1134 lines
47 KiB
C++
1134 lines
47 KiB
C++
#include <catch2/catch.hpp>
|
|
|
|
#include <libslic3r/Emboss.hpp>
|
|
#include <libslic3r/SVG.hpp> // only debug visualization
|
|
|
|
#include <optional>
|
|
#include <libslic3r/AABBTreeIndirect.hpp>
|
|
#include <libslic3r/Utils.hpp> // for next_highest_power_of_2()
|
|
|
|
using namespace Slic3r;
|
|
|
|
namespace Private{
|
|
|
|
// calculate multiplication of ray dir to intersect - inspired by
|
|
// segment_segment_intersection when ray dir is normalized retur distance from
|
|
// ray point to intersection No value mean no intersection
|
|
std::optional<double> ray_segment_intersection(const Vec2d &r_point,
|
|
const Vec2d &r_dir,
|
|
const Vec2d &s0,
|
|
const Vec2d &s1)
|
|
{
|
|
auto denominate = [](const Vec2d &v0, const Vec2d &v1) -> double {
|
|
return v0.x() * v1.y() - v1.x() * v0.y();
|
|
};
|
|
|
|
Vec2d segment_dir = s1 - s0;
|
|
double d = denominate(segment_dir, r_dir);
|
|
if (std::abs(d) < std::numeric_limits<double>::epsilon())
|
|
// Line and ray are collinear.
|
|
return {};
|
|
|
|
Vec2d s12 = s0 - r_point;
|
|
double s_number = denominate(r_dir, s12);
|
|
bool change_sign = false;
|
|
if (d < 0.) {
|
|
change_sign = true;
|
|
d = -d;
|
|
s_number = -s_number;
|
|
}
|
|
|
|
if (s_number < 0. || s_number > d)
|
|
// Intersection outside of segment.
|
|
return {};
|
|
|
|
double r_number = denominate(segment_dir, s12);
|
|
if (change_sign) r_number = -r_number;
|
|
|
|
if (r_number < 0.)
|
|
// Intersection before ray start.
|
|
return {};
|
|
|
|
return r_number / d;
|
|
}
|
|
|
|
Vec2d get_intersection(const Vec2d & point,
|
|
const Vec2d & dir,
|
|
const std::array<Vec2d, 3> &triangle)
|
|
{
|
|
std::optional<double> t;
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
size_t i2 = i + 1;
|
|
if (i2 == 3) i2 = 0;
|
|
if (!t.has_value()) {
|
|
t = ray_segment_intersection(point, dir, triangle[i],
|
|
triangle[i2]);
|
|
continue;
|
|
}
|
|
|
|
// small distance could be preccission inconsistance
|
|
std::optional<double> t2 = ray_segment_intersection(point, dir,
|
|
triangle[i],
|
|
triangle[i2]);
|
|
if (t2.has_value() && *t2 > *t) t = t2;
|
|
}
|
|
assert(t.has_value()); // Not found intersection.
|
|
return point + dir * (*t);
|
|
}
|
|
|
|
Vec3d calc_hit_point(const igl::Hit & h,
|
|
const Vec3i & triangle,
|
|
const std::vector<Vec3f> &vertices)
|
|
{
|
|
double c1 = h.u;
|
|
double c2 = h.v;
|
|
double c0 = 1.0 - c1 - c2;
|
|
Vec3d v0 = vertices[triangle[0]].cast<double>();
|
|
Vec3d v1 = vertices[triangle[1]].cast<double>();
|
|
Vec3d v2 = vertices[triangle[2]].cast<double>();
|
|
return v0 * c0 + v1 * c1 + v2 * c2;
|
|
}
|
|
|
|
Vec3d calc_hit_point(const igl::Hit &h, indexed_triangle_set &its)
|
|
{
|
|
return calc_hit_point(h, its.indices[h.id], its.vertices);
|
|
}
|
|
} // namespace Private
|
|
|
|
std::string get_font_filepath() {
|
|
std::string resource_dir =
|
|
std::string(TEST_DATA_DIR) + "/../../resources/";
|
|
return resource_dir + "fonts/NotoSans-Regular.ttf";
|
|
}
|
|
|
|
#include "imgui/imstb_truetype.h"
|
|
TEST_CASE("Read glyph C shape from font, stb library calls ONLY", "[Emboss]") {
|
|
std::string font_path = get_font_filepath();
|
|
char letter = 'C';
|
|
|
|
// Read font file
|
|
FILE *file = fopen(font_path.c_str(), "rb");
|
|
REQUIRE(file != nullptr);
|
|
// find size of file
|
|
REQUIRE(fseek(file, 0L, SEEK_END) == 0);
|
|
size_t size = ftell(file);
|
|
REQUIRE(size != 0);
|
|
rewind(file);
|
|
std::vector<unsigned char> buffer(size);
|
|
size_t count_loaded_bytes = fread((void *) &buffer.front(), 1, size, file);
