4460b5ce50
Fixed some cracks in the fill surfaces created by rounding all surfaces inside detect_surface_type(). Fixed https://github.com/prusa3d/Slic3r/issues/12 Bridging-Angle not optimal Extended the "Ensure veritcal wall thickness" mode (merged with the original discover_horizontal_shells function), but this a work in progress. Already Slic3r with "ensure vertical wall thickness" produces less spurious infills inside solids.
569 lines
26 KiB
C++
569 lines
26 KiB
C++
#include "PerimeterGenerator.hpp"
|
||
#include "ClipperUtils.hpp"
|
||
#include "ExtrusionEntityCollection.hpp"
|
||
#include <cmath>
|
||
#include <cassert>
|
||
|
||
namespace Slic3r {
|
||
|
||
void
|
||
PerimeterGenerator::process()
|
||
{
|
||
// other perimeters
|
||
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
||
coord_t pwidth = this->perimeter_flow.scaled_width();
|
||
coord_t pspacing = this->perimeter_flow.scaled_spacing();
|
||
|
||
// external perimeters
|
||
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
||
coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width();
|
||
coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing();
|
||
coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
|
||
|
||
// overhang perimeters
|
||
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
||
|
||
// solid infill
|
||
coord_t ispacing = this->solid_infill_flow.scaled_spacing();
|
||
|
||
// Calculate the minimum required spacing between two adjacent traces.
|
||
// This should be equal to the nominal flow spacing but we experiment
|
||
// with some tolerance in order to avoid triggering medial axis when
|
||
// some squishing might work. Loops are still spaced by the entire
|
||
// flow spacing; this only applies to collapsing parts.
|
||
// For ext_min_spacing we use the ext_pspacing calculated for two adjacent
|
||
// external loops (which is the correct way) instead of using ext_pspacing2
|
||
// which is the spacing between external and internal, which is not correct
|
||
// and would make the collapsing (thus the details resolution) dependent on
|
||
// internal flow which is unrelated.
|
||
coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||
coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||
|
||
// prepare grown lower layer slices for overhang detection
|
||
if (this->lower_slices != NULL && this->config->overhangs) {
|
||
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
||
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
||
// in the current layer
|
||
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
|
||
|
||
this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
|
||
}
|
||
|
||
// we need to process each island separately because we might have different
|
||
// extra perimeters for each one
|
||
for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
|
||
surface != this->slices->surfaces.end(); ++surface) {
|
||
// detect how many perimeters must be generated for this island
|
||
signed short loop_number = this->config->perimeters + surface->extra_perimeters;
|
||
loop_number--; // 0-indexed loops
|
||
|
||
Polygons gaps;
|
||
|
||
Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
|
||
if (loop_number >= 0) { // no loops = -1
|
||
|
||
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
||
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
||
ThickPolylines thin_walls;
|
||
|
||
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
||
for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0
|
||
Polygons offsets;
|
||
if (i == 0) {
|
||
// the minimum thickness of a single loop is:
|
||
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
||
if (this->config->thin_walls) {
|
||
offsets = offset2(
|
||
last,
|
||
-(ext_pwidth/2 + ext_min_spacing/2 - 1),
|
||
+(ext_min_spacing/2 - 1)
|
||
);
|
||
} else {
|
||
offsets = offset(last, -ext_pwidth/2);
|
||
}
|
||
|
||
// look for thin walls
|
||
if (this->config->thin_walls) {
|
||
Polygons diffpp = diff(
|
||
last,
|
||
offset(offsets, +ext_pwidth/2),
|
||
true // medial axis requires non-overlapping geometry
|
||
);
|
||
|
||
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
||
// (actually, something larger than that still may exist due to mitering or other causes)
|
||
coord_t min_width = scale_(this->ext_perimeter_flow.nozzle_diameter / 3);
|
||
ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
|
||
|
||
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||
ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &thin_walls);
|
||
|
||
#ifdef DEBUG
|
||
printf(" " PRINTF_ZU " thin walls detected\n", thin_walls.size());
|
||
#endif
|
||
|
||
/*
|
||
if (false) {
|
||
require "Slic3r/SVG.pm";
|
||
Slic3r::SVG::output(
|
||
"medial_axis.svg",
|
||
no_arrows => 1,
|
||
#expolygons => \@expp,
|
||
polylines => \@thin_walls,
|
||
);
|
||
}
|
||
*/
|
||
}
|
||
} else {
|
||
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
||
// from the line width of the infill?
