach my $surface (@surfaces) {
|
|
push @{$self->slices}, map Slic3r::Surface->new
|
|
(expolygon => $_, surface_type => 'internal'),
|
|
$surface->expolygon->offset_ex(-$distance);
|
|
}
|
|
|
|
# now detect thin walls by re-outgrowing offsetted surfaces and subtracting
|
|
# them from the original slices
|
|
my $outgrown = Math::Clipper::offset([ map $_->p, @{$self->slices} ], $distance);
|
|
my $diff = diff_ex(
|
|
[ map $_->p, @surfaces ],
|
|
$outgrown,
|
|
1,
|
|
);
|
|
|
|
# TODO: remove very small expolygons from diff before attempting to do medial axis
|
|
# (benchmark first)
|
|
push @{$self->thin_walls},
|
|
grep $_,
|
|
map $_->medial_axis(scale $Slic3r::flow_width),
|
|
@$diff;
|
|
|
|
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
|
|
}
|
|
|
|
if (0) {
|
|
require "Slic3r/SVG.pm";
|
|
Slic3r::SVG::output(undef, "surfaces.svg",
|
|
polygons => [ map $_->contour, @{$self->slices} ],
|
|
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
|
|
);
|
|
}
|
|
}
|
|
|
|
sub prepare_fill_surfaces {
|
|
my $self = shift;
|
|
|
|
my @surfaces = @{$self->surfaces};
|
|
|
|
# merge too small internal surfaces with their surrounding tops
|
|
# (if they're too small, they can be treated as solid)
|
|
{
|
|
my $min_area = ((7 * $Slic3r::flow_spacing / $Slic3r::resolution)**2) * PI;
|
|
my $small_internal = [
|
|
grep { $_->expolygon->contour->area <= $min_area }
|
|
grep { $_->surface_type eq 'internal' }
|
|
@surfaces
|
|
];
|
|
foreach my $s (@$small_internal) {
|
|
@surfaces = grep $_ ne $s, @surfaces;
|
|
}
|
|
my $union = union_ex([
|
|
(map $_->p, grep $_->surface_type eq 'top', @surfaces),
|
|
(map @$_, map $_->expolygon->safety_offset, @$small_internal),
|
|
]);
|
|
my @top = map Slic3r::Surface->new(expolygon => $_, surface_type => 'top'), @$union;
|
|
@surfaces = (grep($_->surface_type ne 'top', @surfaces), @top);
|
|
}
|
|
|
|
# remove top/bottom surfaces
|
|
if ($Slic3r::solid_layers == 0) {
|
|
@surfaces = grep $_->surface_type eq 'internal', @surfaces;
|
|
}
|
|
|
|
# remove internal surfaces
|
|
if ($Slic3r::fill_density == 0) {
|
|
@surfaces = grep $_->surface_type ne 'internal', @surfaces;
|
|
}
|
|
|
|
$self->fill_surfaces([@surfaces]);
|
|
}
|
|
|
|
sub remove_small_surfaces {
|
|
my $self = shift;
|
|
|
|
my $distance = scale $Slic3r::flow_spacing / 2;
|
|
|
|
my @surfaces = @{$self->fill_surfaces};
|
|
@{$self->fill_surfaces} = ();
|
|
foreach my $surface (@surfaces) {
|
|
# offset inwards
|
|
my @offsets = $surface->expolygon->offset_ex(-$distance);
|
|
|
|
# offset the results outwards again and merge the results
|
|
@offsets = map $_->offset_ex($distance), @offsets;
|
|
@offsets = @{ union_ex([ map @$_, @offsets ], undef, 1) };
|
|
|
|
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => $surface->surface_type), @offsets;
|
|
}
|
|
|
|
Slic3r::debugf "identified %d small surfaces at layer %d\n",
|
|
(@surfaces - @{$self->fill_surfaces}), $self->id
|
|
if @{$self->fill_surfaces} != @surfaces;
|
|
|
|
# the difference between @surfaces and $self->fill_surfaces
|
|
# is what's too small; we add it back as solid infill
|
|
if ($Slic3r::fill_density > 0) {
|
|
my $diff = diff_ex(
|
|
[ map $_->p, @surfaces ],
|
|
[ map $_->p, @{$self->fill_surfaces} ],
|
|
);
|
|