|
|
REQUIRE(count_loaded_bytes == size);
|
|
|
|
// Use stb true type library
|
|
int font_offset = stbtt_GetFontOffsetForIndex(buffer.data(), 0);
|
|
REQUIRE(font_offset >= 0);
|
|
stbtt_fontinfo font_info;
|
|
REQUIRE(stbtt_InitFont(&font_info, buffer.data(), font_offset) != 0);
|
|
int unicode_letter = (int) letter;
|
|
int glyph_index = stbtt_FindGlyphIndex(&font_info, unicode_letter);
|
|
REQUIRE(glyph_index != 0);
|
|
stbtt_vertex *vertices;
|
|
int num_verts = stbtt_GetGlyphShape(&font_info, glyph_index, &vertices);
|
|
CHECK(num_verts > 0);
|
|
}
|
|
|
|
#include <libslic3r/Utils.hpp>
|
|
TEST_CASE("Convert glyph % to model", "[Emboss]")
|
|
{
|
|
std::string font_path = get_font_filepath();
|
|
char letter = '%';
|
|
float flatness = 2.;
|
|
|
|
auto font = Emboss::create_font_file(font_path.c_str());
|
|
REQUIRE(font != nullptr);
|
|
|
|
std::optional<Emboss::Glyph> glyph = Emboss::letter2glyph(*font, letter, flatness);
|
|
REQUIRE(glyph.has_value());
|
|
|
|
ExPolygons shape = glyph->shape;
|
|
REQUIRE(!shape.empty());
|
|
|
|
float z_depth = 1.f;
|
|
Emboss::ProjectZ projection(z_depth);
|
|
indexed_triangle_set its = Emboss::polygons2model(shape, projection);
|
|
|
|
CHECK(!its.indices.empty());
|
|
}
|
|
|
|
TEST_CASE("Test hit point", "[AABBTreeIndirect]")
|
|
{
|
|
indexed_triangle_set its;
|
|
its.vertices = {
|
|
Vec3f(1, 1, 1),
|
|
Vec3f(2, 10, 2),
|
|
Vec3f(10, 0, 2),
|
|
};
|
|
its.indices = {Vec3i(0, 2, 1)};
|
|
auto tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
|
|
its.vertices, its.indices);
|
|
|
|
Vec3d ray_point(8, 1, 0);
|
|
Vec3d ray_dir(0, 0, 1);
|
|
igl::Hit hit;
|
|
AABBTreeIndirect::intersect_ray_first_hit(its.vertices, its.indices, tree,
|
|
ray_point, ray_dir, hit);
|
|
Vec3d hp = Private::calc_hit_point(hit, its);
|
|
CHECK(abs(hp.x() - ray_point.x()) < .1);
|
|
CHECK(abs(hp.y() - ray_point.y()) < .1);
|
|
}
|
|
|
|
TEST_CASE("ray segment intersection", "[MeshBoolean]")
|
|
{
|
|
Vec2d r_point(1, 1);
|
|
Vec2d r_dir(1, 0);
|
|
|
|
// colinear
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(2, 0)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(0, 0)).has_value());
|
|
|
|
// before ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(0, 2)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 2), Vec2d(0, 0)).has_value());
|
|
|
|
// above ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 3)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 3), Vec2d(2, 2)).has_value());
|
|
|
|
// belove ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, -1)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, -1), Vec2d(2, 0)).has_value());
|
|
|
|
// intersection at [2,1] distance 1
|
|
auto t1 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, 2));
|
|
REQUIRE(t1.has_value());
|
|
auto t2 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 0));
|
|
REQUIRE(t2.has_value());
|
|
|
|
CHECK(abs(*t1 - *t2) < std::numeric_limits<double>::epsilon());
|
|
}
|
|
|
|
TEST_CASE("triangle intersection", "[]")
|
|
{
|
|
Vec2d point(1, 1);
|
|
Vec2d dir(-1, 0);
|
|
std::array<Vec2d, 3> triangle = {Vec2d(0, 0), Vec2d(5, 0), Vec2d(0, 5)};
|
|
Vec2d i = Private::get_intersection(point, dir, triangle);
|
|
CHECK(abs(i.x()) < std::numeric_limits<double>::epsilon());
|
|
CHECK(abs(i.y() - 1.) < std::numeric_limits<double>::epsilon());
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
#include <string>
|
|
#include <iostream>
|
|
#include <filesystem>
|
|
namespace fs = std::filesystem;
|
|
// Check function Emboss::is_italic that exist some italic and some non-italic font.
