362 lines
16 KiB
C++
362 lines
16 KiB
C++
#include "BoundingBox.hpp"
|
|
#include "MotionPlanner.hpp"
|
|
#include "MutablePriorityQueue.hpp"
|
|
#include "Utils.hpp"
|
|
|
|
#include <limits> // for numeric_limits
|
|
#include <assert.h>
|
|
|
|
#include "boost/polygon/voronoi.hpp"
|
|
using boost::polygon::voronoi_builder;
|
|
using boost::polygon::voronoi_diagram;
|
|
|
|
namespace Slic3r {
|
|
|
|
MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false)
|
|
{
|
|
ExPolygons expp;
|
|
for (const ExPolygon &island : islands) {
|
|
island.simplify(SCALED_EPSILON, &expp);
|
|
for (ExPolygon &island : expp)
|
|
m_islands.emplace_back(MotionPlannerEnv(island));
|
|
expp.clear();
|
|
}
|
|
}
|
|
|
|
void MotionPlanner::initialize()
|
|
{
|
|
// prevent initialization of empty BoundingBox
|
|
if (m_initialized || m_islands.empty())
|
|
return;
|
|
|
|
// loop through islands in order to create inner expolygons and collect their contours.
|
|
Polygons outer_holes;
|
|
for (MotionPlannerEnv &island : m_islands) {
|
|
// Generate the internal env boundaries by shrinking the island
|
|
// we'll use these inner rings for motion planning (endpoints of the Voronoi-based
|
|
// graph, visibility check) in order to avoid moving too close to the boundaries.
|
|
island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN));
|
|
// Island contours are holes of our external environment.
|
|
outer_holes.push_back(island.m_island.contour);
|
|
}
|
|
|
|
// Generate a box contour around everyting.
|
|
Polygons contour = offset(get_extents(outer_holes).polygon(), +MP_OUTER_MARGIN*2);
|
|
assert(contour.size() == 1);
|
|
// make expolygon for outer environment
|
|
ExPolygons outer = diff_ex(contour, outer_holes);
|
|
assert(outer.size() == 1);
|
|
// If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
|
|
// from Clipper data structure into the Slic3r expolygons inside diff_ex().
|
|
m_outer = MotionPlannerEnv(outer.front());
|
|
m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
|
|
m_graphs.resize(m_islands.size() + 1);
|
|
m_initialized = true;
|
|
}
|
|
|
|
Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|
{
|
|
// If we have an empty configuration space, return a straight move.
|
|
if (m_islands.empty())
|
|
return Polyline(from, to);
|
|
|
|
// Are both points in the same island?
|
|
int island_idx_from = -1;
|
|
int island_idx_to = -1;
|
|
int island_idx = -1;
|
|
for (MotionPlannerEnv &island : m_islands) {
|
|
int idx = &island - m_islands.data();
|
|
if (island.island_contains(from))
|
|
island_idx_from = idx;
|
|
if (island.island_contains(to))
|
|
island_idx_to = idx;
|
|
if (island_idx_from == idx && island_idx_to == idx) {
|
|
// Since both points are in the same island, is a direct move possible?
|
|
// If so, we avoid generating the visibility environment.
|
|
if (island.m_island.contains(Line(from, to)))
|
|
return Polyline(from, to);
|
|
// Both points are inside a single island, but the straight line crosses the island boundary.
|
|
island_idx = idx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// lazy generation of configuration space.
|
|
this->initialize();
|
|
|
|
// Get environment. If the from / to points do not share an island, then they cross an open space,
|
|
// therefore island_idx == -1 and env will be set to the environment of the empty space.
|
|
const MotionPlannerEnv &env = this->get_env(island_idx);
|
|
if (env.m_env.expolygons.empty()) {
|
|
// if this environment is empty (probably because it's too small), perform straight move
|
|
// and avoid running the algorithms on empty dataset
|
|
return Polyline(from, to);
|
|
}
|
|
|
|
// Now check whether points are inside the environment.
|
|
Point inner_from = from;
|
|
Point inner_to = to;
|
|
|
|
if (island_idx == -1) {
|
|
// The end points do not share the same island. In that case some of the travel
|
|
// will be likely performed inside the empty space.
|
|
// TODO: instead of using the nearest_env_point() logic, we should
|
|
// create a temporary graph where we connect 'from' and 'to' to the
|
|
// nodes which don't require more than one crossing, and let Dijkstra
|
|
// figure out the entire path - this should also replace the call to
|
|
// find_node() below
|
|
if (island_idx_from != -1)
|
|
// The start point is inside some island. Find the closest point at the empty space to start from.
|
|
inner_from = env.nearest_env_point(from, to);
|
|
if (island_idx_to != -1)
|
|
// The start point is inside some island. Find the closest point at the empty space to start from.
|
|
inner_to = env.nearest_env_point(to, inner_from);
|
|
}
|
|
|
|
// Perform a path search either in the open space, or in a common island of from/to.
|
|
const MotionPlannerGraph &graph = this->init_graph(island_idx);
|
|
// If no path exists without crossing perimeters, returns a straight segment.