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => 'internal-solid'), @$diff;
|
|
}
|
|
}
|
|
|
|
sub remove_small_perimeters {
|
|
my $self = shift;
|
|
my @good_perimeters = grep $_->is_printable, @{$self->perimeters};
|
|
Slic3r::debugf "removed %d unprintable perimeters at layer %d\n",
|
|
(@{$self->perimeters} - @good_perimeters), $self->id
|
|
if @good_perimeters != @{$self->perimeters};
|
|
|
|
@{$self->perimeters} = @good_perimeters;
|
|
}
|
|
|
|
# make bridges printable
|
|
sub process_bridges {
|
|
my $self = shift;
|
|
|
|
# no bridges are possible if we have no internal surfaces
|
|
return if $Slic3r::fill_density == 0;
|
|
|
|
my @bridges = ();
|
|
|
|
# a bottom surface on a layer > 0 is either a bridge or a overhang
|
|
# or a combination of both; any top surface is a candidate for
|
|
# reverse bridge processing
|
|
|
|
my @solid_surfaces = grep {
|
|
($_->surface_type eq 'bottom' && $self->id > 0) || $_->surface_type eq 'top'
|
|
} @{$self->fill_surfaces} or return;
|
|
|
|
my @internal_surfaces = grep $_->surface_type =~ /internal/, @{$self->slices};
|
|
|
|
SURFACE: foreach my $surface (@solid_surfaces) {
|
|
my $expolygon = $surface->expolygon->safety_offset;
|
|
my $description = $surface->surface_type eq 'bottom' ? 'bridge/overhang' : 'reverse bridge';
|
|
|
|
# offset the contour and intersect it with the internal surfaces to discover
|
|
# which of them has contact with our bridge
|
|
my @supporting_surfaces = ();
|
|
my ($contour_offset) = $expolygon->contour->offset(scale $Slic3r::flow_spacing * sqrt(2));
|
|
foreach my $internal_surface (@internal_surfaces) {
|
|
my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]);
|
|
if (@$intersection) {
|
|
push @supporting_surfaces, $internal_surface;
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
require "Slic3r/SVG.pm";
|
|
Slic3r::SVG::output(undef, "bridge_surfaces.svg",
|
|
green_polygons => [ map $_->p, @supporting_surfaces ],
|
|
red_polygons => [ @$expolygon ],
|
|
);
|
|
}
|
|
|
|
Slic3r::debugf "Found $description on layer %d with %d support(s)\n",
|
|
$self->id, scalar(@supporting_surfaces);
|
|
|
|
next SURFACE unless @supporting_surfaces;
|
|
|
|
my $bridge_angle = undef;
|
|
if ($surface->surface_type eq 'bottom') {
|
|
# detect optimal bridge angle
|
|
|
|
my $bridge_over_hole = 0;
|
|
my @edges = (); # edges are POLYLINES
|
|
foreach my $supporting_surface (@supporting_surfaces) {
|
|
my @surface_edges = map $_->clip_with_polygon($contour_offset),
|
|
($supporting_surface->contour, $supporting_surface->holes);
|
|
|
|
if (@supporting_surfaces == 1 && @surface_edges == 1
|
|
&& @{$supporting_surface->contour} == @{$surface_edges[0]}) {
|
|
$bridge_over_hole = 1;
|
|
}
|
|
push @edges, grep { @$_ } @surface_edges;
|
|
}
|
|
Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges);
|
|
Slic3r::debugf " and covers a hole\n" if $bridge_over_hole;
|
|
|
|
if (0) {
|
|
require "Slic3r/SVG.pm";
|
|
Slic3r::SVG::output(undef, "bridge_edges.svg",
|
|
polylines => [ map $_->p, @edges ],
|
|
);
|
|
}
|
|
|
|
if (@edges == 2) {
|
|
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
|
|
my @midpoints = map $_->midpoint, @chords;
|
|
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
|
|
$bridge_angle = rad2deg_dir($line_between_midpoints->direction);