|
|
TEST_CASE("Italic check", "[Emboss]")
|
|
{
|
|
std::queue<std::string> dir_paths;
|
|
#ifdef _WIN32
|
|
dir_paths.push("C:/Windows/Fonts");
|
|
#elif defined(__linux__)
|
|
dir_paths.push("/usr/share/fonts");
|
|
//#elif defined(__APPLE__)
|
|
// dir_paths.push("//System/Library/Fonts");
|
|
#endif
|
|
bool exist_italic = false;
|
|
bool exist_non_italic = false;
|
|
while (!dir_paths.empty()) {
|
|
std::string dir_path = dir_paths.front();
|
|
dir_paths.pop();
|
|
for (const auto &entry : fs::directory_iterator(dir_path)) {
|
|
const fs::path &act_path = entry.path();
|
|
if (entry.is_directory()) {
|
|
dir_paths.push(act_path.u8string());
|
|
continue;
|
|
}
|
|
std::string ext = act_path.extension().u8string();
|
|
std::transform(ext.begin(), ext.end(), ext.begin(),
|
|
[](unsigned char c) { return std::tolower(c); });
|
|
if (ext != ".ttf") continue;
|
|
std::string path_str = act_path.u8string();
|
|
auto font_opt = Emboss::create_font_file(path_str.c_str());
|
|
if (font_opt == nullptr) continue;
|
|
|
|
unsigned int collection_number = 0;
|
|
if (Emboss::is_italic(*font_opt, collection_number))
|
|
exist_italic = true;
|
|
else
|
|
exist_non_italic = true;
|
|
|
|
if (exist_italic && exist_non_italic) break;
|
|
//std::cout << ((Emboss::is_italic(*font_opt)) ? "[yes] " : "[no ] ") << entry.path() << std::endl;
|
|
}
|
|
}
|
|
CHECK(exist_italic);
|
|
CHECK(exist_non_italic);
|
|
}
|
|
#endif // not __APPLE__
|
|
|
|
#include <CGAL/Polygon_mesh_processing/corefinement.h>
|
|
#include <CGAL/Exact_integer.h>
|
|
#include <CGAL/Surface_mesh.h>
|
|
#include <CGAL/Cartesian_converter.h>
|
|
|
|
/// <summary>
|
|
/// Distiguish point made by shape(Expolygon)
|
|
/// Referencing an ExPolygon contour plus a vertex base of the contour.
|
|
/// Used for adressing Vertex of mesh created by extrude ExPolygons
|
|
/// </summary>
|
|
struct ShapesVertexId {
|
|
// Index of an ExPolygon in ExPolygons.
|
|
int32_t expoly{ -1 };
|
|
|
|
// Index of a contour in ExPolygon.
|
|
// 0 - outer contour, >0 - hole
|
|
int32_t contour{ -1 };
|
|
|
|
// Base of the zero'th point of a contour in text mesh.
|
|
// There are two vertices (front and rear) created for each contour,
|
|
// thus there are 2x more vertices in text mesh than the number of contour points.
|
|
int32_t vertex_base{ -1 };
|
|
};
|
|
|
|
/// <summary>
|
|
/// IntersectingElemnt
|
|
///
|
|
/// Adress polygon inside of ExPolygon
|
|
/// Keep information about source of vertex:
|
|
/// - from face (one of 2 possible)
|
|
/// - from edge (one of 2 possible)
|
|
///
|
|
/// V1~~~~V2
|
|
/// : f1 /|
|
|
/// : / |
|
|
/// : /e1|
|
|
/// : / |e2
|
|
/// :/ f2 |
|
|
/// V1'~~~V2'
|
|
///
|
|
/// | .. edge
|
|
/// / .. edge
|
|
/// : .. foreign edge - neighbor
|
|
/// ~ .. no care edge - idealy should not cross model
|
|
/// V1,V1' .. projected 2d point to 3d
|
|
/// V2,V2' .. projected 2d point to 3d
|
|
///
|
|
/// f1 .. text_face_1 (triangle face made by side of shape contour)
|
|
/// f2 .. text_face_2
|
|
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
|
|
/// e2 .. text_edge_2
|
|
///
|
|
/// </summary>
|
|
struct IntersectingElemnt
|
|
{
|
|
// Index into vector of ShapeVertexId
|
|
// describe point on shape contour
|
|
int32_t vertex_index{ -1 };
|
|
|
|
// index of point in Polygon contour
|
|
int32_t point_index{-1};
|
|
|
|
// vertex or edge ID, where edge ID is the index of the source point.
|
|
// There are 4 consecutive indices generated for a single glyph edge:
|
|
// 0th - 1st text edge (straight)
|
|
// 1th - 1st text face
|
|
// 2nd - 2nd text edge (diagonal)
|
|
// 3th - 2nd text face
|
|
// Type of intersecting element from extruded shape( 3d )
|
|
enum class Type {
|
|
edge_1 = 0,
|
|
face_1 = 1,
|
|
edge_2 = 2,
|
|
face_2 = 3,
|
|
|
|
undefined = 4
|
|
} type = Type::undefined;
|
|
};
|
|
|
|
namespace Slic3r::MeshBoolean::cgal2 {
|
|
|
|
namespace CGALProc = CGAL::Polygon_mesh_processing;
|
|
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
|
|
|
|
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
|
|
using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
|
|
// using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
|
// using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
|
|
|
|
using CGALMesh = _EpicMesh;
|
|
|
|
// Add an indexed triangle mesh to CGAL Surface_mesh.
|
|
// Store map of CGAL face to source face index into object_face_source_id.