|
||
coord_t distance = (i == 1) ? ext_pspacing2 : pspacing;
|
||
|
||
|
||
//FIXME Vojtech: Why there is a special case for the thin walls?
|
||
// Gap fill is active all the time anyway and this is not the outer perimeter.
|
||
// if (this->config->thin_walls) {
|
||
if (false) {
|
||
offsets = offset2(
|
||
last,
|
||
-(distance + min_spacing/2 - 1),
|
||
+(min_spacing/2 - 1)
|
||
);
|
||
} else {
|
||
offsets = offset(
|
||
last,
|
||
-distance
|
||
);
|
||
}
|
||
|
||
// look for gaps
|
||
if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) {
|
||
// not using safety offset here would "detect" very narrow gaps
|
||
// (but still long enough to escape the area threshold) that gap fill
|
||
// won't be able to fill but we'd still remove from infill area
|
||
Polygons diff_pp = diff(
|
||
offset(last, -0.5*distance),
|
||
offset(offsets, +0.5*distance + 10) // safety offset
|
||
);
|
||
gaps.insert(gaps.end(), diff_pp.begin(), diff_pp.end());
|
||
}
|
||
}
|
||
|
||
if (offsets.empty()) break;
|
||
if (i > loop_number) break; // we were only looking for gaps this time
|
||
|
||
last = offsets;
|
||
for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
|
||
PerimeterGeneratorLoop loop(*polygon, i);
|
||
loop.is_contour = polygon->is_counter_clockwise();
|
||
if (loop.is_contour) {
|
||
contours[i].push_back(loop);
|
||
} else {
|
||
holes[i].push_back(loop);
|
||
}
|
||
}
|
||
}
|
||
|
||
// nest loops: holes first
|
||
for (signed short d = 0; d <= loop_number; ++d) {
|
||
PerimeterGeneratorLoops &holes_d = holes[d];
|
||
|
||
// loop through all holes having depth == d
|
||
for (signed short i = 0; i < holes_d.size(); ++i) {
|
||
const PerimeterGeneratorLoop &loop = holes_d[i];
|
||
|
||
// find the hole loop that contains this one, if any
|
||
for (signed short t = d+1; t <= loop_number; ++t) {
|
||
for (signed short j = 0; j < holes[t].size(); ++j) {
|
||
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
holes_d.erase(holes_d.begin() + i);
|
||
--i;
|
||
goto NEXT_LOOP;
|
||
}
|
||
}
|
||
}
|
||
|
||
// if no hole contains this hole, find the contour loop that contains it
|
||
for (signed short t = loop_number; t >= 0; --t) {
|
||
for (signed short j = 0; j < contours[t].size(); ++j) {
|
||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
holes_d.erase(holes_d.begin() + i);
|
||
--i;
|
||
goto NEXT_LOOP;
|
||
}
|
||
}
|
||
}
|
||
NEXT_LOOP: ;
|
||
}
|
||
}
|
||
|
||
// nest contour loops
|
||
for (signed short d = loop_number; d >= 1; --d) {
|
||
PerimeterGeneratorLoops &contours_d = contours[d];
|
||
|
||
// loop through all contours having depth == d
|
||
for (signed short i = 0; i < contours_d.size(); ++i) {
|
||
const PerimeterGeneratorLoop &loop = contours_d[i];
|
||
|
||
// find the contour loop that contains it
|
||
for (signed short t = d-1; t >= 0; --t) {
|
||
for (signed short j = 0; j < contours[t].size(); ++j) {
|
||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
contours_d.erase(contours_d.begin() + i);
|
||
--i;
|
||
goto NEXT_CONTOUR;
|
||
}
|
||
}
|
||
}
|
||
|
||
NEXT_CONTOUR: ;
|
||
}
|
||
}
|
||
|
||
// at this point, all loops should be in contours[0]
|
||
|
||
ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
|
||
|
||
// if brim will be printed, reverse the order of perimeters so that
|
||
// we continue inwards after having finished the brim
|
||
// TODO: add test for perimeter order
|
||
if (this->config->external_perimeters_first
|
||
|| (this->layer_id == 0 && this->print_config->brim_width.value > 0))
|
||
entities.reverse();
|
||
|
||
// append perimeters for this slice as a collection
|
||
if (!entities.empty())
|
||
this->loops->append(entities);
|
||
} // for each loop of an island
|
||
|
||
{
|
||
//FIXME how about the gaps?