|
|
Polyline polyline = graph.shortest_path(inner_from, inner_to);
|
|
polyline.points.insert(polyline.points.begin(), from);
|
|
polyline.points.emplace_back(to);
|
|
|
|
{
|
|
// grow our environment slightly in order for simplify_by_visibility()
|
|
// to work best by considering moves on boundaries valid as well
|
|
ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON)));
|
|
|
|
if (island_idx == -1) {
|
|
/* If 'from' or 'to' are not inside our env, they were connected using the
|
|
nearest_env_point() search which maybe produce ugly paths since it does not
|
|
include the endpoint in the Dijkstra search; the simplify_by_visibility()
|
|
call below will not work in many cases where the endpoint is not contained in
|
|
grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
|
|
which may not be enough for, say, including a skirt point). So we prune
|
|
the extra points manually. */
|
|
if (! grown_env.contains(from)) {
|
|
// delete second point while the line connecting first to third crosses the
|
|
// boundaries as many times as the current first to second
|
|
while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), grown_env).size() == 1)
|
|
polyline.points.erase(polyline.points.begin() + 1);
|
|
}
|
|
if (! grown_env.contains(to))
|
|
while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
|
|
polyline.points.erase(polyline.points.end() - 2);
|
|
}
|
|
|
|
// Perform some quick simplification (simplify_by_visibility() would make this
|
|
// unnecessary, but this is much faster)
|
|
polyline.simplify(MP_INNER_MARGIN/10);
|
|
|
|
// remove unnecessary vertices
|
|
// Note: this is computationally intensive and does not look very necessary
|
|
// now that we prune the endpoints with the logic above,
|
|
// so we comment it for now until a good test case arises
|
|
//polyline.simplify_by_visibility(grown_env);
|
|
|
|
/*
|
|
SVG svg("shortest_path.svg");
|
|
svg.draw(grown_env.expolygons);
|
|
svg.arrows = false;
|
|
for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
|
|
Point a = graph->nodes[it - graph->adjacency_list.begin()];
|
|
for (std::vector<MotionPlannerGraph::Neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
|
|
Point b = graph->nodes[n->target];
|
|
svg.draw(Line(a, b));
|
|
}
|
|
}
|
|
svg.arrows = true;
|
|
svg.draw(from);
|
|
svg.draw(inner_from, "red");
|
|
svg.draw(to);
|
|
svg.draw(inner_to, "red");
|
|
svg.draw(polyline, "red");
|
|
svg.Close();
|
|
*/
|
|
}
|
|
|
|
return polyline;
|
|
}
|
|
|
|
const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
|
|
{
|
|
// 0th graph is the graph for m_outer. Other graphs are 1 indexed.
|
|
MotionPlannerGraph *graph = m_graphs[island_idx + 1].get();
|
|
if (graph == nullptr) {
|
|
// If this graph doesn't exist, initialize it.
|
|
m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
|
|
graph = m_graphs[island_idx + 1].get();
|
|
|
|
/* We don't add polygon boundaries as graph edges, because we'd need to connect
|
|
them to the Voronoi-generated edges by recognizing coinciding nodes. */
|
|
|
|
typedef voronoi_diagram<double> VD;
|
|
VD vd;
|
|
// Mapping between Voronoi vertices and graph nodes.
|
|
std::map<const VD::vertex_type*, size_t> vd_vertices;
|
|
// get boundaries as lines
|
|
const MotionPlannerEnv &env = this->get_env(island_idx);
|
|
Lines lines = env.m_env.lines();
|
|
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
|
|
// traverse the Voronoi diagram and generate graph nodes and edges
|
|
for (const VD::edge_type &edge : vd.edges()) {
|
|
if (edge.is_infinite())
|
|
continue;
|
|
const VD::vertex_type* v0 = edge.vertex0();
|
|
const VD::vertex_type* v1 = edge.vertex1();
|
|
Point p0(v0->x(), v0->y());
|
|
Point p1(v1->x(), v1->y());
|
|
// Insert only Voronoi edges fully contained in the island.
|
|
//FIXME This test has a terrible O(n^2) time complexity.
|
|
if (env.island_contains_b(p0) && env.island_contains_b(p1)) {
|
|
// Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
|
auto i_v0 = vd_vertices.find(v0);
|
|
size_t v0_idx;
|
|
if (i_v0 == vd_vertices.end())
|
|
vd_vertices[v0] = v0_idx = graph->add_node(p0);
|
|
else
|
|
v0_idx = i_v0->second;
|
|
// Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
|
|
auto i_v1 = vd_vertices.find(v1);
|
|
size_t v1_idx;
|
|
if (i_v1 == vd_vertices.end())
|
|
vd_vertices[v1] = v1_idx = graph->add_node(p1);
|
|
else
|
|
v1_idx = i_v1->second;
|
|
// Euclidean distance is used as weight for the graph edge
|
|
graph->add_edge(v0_idx, v1_idx, (p1 - p0).cast<double>().norm());
|
|
}
|
|
}
|
|
}
|
|
|
|
return *graph;
|
|
}
|
|
|
|
// Find a middle point on the path from start_point to end_point with the shortest path.