|
|
void triangle_mesh_to_cgal(
|
|
const std::vector<stl_vertex> &V,
|
|
const std::vector<stl_triangle_vertex_indices> &F,
|
|
CGALMesh &out,
|
|
CGALMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id)
|
|
{
|
|
if (F.empty())
|
|
return;
|
|
|
|
size_t vertices_count = V.size();
|
|
size_t edges_count = (F.size() * 3) / 2;
|
|
size_t faces_count = F.size();
|
|
out.reserve(vertices_count, edges_count, faces_count);
|
|
|
|
for (auto& v : V)
|
|
out.add_vertex(typename CGALMesh::Point{ v.x(), v.y(), v.z() });
|
|
|
|
using VI = typename CGALMesh::Vertex_index;
|
|
for (auto& f : F) {
|
|
auto fid = out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
|
|
// index of face in source triangle mesh
|
|
int32_t index = static_cast<int32_t>(&f - &F.front());
|
|
object_face_source_id[fid] = index;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Convert triangle mesh model to CGAL Surface_mesh
|
|
/// Add property map for source face index
|
|
/// </summary>
|
|
/// <param name="its">Model</param>
|
|
/// <param name="face_map_name">Property map name for store conversion from CGAL face to index to its</param>
|
|
/// <returns>CGAL mesh - half edge mesh</returns>
|
|
CGALMesh to_cgal(const indexed_triangle_set &its,
|
|
const std::string &face_map_name)
|
|
{
|
|
CGALMesh result;
|
|
if (its.empty()) return result;
|
|
|
|
const std::vector<stl_vertex> &V = its.vertices;
|
|
const std::vector<stl_triangle_vertex_indices> &F = its.indices;
|
|
|
|
// convert from CGAL face to its face
|
|
auto face_map = result.add_property_map<CGALMesh::Face_index, int32_t>(face_map_name).first;
|
|
|
|
size_t vertices_count = V.size();
|
|
size_t edges_count = (F.size() * 3) / 2;
|
|
size_t faces_count = F.size();
|
|
result.reserve(vertices_count, edges_count, faces_count);
|
|
|
|
for (auto &v : V)
|
|
result.add_vertex(typename CGALMesh::Point{v.x(), v.y(), v.z()});
|
|
|
|
using VI = typename CGALMesh::Vertex_index;
|
|
for (auto &f : F)
|
|
{
|
|
auto fid = result.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
|
|
// index of face in source triangle mesh
|
|
int32_t index = static_cast<int32_t>(&f - &F.front());
|
|
face_map[fid] = index;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Covert 2d shape (e.g. Glyph) to CGAL model
|
|
/// </summary>
|
|
/// <param name="shape">2d shape to project</param>
|
|
/// <param name="projection">Define transformation 2d point into 3d</param>
|
|
/// <param name="shape_id">Identify shape</param>
|
|
/// <param name="edge_shape_map_name">Name of property map to store conversion from edge to contour</param>
|
|
/// <param name="face_shape_map_name">Name of property map to store conversion from face to contour</param>
|
|
/// <param name="contour_indices">Identify point on shape contour</param>
|
|
/// <returns>CGAL model of extruded shape</returns>
|
|
CGALMesh to_cgal(const ExPolygon &shape,
|
|
const Slic3r::Emboss::IProject &projection,
|
|
int32_t shape_id,
|
|
const std::string &edge_shape_map_name,
|
|
const std::string &face_shape_map_name,
|
|
std::vector<ShapesVertexId> &contour_indices)
|
|
{
|
|
CGALMesh result;
|
|
if (shape.empty()) return result;
|
|
|
|
auto edge_shape_map = result.add_property_map<CGALMesh::Edge_index, IntersectingElemnt>(edge_shape_map_name).first;
|
|
auto face_shape_map = result.add_property_map<CGALMesh::Face_index, IntersectingElemnt>(face_shape_map_name).first;
|
|
|
|
std::vector<CGALMesh::Vertex_index> indices;
|
|
auto insert_contour = [&projection, &indices , &result, &contour_indices, &edge_shape_map, &face_shape_map](const Polygon& polygon, int32_t iexpoly, int32_t id) {
|
|
indices.clear();
|
|
indices.reserve(polygon.points.size() * 2);
|
|
size_t num_vertices_old = result.number_of_vertices();
|
|
int32_t vertex_index = static_cast<int32_t>(contour_indices.size());
|
|
contour_indices.push_back({iexpoly, id, int32_t(num_vertices_old) });
|
|
for (const Point& p2 : polygon.points) {
|
|
auto p = projection.project(p2);
|
|
auto vi = result.add_vertex(typename CGALMesh::Point{ p.first.x(), p.first.y(), p.first.z() });
|
|
assert((size_t)vi == indices.size() + num_vertices_old);
|
|
indices.emplace_back(vi);
|
|
vi = result.add_vertex(typename CGALMesh::Point{ p.second.x(), p.second.y(), p.second.z() });
|
|
assert((size_t)vi == indices.size() + num_vertices_old);
|
|