|
||
// Calculate the region of surface->expolygon covered by the perimeters and their gap fills.
|
||
// The perimeters will later be used to calculate the object skin.
|
||
ExPolygons expp = diff_ex((Polygons)surface->expolygon, last, true);
|
||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||
this->perimeter_surfaces->surfaces.push_back(Surface(stPerimeter, *ex));
|
||
}
|
||
|
||
// fill gaps
|
||
if (!gaps.empty()) {
|
||
/*
|
||
SVG svg("gaps.svg");
|
||
svg.draw(union_ex(gaps));
|
||
svg.Close();
|
||
*/
|
||
|
||
// collapse
|
||
double min = 0.2*pwidth * (1 - INSET_OVERLAP_TOLERANCE);
|
||
double max = 2*pspacing;
|
||
ExPolygons gaps_ex = diff_ex(
|
||
offset2(gaps, -min/2, +min/2),
|
||
offset2(gaps, -max/2, +max/2),
|
||
true
|
||
);
|
||
|
||
ThickPolylines polylines;
|
||
for (ExPolygons::const_iterator ex = gaps_ex.begin(); ex != gaps_ex.end(); ++ex)
|
||
ex->medial_axis(max, min, &polylines);
|
||
|
||
if (!polylines.empty()) {
|
||
ExtrusionEntityCollection gap_fill = this->_variable_width(polylines,
|
||
erGapFill, this->solid_infill_flow);
|
||
|
||
this->gap_fill->append(gap_fill.entities);
|
||
|
||
/* Make sure we don't infill narrow parts that are already gap-filled
|
||
(we only consider this surface's gaps to reduce the diff() complexity).
|
||
Growing actual extrusions ensures that gaps not filled by medial axis
|
||
are not subtracted from fill surfaces (they might be too short gaps
|
||
that medial axis skips but infill might join with other infill regions
|
||
and use zigzag). */
|
||
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
||
// therefore it may cover the area, but no the volume.
|
||
last = diff(last, gap_fill.polygons_covered_by_width(10.f));
|
||
}
|
||
}
|
||
|
||
// create one more offset to be used as boundary for fill
|
||
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
||
// and then we offset back and forth by half the infill spacing to only consider the
|
||
// non-collapsing regions
|
||
coord_t inset = 0;
|
||
if (loop_number == 0) {
|
||
// one loop
|
||
inset += ext_pspacing2/2;
|
||
} else if (loop_number > 0) {
|
||
// two or more loops
|
||
inset += pspacing/2;
|
||
}
|
||
|
||
// only apply infill overlap if we actually have one perimeter
|
||
if (inset > 0)
|
||
inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
|
||
|
||
{
|
||
ExPolygons expp = union_ex(last);
|
||
|
||
// simplify infill contours according to resolution
|
||
Polygons pp;
|
||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||
ex->simplify_p(SCALED_RESOLUTION, &pp);
|
||
|
||
// collapse too narrow infill areas
|
||
coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||
expp = offset2_ex(
|
||
pp,
|
||
-inset -min_perimeter_infill_spacing/2,
|
||
+min_perimeter_infill_spacing/2
|
||
);
|
||
|
||
// append infill areas to fill_surfaces
|
||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||
this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type
|
||
}
|
||
} // for each island
|
||
}
|
||
|
||
ExtrusionEntityCollection
|
||
PerimeterGenerator::_traverse_loops(const PerimeterGeneratorLoops &loops,
|
||
ThickPolylines &thin_walls) const
|
||
{
|
||
// loops is an arrayref of ::Loop objects
|
||
// turn each one into an ExtrusionLoop object
|
||
ExtrusionEntityCollection coll;
|
||
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
|
||
loop != loops.end(); ++loop) {
|
||
bool is_external = loop->is_external();
|
||
|
||
ExtrusionRole role;
|
||
ExtrusionLoopRole loop_role;
|
||
role = is_external ? erExternalPerimeter : erPerimeter;
|
||
if (loop->is_internal_contour()) {
|
||
// Note that we set loop role to ContourInternalPerimeter
|
||
// also when loop is both internal and external (i.e.