|
|
static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point)
|
|
{
|
|
size_t idx = size_t(-1);
|
|
double dmin = std::numeric_limits<double>::infinity();
|
|
for (const Point &p : middle_points) {
|
|
double d = (p - start_point).cast<double>().norm() + (end_point - p).cast<double>().norm();
|
|
if (d < dmin) {
|
|
idx = &p - middle_points.data();
|
|
dmin = d;
|
|
if (dmin < EPSILON)
|
|
break;
|
|
}
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
|
|
{
|
|
/* In order to ensure that the move between 'from' and the initial env point does
|
|
not violate any of the configuration space boundaries, we limit our search to
|
|
the points that satisfy this condition. */
|
|
|
|
/* Assume that this method is never called when 'env' contains 'from';
|
|
so 'from' is either inside a hole or outside all contours */
|
|
|
|
// get the points of the hole containing 'from', if any
|
|
Points pp;
|
|
for (const ExPolygon &ex : m_env.expolygons) {
|
|
for (const Polygon &hole : ex.holes)
|
|
if (hole.contains(from))
|
|
pp = hole;
|
|
if (! pp.empty())
|
|
break;
|
|
}
|
|
|
|
// If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
|
|
if (pp.empty())
|
|
for (const ExPolygon &ex : m_env.expolygons)
|
|
append(pp, ex.contour.points);
|
|
|
|
// Find the candidate result and check that it doesn't cross too many boundaries.
|
|
while (pp.size() > 1) {
|
|
// find the point in pp that is closest to both 'from' and 'to'
|
|
size_t result = nearest_waypoint_index(from, pp, to);
|
|
// as we assume 'from' is outside env, any node will require at least one crossing
|
|
if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) {
|
|
// discard result
|
|
pp.erase(pp.begin() + result);
|
|
} else
|
|
return pp[result];
|
|
}
|
|
|
|
// if we're here, return last point if any (better than nothing)
|
|
// if we have no points at all, then we have an empty environment and we
|
|
// make this method behave as a no-op (we shouldn't get here by the way)
|
|
return pp.empty() ? from : pp.front();
|
|
}
|
|
|
|
// Add a new directed edge to the adjacency graph.
|
|
void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
|
{
|
|
// Extend adjacency list until this start node.
|
|
if (m_adjacency_list.size() < from + 1) {
|
|
// Reserve in powers of two to avoid repeated reallocation.
|
|
m_adjacency_list.reserve(std::max<uint32_t>(8, next_highest_power_of_2((uint32_t)(from + 1))));
|
|
// Allocate new empty adjacency vectors.
|
|
m_adjacency_list.resize(from + 1);
|
|
}
|
|
m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
|
|
}
|
|
|
|
// Dijkstra's shortest path in a weighted graph from node_start to node_end.
|
|
// The returned path contains the end points.
|
|
// If no path exists from node_start to node_end, a straight segment is returned.
|
|
Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
|
|
{
|
|
// This prevents a crash in case for some reason we got here with an empty adjacency list.
|
|
if (this->empty())
|
|
return Polyline();
|
|
|
|
// Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
|
|
std::vector<node_t> previous(m_adjacency_list.size(), -1);
|
|
std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
|
|
std::vector<size_t> map_node_to_queue_id(m_adjacency_list.size(), size_t(-1));
|
|
distance[node_start] = 0.;
|
|
|
|
auto queue = make_mutable_priority_queue<node_t>(
|
|
[&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; },
|
|
[&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; });
|
|
queue.reserve(m_adjacency_list.size());
|
|
for (size_t i = 0; i < m_adjacency_list.size(); ++ i)
|
|
queue.push(node_t(i));
|
|
|
|
while (! queue.empty()) {
|
|
// Get the next node with the lowest distance to node_start.
|
|
node_t u = node_t(queue.top());
|
|
queue.pop();
|
|
map_node_to_queue_id[u] = size_t(-1);
|
|
// Stop searching if we reached our destination.
|
|
if (u == node_end)
|
|
break;
|
|
// Visit each edge starting at node u.
|
|
for (const Neighbor& neighbor : m_adjacency_list[u])
|
|
if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
|
|
weight_t alt = distance[u] + neighbor.weight;
|
|
// If total distance through u is shorter than the previous
|
|
// distance (if any) between node_start and neighbor.target, replace it.
|
|
if (alt < distance[neighbor.target]) {
|
|
distance[neighbor.target] = alt;
|
|
previous[neighbor.target] = u;
|
|
queue.update(map_node_to_queue_id[neighbor.target]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// In case the end point was not reached, previous[node_end] contains -1
|
|
// and a straight line from node_start to node_end is returned.
|
|
Polyline polyline;
|
|
polyline.points.reserve(m_adjacency_list.size());
|
|
for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
|
|
polyline.points.emplace_back(m_nodes[vertex]);
|
|
polyline.points.emplace_back(m_nodes[node_start]);
|
|
polyline.reverse();
|
|
return polyline;
|
|
}
|
|
|
|
}
|