indices.emplace_back(vi);
|
|
}
|
|
int32_t contour_index = 0;
|
|
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
|
|
int32_t j = (i + 2) % int32_t(indices.size());
|
|
auto find_edge = [&result](CGALMesh::Face_index fi, CGALMesh::Vertex_index from, CGALMesh::Vertex_index to) {
|
|
CGALMesh::Halfedge_index hi = result.halfedge(fi);
|
|
for (; result.target(hi) != to; hi = result.next(hi));
|
|
assert(result.source(hi) == from);
|
|
assert(result.target(hi) == to);
|
|
return hi;
|
|
};
|
|
auto fi = result.add_face(indices[i], indices[i + 1], indices[j]);
|
|
edge_shape_map[result.edge(find_edge(fi, indices[i], indices[i + 1]))] =
|
|
IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::edge_1};
|
|
face_shape_map[fi] =
|
|
IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::face_1};
|
|
edge_shape_map[result.edge(find_edge(fi, indices[i + 1], indices[j]))] =
|
|
IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::edge_2};
|
|
face_shape_map[result.add_face(indices[j], indices[i + 1], indices[j + 1])] =
|
|
IntersectingElemnt{vertex_index, contour_index, IntersectingElemnt::Type::face_2};
|
|
++contour_index;
|
|
}
|
|
};
|
|
|
|
size_t count_point = count_points(shape);
|
|
result.reserve(result.number_of_vertices() + 2 * count_point, result.number_of_edges() + 4 * count_point, result.number_of_faces() + 2 * count_point);
|
|
|
|
// Identify polygon
|
|
// (contour_id > 0) are holes
|
|
size_t contour_id = 0;
|
|
insert_contour(shape.contour, shape_id, contour_id++);
|
|
for (const Polygon& hole : shape.holes)
|
|
insert_contour(hole, shape_id, contour_id++);
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
bool its_write_obj(const indexed_triangle_set& its, const std::vector<Vec3f> &color, const char* file)
|
|
{
|
|
Slic3r::CNumericLocalesSetter locales_setter;
|
|
FILE* fp = fopen(file, "w");
|
|
if (fp == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < its.vertices.size(); ++i)
|
|
fprintf(fp, "v %f %f %f %f %f %f\n",
|
|
its.vertices[i](0), its.vertices[i](1), its.vertices[i](2),
|
|
color[i](0), color[i](1), color[i](2));
|
|
for (size_t i = 0; i < its.indices.size(); ++i)
|
|
fprintf(fp, "f %d %d %d\n", its.indices[i][0] + 1, its.indices[i][1] + 1, its.indices[i][2] + 1);
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merge one triangle mesh to another
|
|
/// Added triangle set will allive
|
|
/// </summary>
|
|
/// <param name="its">IN / OUT triangle mesh</param>
|
|
/// <param name="its_add">IN triangle mesh</param>
|
|
void its_append(indexed_triangle_set &its, const indexed_triangle_set &its_add)
|
|
{
|
|
if (its.empty()) {
|
|
its = its_add; // copy
|
|
return;
|
|
}
|
|
auto &verts = its.vertices;
|
|
size_t verts_size = verts.size();
|
|
verts.reserve(verts_size + its_add.vertices.size());
|
|
append(verts, its_add.vertices);
|
|
|
|
auto &idxs = its.indices;
|
|
idxs.reserve(idxs.size() + its_add.indices.size());
|
|
|
|
// increase face indices
|
|
int offset = static_cast<int>(verts_size);
|
|
for (auto face : its_add.indices) {
|
|
for (int i = 0; i < 3; ++i) face[i] += offset;
|
|
idxs.emplace_back(face);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Merge one triangle mesh to another
|
|
/// Added triangle set will be consumed
|
|
/// </summary>
|
|
/// <param name="its">IN/OUT triangle mesh</param>
|
|
/// <param name="its_add">Triangle mesh (will be consumed)</param>
|
|
void its_append(indexed_triangle_set &its, indexed_triangle_set &&its_add)
|
|
{
|
|
if (its.empty()) {
|
|
its = std::move(its_add);
|
|
return;
|
|
}
|
|
auto &verts = its.vertices;
|
|
size_t verts_size = verts.size();
|
|
append(verts, std::move(its_add.vertices));
|
|
|
|
// increase face indices
|
|
int offset = static_cast<int>(verts_size);
|
|
for (auto &face : its_add.indices)
|
|
for (int i = 0; i < 3; ++i) face[i] += offset;
|
|
append(its.indices, std::move(its_add.indices));
|
|
}
|
|
|
|
//// 1 ////
|
|
|
|
// Question store(1) Or calculate on demand(2) ??
|
|
// (1) type: vector <vector<vertex indices>>
|
|
// (1) Needs recalculation when merge and propagation togewther with its
|
|
// (2) Could appear surface mistakes(need calc - all half edges)
|
|
// (2) NO need of trace cut outline and connect it with letter conture points
|
|
|
|
/// <summary>
|
|
/// Cut surface shape from source model
|
|
/// </summary>
|
|