|
||
// there's only one contour loop).
|
||
loop_role = elrContourInternalPerimeter;
|
||
} else {
|
||
loop_role = elrDefault;
|
||
}
|
||
|
||
// detect overhanging/bridging perimeters
|
||
ExtrusionPaths paths;
|
||
if (this->config->overhangs && this->layer_id > 0
|
||
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance.value == 0)) {
|
||
// get non-overhang paths by intersecting this loop with the grown lower slices
|
||
{
|
||
Polylines polylines;
|
||
intersection((Polygons)loop->polygon, this->_lower_slices_p, &polylines);
|
||
|
||
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
|
||
ExtrusionPath path(role);
|
||
path.polyline = *polyline;
|
||
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
|
||
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
|
||
path.height = this->layer_height;
|
||
paths.push_back(path);
|
||
}
|
||
}
|
||
|
||
// get overhang paths by checking what parts of this loop fall
|
||
// outside the grown lower slices (thus where the distance between
|
||
// the loop centerline and original lower slices is >= half nozzle diameter
|
||
{
|
||
Polylines polylines;
|
||
diff((Polygons)loop->polygon, this->_lower_slices_p, &polylines);
|
||
|
||
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
|
||
ExtrusionPath path(erOverhangPerimeter);
|
||
path.polyline = *polyline;
|
||
path.mm3_per_mm = this->_mm3_per_mm_overhang;
|
||
path.width = this->overhang_flow.width;
|
||
path.height = this->overhang_flow.height;
|
||
paths.push_back(path);
|
||
}
|
||
}
|
||
|
||
// reapply the nearest point search for starting point
|
||
// We allow polyline reversal because Clipper may have randomly
|
||
// reversed polylines during clipping.
|
||
paths = ExtrusionEntityCollection(paths).chained_path();
|
||
} else {
|
||
ExtrusionPath path(role);
|
||
path.polyline = loop->polygon.split_at_first_point();
|
||
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
|
||
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
|
||
path.height = this->layer_height;
|
||
paths.push_back(path);
|
||
}
|
||
|
||
coll.append(ExtrusionLoop(paths, loop_role));
|
||
}
|
||
|
||
// append thin walls to the nearest-neighbor search (only for first iteration)
|
||
if (!thin_walls.empty()) {
|
||
ExtrusionEntityCollection tw = this->_variable_width
|
||
(thin_walls, erExternalPerimeter, this->ext_perimeter_flow);
|
||
|
||
coll.append(tw.entities);
|
||
thin_walls.clear();
|
||
}
|
||
|
||
// sort entities into a new collection using a nearest-neighbor search,
|
||
// preserving the original indices which are useful for detecting thin walls
|
||
ExtrusionEntityCollection sorted_coll;
|
||
coll.chained_path(&sorted_coll, false, &sorted_coll.orig_indices);
|
||
|
||
// traverse children and build the final collection
|
||
ExtrusionEntityCollection entities;
|
||
for (std::vector<size_t>::const_iterator idx = sorted_coll.orig_indices.begin();
|
||
idx != sorted_coll.orig_indices.end();
|
||
++idx) {
|
||
|
||
if (*idx >= loops.size()) {
|
||
// this is a thin wall
|
||
// let's get it from the sorted collection as it might have been reversed
|
||
size_t i = idx - sorted_coll.orig_indices.begin();
|
||
entities.append(*sorted_coll.entities[i]);
|
||
} else {
|
||
const PerimeterGeneratorLoop &loop = loops[*idx];
|
||
ExtrusionLoop eloop = *dynamic_cast<ExtrusionLoop*>(coll.entities[*idx]);
|
||
|
||
ExtrusionEntityCollection children = this->_traverse_loops(loop.children, thin_walls);
|
||
if (loop.is_contour) {
|
||
eloop.make_counter_clockwise();
|
||
entities.append(children.entities);
|
||
entities.append(eloop);
|
||