|
|
} elsif (@edges == 1) {
|
|
# TODO: this case includes both U-shaped bridges and plain overhangs;
|
|
# we need a trapezoidation algorithm to detect the actual bridged area
|
|
# and separate it from the overhang area.
|
|
# in the mean time, we're treating as overhangs all cases where
|
|
# our supporting edge is a straight line
|
|
if (@{$edges[0]} > 2) {
|
|
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
|
|
$bridge_angle = rad2deg_dir($line->direction);
|
|
}
|
|
} elsif (@edges) {
|
|
my $center = bounding_box_center([ map @$_, @edges ]);
|
|
my $x = my $y = 0;
|
|
foreach my $point (map @$, @edges) {
|
|
my $line = Slic3r::Line->new($center, $point);
|
|
my $dir = $line->direction;
|
|
my $len = $line->length;
|
|
$x += cos($dir) * $len;
|
|
$y += sin($dir) * $len;
|
|
}
|
|
$bridge_angle = rad2deg_dir(atan2($y, $x));
|
|
}
|
|
|
|
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
|
|
$self->id, $bridge_angle if defined $bridge_angle;
|
|
}
|
|
|
|
# now, extend our bridge by taking a portion of supporting surfaces
|
|
{
|
|
# offset the bridge by the specified amount of mm (minimum 3)
|
|
my $bridge_overlap = scale 3;
|
|
my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap);
|
|
|
|
# calculate the new bridge
|
|
my $intersection = intersection_ex(
|
|
[ @$expolygon, map $_->p, @supporting_surfaces ],
|
|
[ $bridge_offset ],
|
|
);
|
|
|
|
push @bridges, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => $surface->surface_type,
|
|
bridge_angle => $bridge_angle,
|
|
), @$intersection;
|
|
}
|
|
}
|
|
|
|
# now we need to merge bridges to avoid overlapping
|
|
{
|
|
# build a list of unique bridge types
|
|
my @surface_groups = Slic3r::Surface->group(@bridges);
|
|
|
|
# merge bridges of the same type, removing any of the bridges already merged;
|
|
# the order of @surface_groups determines the priority between bridges having
|
|
# different surface_type or bridge_angle
|
|
@bridges = ();
|
|
foreach my $surfaces (@surface_groups) {
|
|
my $union = union_ex([ map $_->p, @$surfaces ]);
|
|
my $diff = diff_ex(
|
|
[ map @$_, @$union ],
|
|
[ map $_->p, @bridges ],
|
|
);
|
|
|
|
push @bridges, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => $surfaces->[0]->surface_type,
|
|
bridge_angle => $surfaces->[0]->bridge_angle,
|
|
), @$union;
|
|
}
|
|
}
|
|
|
|
# apply bridges to layer
|
|
{
|
|
my @surfaces = @{$self->fill_surfaces};
|
|
@{$self->fill_surfaces} = ();
|
|
|
|
# intersect layer surfaces with bridges to get actual bridges
|
|
foreach my $bridge (@bridges) {
|
|
my $actual_bridge = intersection_ex(
|
|
[ map $_->p, @surfaces ],
|
|
[ $bridge->p ],
|
|
);
|
|
|
|
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => $bridge->surface_type,
|
|
bridge_angle => $bridge->bridge_angle,
|
|
), @$actual_bridge;
|
|
}
|
|
|
|
# difference between layer surfaces and bridges are the other surfaces
|
|
foreach my $group (Slic3r::Surface->group(@surfaces)) {
|
|
my $difference = diff_ex(
|
|
[ map $_->p, @$group ],
|
|
[ map $_->p, @bridges ],
|
|
);
|
|
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
|
|
expolygon => $_,
|
|
surface_type => $group->[0]->surface_type), @$difference;
|
|
}
|
|
}
|
|
}
|
|
|
|
1;
|