/// <param name="source">Input source mesh</param>
|
|
/// <param name="shape">Input 2d shape to cut from surface</param>
|
|
/// <param name="projection">Define transformation from 2d to 3d</param>
|
|
/// <returns>Cutted surface, Its do not represent Volume</returns>
|
|
indexed_triangle_set cut_shape(const indexed_triangle_set &source,
|
|
const ExPolygon &shape,
|
|
const Emboss::IProject &projection)
|
|
{
|
|
throw std::exception("NOT implemented yet");
|
|
return {};
|
|
}
|
|
|
|
/// <summary>
|
|
/// Cut surface shape from source model
|
|
/// </summary>
|
|
/// <param name="source">Input source mesh</param>
|
|
/// <param name="shapes">Input 2d shape to cut from surface</param>
|
|
/// <param name="projection">Define transformation from 2d to 3d</param>
|
|
/// <returns>Cutted surface, Its do not represent Volume</returns>
|
|
indexed_triangle_set cut_shape(const indexed_triangle_set &source,
|
|
const ExPolygons &shapes,
|
|
const Emboss::IProject &projection)
|
|
{
|
|
indexed_triangle_set result;
|
|
for (const ExPolygon &shape : shapes)
|
|
its_merge(result, cut_shape(source, shape, projection));
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Represents cutted surface from object
|
|
/// Extend index triangle set by outlines
|
|
/// </summary>
|
|
struct SurfaceCut : public indexed_triangle_set
|
|
{
|
|
using Index = unsigned int;
|
|
// cutted surface
|
|
indexed_triangle_set mesh;
|
|
|
|
// list of circulated open surface
|
|
std::vector<std::vector<Index>> cut;
|
|
};
|
|
|
|
/// <summary>
|
|
/// Merge two surface cuts together
|
|
/// Added surface cut will be consumed
|
|
/// </summary>
|
|
/// <param name="sc">Surface cut to extend</param>
|
|
/// <param name="sc_add">Surface cut to consume</param>
|
|
void append(SurfaceCut &sc, SurfaceCut &&sc_add)
|
|
{
|
|
if (sc.empty()) {
|
|
sc = std::move(sc_add);
|
|
return;
|
|
}
|
|
|
|
if (!sc_add.cut.empty()) {
|
|
SurfaceCut::Index offset =
|
|
static_cast<SurfaceCut::Index>(sc.vertices.size());
|
|
size_t require = sc.cut.size() + sc_add.cut.size();
|
|
if (sc.cut.capacity() < require) sc.cut.reserve(require);
|
|
for (std::vector<SurfaceCut::Index> &cut : sc_add.cut)
|
|
for (SurfaceCut::Index &i : cut) i += offset;
|
|
append(sc.cut, std::move(sc_add.cut));
|
|
}
|
|
its_append(sc, std::move(sc_add));
|
|
}
|
|
|
|
using MyMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;
|
|
|
|
/// <summary>
|
|
/// Cut surface shape from model
|
|
/// </summary>
|
|
/// <param name="model">Mesh to cut</param>
|
|
/// <param name="shape">Shape to cut from model</param>
|
|
/// <param name="projection">Define transformation from 2d shape to 3d</param>
|
|
/// <returns>Cutted surface from model</returns>
|
|
SurfaceCut cut_surface(const MyMesh &model,
|
|
const ExPolygon &shape,
|
|
const Emboss::IProject &projection)
|
|
{
|
|
SurfaceCut result;
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Cut surface shape from model
|
|
/// </summary>
|
|
/// <param name="model">Mesh to cut</param>
|
|
/// <param name="shapes">Multi shapes to cut from model</param>
|
|
/// <param name="projection">Define transformation from 2d shape to 3d</param>
|
|
/// <returns>Cutted surface from model</returns>
|
|
SurfaceCut cut_surface(const indexed_triangle_set &model,
|
|
const ExPolygons &shapes,
|
|
const Emboss::IProject &projection)
|
|
{
|
|
SurfaceCut result;
|
|
//for (const ExPolygon& shape : shapes)
|
|
// append(result, cut_surface(model, shape, projection));
|
|
return result;
|
|
}
|
|
|
|
// First Idea //// 1 ////
|
|
// Use source model to modify ONLY surface of text ModelVolume
|
|
|
|
// Second Idea
|
|
// Store original its inside of text configuration[optional]
|
|
// Cause problem with next editation of object -> cut, simplify, Netfabb, Hollow, ...(transform original vertices)
|
|
TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
|
|
{
|
|
std::string font_path = get_font_filepath();
|
|
char letter = '$';
|
|
float flatness = 2.;
|
|
|
|
auto font = Emboss::create_font_file(font_path.c_str());
|
|
REQUIRE(font != nullptr);
|
|
|
|
std::optional<Emboss::Glyph> glyph = Emboss::letter2glyph(*font, letter,
|
|
flatness);
|
|
REQUIRE(glyph.has_value());
|
|
|
|
ExPolygons shape = glyph->shape;
|
|
REQUIRE(!shape.empty());
|
|
|
|
float z_depth = 50.f;
|
|
Emboss::ProjectZ projection(z_depth);
|
|
|