} else {
|
||
eloop.make_clockwise();
|
||
entities.append(eloop);
|
||
entities.append(children.entities);
|
||
}
|
||
}
|
||
}
|
||
return entities;
|
||
}
|
||
|
||
ExtrusionEntityCollection
|
||
PerimeterGenerator::_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const
|
||
{
|
||
// this value determines granularity of adaptive width, as G-code does not allow
|
||
// variable extrusion within a single move; this value shall only affect the amount
|
||
// of segments, and any pruning shall be performed before we apply this tolerance
|
||
const double tolerance = scale_(0.05);
|
||
|
||
ExtrusionEntityCollection coll;
|
||
for (ThickPolylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
|
||
ExtrusionPaths paths;
|
||
ExtrusionPath path(role);
|
||
ThickLines lines = p->thicklines();
|
||
|
||
for (size_t i = 0; i < lines.size(); ++i) {
|
||
const ThickLine& line = lines[i];
|
||
|
||
const coordf_t line_len = line.length();
|
||
if (line_len < SCALED_EPSILON) continue;
|
||
|
||
double thickness_delta = fabs(line.a_width - line.b_width);
|
||
if (thickness_delta > tolerance) {
|
||
const unsigned short segments = ceil(thickness_delta / tolerance);
|
||
const coordf_t seg_len = line_len / segments;
|
||
Points pp;
|
||
std::vector<coordf_t> width;
|
||
{
|
||
pp.push_back(line.a);
|
||
width.push_back(line.a_width);
|
||
for (size_t j = 1; j < segments; ++j) {
|
||
pp.push_back(line.point_at(j*seg_len));
|
||
|
||
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
|
||
width.push_back(w);
|
||
width.push_back(w);
|
||
}
|
||
pp.push_back(line.b);
|
||
width.push_back(line.b_width);
|
||
|
||
assert(pp.size() == segments + 1);
|
||
assert(width.size() == segments*2);
|
||
}
|
||
|
||
// delete this line and insert new ones
|
||
lines.erase(lines.begin() + i);
|
||
for (size_t j = 0; j < segments; ++j) {
|
||
ThickLine new_line(pp[j], pp[j+1]);
|
||
new_line.a_width = width[2*j];
|
||
new_line.b_width = width[2*j+1];
|
||
lines.insert(lines.begin() + i + j, new_line);
|
||
}
|
||
|
||
--i;
|
||
continue;
|
||
}
|
||
|
||
const double w = fmax(line.a_width, line.b_width);
|
||
|
||
if (path.polyline.points.empty()) {
|
||
path.polyline.append(line.a);
|
||
path.polyline.append(line.b);
|
||
|
||
flow.width = unscale(w);
|
||
#ifdef SLIC3R_DEBUG
|
||
printf(" filling %f gap\n", flow.width);
|
||
#endif
|
||
path.mm3_per_mm = flow.mm3_per_mm();
|
||
path.width = flow.width;
|
||
path.height = flow.height;
|
||
} else {
|
||
thickness_delta = fabs(scale_(flow.width) - w);
|
||
if (thickness_delta <= tolerance) {
|
||
// the width difference between this line and the current flow width is
|
||
// within the accepted tolerance
|
||
|
||
path.polyline.append(line.b);
|
||
} else {
|
||
// we need to initialize a new line
|
||
paths.push_back(path);
|
||
path = ExtrusionPath(role);
|
||
--i;
|
||
}
|
||
}
|
||
}
|
||
if (path.polyline.is_valid())
|
||
paths.push_back(path);
|
||
|
||
// append paths to collection
|
||
if (!paths.empty()) {
|
||
if (paths.front().first_point().coincides_with(paths.back().last_point())) {
|
||
coll.append(ExtrusionLoop(paths));
|
||
} else {
|
||
coll.append(paths);
|
||
}
|
||
}
|
||
}
|
||
|
||
return coll;
|
||
}
|
||
|
||
bool
|
||
PerimeterGeneratorLoop::is_internal_contour() const
|
||
{
|
||
if (this->is_contour) {
|
||
// an internal contour is a contour containing no other contours
|
||
for (std::vector<PerimeterGeneratorLoop>::const_iterator loop = this->children.begin();
|
||
loop != this->children.end(); ++loop) {
|
||
if (loop->is_contour) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
}
|