|
#if 0
|
|
indexed_triangle_set text = Emboss::polygons2model(shape, projection);
|
|
BoundingBoxf3 bbox = bounding_box(text);
|
|
|
|
CHECK(!text.indices.empty());
|
|
#endif
|
|
|
|
auto cube = its_make_cube(782 - 49 + 50, 724 + 10 + 50, 5);
|
|
its_translate(cube, Vec3f(49 - 25, -10 - 25, 2.5));
|
|
auto cube2 = cube;
|
|
// its_translate(cube2, Vec3f(0, 0, 40));
|
|
its_translate(cube2, Vec3f(100, -40, 40));
|
|
its_append(cube, std::move(cube2));
|
|
|
|
//cube = its_make_sphere(350., 1.);
|
|
//for (auto &face : cube2.indices)
|
|
// for (int i = 0; i < 3; ++ i)
|
|
// face(i) += int(cube.vertices.size());
|
|
//append(cube.vertices, cube2.vertices);
|
|
//append(cube.indices, cube2.indices);
|
|
|
|
using MyMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;
|
|
|
|
// name of CGAL property map for store source object face id - index into its.indices
|
|
std::string face_map_name = "f:object_face_source_id";
|
|
// identify glyph for intersected vertex
|
|
std::string vert_shape_map_name = "v:glyph_id";
|
|
MyMesh cgalcube = MeshBoolean::cgal2::to_cgal(cube, face_map_name);
|
|
auto& face_map = cgalcube.property_map<MyMesh::Face_index, int32_t>(face_map_name).first;
|
|
auto& vert_shape_map = cgalcube.add_property_map<MyMesh::Vertex_index, IntersectingElemnt>(vert_shape_map_name).first;
|
|
|
|
std::string edge_shape_map_name = "e:glyph_id";
|
|
std::string face_shape_map_name = "f:glyph_id";
|
|
std::vector<ShapesVertexId> glyph_contours;
|
|
|
|
//std::vector<MyMesh> cgalShapes;
|
|
//cgalShapes.reserve(shape.size());
|
|
//for (const ExPolygon &expoly : shape) {
|
|
// size_t index = &expoly - &shape.front();
|
|
// cgalShapes
|
|
//}
|
|
|
|
MyMesh cgaltext = MeshBoolean::cgal2::to_cgal(shape[0], projection, 0, edge_shape_map_name, face_shape_map_name, glyph_contours);
|
|
|
|
auto& edge_shape_map = cgaltext.property_map<MyMesh::Edge_index, IntersectingElemnt>(edge_shape_map_name).first;
|
|
auto& face_shape_map = cgaltext.property_map<MyMesh::Face_index, IntersectingElemnt>(face_shape_map_name).first;
|
|
|
|
//MeshBoolean::cgal2::glyph2model(shape, 0, projection, cgaltext, glyph_contours, edge_glyph_map, face_glyph_map);
|
|
|
|
struct Visitor {
|
|
const MyMesh &object;
|
|
const MyMesh &glyphs;
|
|
// Properties of the glyphs mesh:
|
|
MyMesh::Property_map<CGAL::SM_Edge_index, IntersectingElemnt> glyph_id_edge;
|
|
MyMesh::Property_map<CGAL::SM_Face_index, IntersectingElemnt> glyph_id_face;
|
|
// Properties of the object mesh.
|
|
MyMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id;
|
|
MyMesh::Property_map<CGAL::SM_Vertex_index, IntersectingElemnt> object_vertex_glyph_id;
|
|
|
|
typedef boost::graph_traits<MyMesh> GT;
|
|
typedef typename GT::face_descriptor face_descriptor;
|
|
typedef typename GT::halfedge_descriptor halfedge_descriptor;
|
|
typedef typename GT::vertex_descriptor vertex_descriptor;
|
|
|
|
int32_t source_face_id;
|
|
|
|
void before_subface_creations(face_descriptor f_old, MyMesh& mesh)
|
|
{
|
|
assert(&mesh == &object);
|
|
source_face_id = object_face_source_id[f_old];
|
|
}
|
|
void after_subface_created(face_descriptor f_new, MyMesh& mesh) {
|
|
assert(&mesh == &object);
|
|
object_face_source_id[f_new] = source_face_id;
|
|
}
|
|
|
|
std::vector<const IntersectingElemnt*> intersection_point_glyph;
|
|
|
|
// Intersecting an edge hh_edge from tm_edge with a face hh_face of tm_face.
|
|
void intersection_point_detected(
|
|
// ID of the intersection point, starting at 0. Ids are consecutive.
|
|
std::size_t i_id,
|
|
// Dimension of a simplex part of face(hh_face) that is intersected by hh_edge:
|
|
// 0 for vertex: target(hh_face)
|
|
// 1 for edge: hh_face
|
|
// 2 for the interior of face: face(hh_face)
|
|
int simplex_dimension,
|
|
// Edge of tm_edge, see edge_source_coplanar_with_face & edge_target_coplanar_with_face whether any vertex of hh_edge is coplanar with face(hh_face).
|
|
halfedge_descriptor hh_edge,
|
|
// Vertex, halfedge or face of tm_face intersected by hh_edge, see comment at simplex_dimension.
|
|
halfedge_descriptor hh_face,
|
|
// Mesh containing hh_edge
|
|
const MyMesh& tm_edge,
|
|
// Mesh containing hh_face
|
|
const MyMesh& tm_face,
|
|
// source(hh_edge) is coplanar with face(hh_face).
|
|
bool edge_source_coplanar_with_face,
|
|
// target(hh_edge) is coplanar with face(hh_face).
|
|
bool edge_target_coplanar_with_face)
|
|
{
|
|
if (i_id <= intersection_point_glyph.size()) {
|
|
intersection_point_glyph.reserve(Slic3r::next_highest_power_of_2(i_id + 1));
|
|
intersection_point_glyph.resize(i_id + 1);
|
|
}
|
|
|
|
const IntersectingElemnt* glyph = nullptr;
|
|
if (&tm_face == &glyphs) {
|
|
assert(&tm_edge == &object);
|
|
switch (simplex_dimension) {
|
|
case 1:
|
|
// edge x edge intersection
|
|
glyph = &glyph_id_edge[glyphs.edge(hh_face)];
|
|
break;
|
|
case 2:
|
|
// edge x face intersection
|
|
glyph = &glyph_id_face[glyphs.face(hh_face)];
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
if (edge_source_coplanar_with_face)
|
|
object_vertex_glyph_id[object.source(hh_edge)] = *glyph;
|
|
if (edge_target_coplanar_with_face)
|
|
object_vertex_glyph_id[object.target(hh_edge)] = *glyph;
|
|
} else {
|
|
assert(&tm_edge == &glyphs && &tm_face == &object);
|
|
assert(!edge_source_coplanar_with_face);
|
|
assert(!edge_target_coplanar_with_face);
|
|
glyph = &glyph_id_edge[glyphs.edge(hh_edge)];
|
|
if (simplex_dimension == 0)
|
|
object_vertex_glyph_id[object.target(hh_face)] = *glyph;
|
|
}
|
|
intersection_point_glyph[i_id] = glyph;
|
|
}
|
|
|
|
void new_vertex_added(std::size_t node_id, vertex_descriptor vh, const MyMesh &tm)
|
|
{
|
|
assert(&tm == &object);
|
|
assert(node_id < intersection_point_glyph.size());
|
|
const IntersectingElemnt * glyph = intersection_point_glyph[node_id];
|
|
assert(glyph != nullptr);
|
|
assert(glyph->vertex_index != -1);
|
|
assert(glyph->point_index != -1);
|
|
object_vertex_glyph_id[vh] = glyph ? *glyph : IntersectingElemnt{};
|
|
}
|
|
|
|
void after_subface_creations(MyMesh&) {}
|
|
void before_subface_created(MyMesh&) {}
|
|
void before_edge_split(halfedge_descriptor /* h */, MyMesh& /* tm */) {}
|
|
void edge_split(halfedge_descriptor /* hnew */, MyMesh& /* tm */) {}
|
|
void after_edge_split() {}
|
|
void add_retriangulation_edge(halfedge_descriptor /* h */, MyMesh& /* tm */) {}
|
|
}
|
|
visitor { cgalcube, cgaltext, edge_shape_map, face_shape_map, face_map, vert_shape_map};
|
|
|
|
// bool map for affected edge
|
|
auto ecm = get(CGAL::dynamic_edge_property_t<bool>(), cgalcube);
|
|
const auto& p = CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(false).visitor(visitor).edge_is_constrained_map(ecm);
|
|
const auto& q = CGAL::Polygon_mesh_processing::parameters::do_not_modify(true);
|
|
// CGAL::Polygon_mesh_processing::corefine(cgalcube, cgalcube2, p, p);
|
|
|
|
CGAL::Polygon_mesh_processing::corefine(cgalcube, cgaltext, p, q);
|
|
|
|
auto vertex_colors = cgalcube.add_property_map<MyMesh::Vertex_index, CGAL::Color>("v:color").first;
|
|
auto face_colors = cgalcube.add_property_map<MyMesh::Face_index, CGAL::Color>("f:color").first;
|
|
|
|
// separate by direction of extrusion
|
|
const CGAL::Color marked { 255, 0, 0 };
|
|
for (auto fi : cgalcube.faces()) {
|
|
CGAL::Color color(0, 255, 0);
|
|
auto hi_end = cgalcube.halfedge(fi);
|
|
auto hi = hi_end;
|
|
do {
|
|
CGAL::SM_Edge_index edge_index = cgalcube.edge(hi);
|
|
// is edge new created - constrained?
|
|
if (get(ecm, edge_index)) {
|
|
// This face has a constrained edge.
|
|
IntersectingElemnt shape_from = vert_shape_map[cgalcube.source(hi)];
|
|
IntersectingElemnt shape_to = vert_shape_map[cgalcube.target(hi)];
|
|
assert(shape_from.vertex_index != -1 && shape_from.vertex_index == shape_to.vertex_index);
|
|
assert(shape_from.point_index != -1);
|
|
assert(shape_to.point_index != -1);
|
|
|
|
const ShapesVertexId &vertex_index = glyph_contours[shape_from.vertex_index];
|
|
const ExPolygon &expoly = shape[vertex_index.expoly];
|
|
const Polygon &contour = vertex_index.contour == 0 ? expoly.contour : expoly.holes[vertex_index.contour - 1];
|
|
bool inside = false;
|
|
|
|
// 4 type
|
|
// index into contour
|
|
int32_t i_from = shape_from.point_index;
|
|
int32_t i_to = shape_to.point_index;
|
|
if (i_from == i_to && shape_from.type == shape_to.type) {
|
|
// Crossing both object vertices with the same glyph face.
|
|
assert(shape_from.type == IntersectingElemnt::Type::face_1 ||
|
|
shape_from.type == IntersectingElemnt::Type::face_2 );
|
|
const auto& p = cgalcube.point(cgalcube.target(cgalcube.next(hi)));
|
|
|
|
// Vertex index
|
|
int i = i_from * 2;
|
|
bool is_last = (i_from + 1 == int(contour.size()));
|
|
int j = is_last ? 0 : i + 2;
|
|
i += vertex_index.vertex_base;
|
|
j += vertex_index.vertex_base;
|
|
// triangle from side of shape
|
|
auto abcp = (shape_from.type == IntersectingElemnt::Type::face_1) ?
|
|
CGAL::orientation(
|
|
cgaltext.point(CGAL::SM_Vertex_index(i)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(j)), p) :
|
|
CGAL::orientation(
|
|
cgaltext.point(CGAL::SM_Vertex_index(j)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(j + 1)), p);
|
|
inside = abcp == CGAL::POSITIVE;
|
|
} else if (i_from < i_to || (i_from == i_to && shape_from.type < shape_to.type)) {
|
|
bool is_last = i_from == 0 && (i_to + 1) == contour.size();
|
|
if (!is_last)
|
|
inside = true;
|
|
} else { // i_from > i_to
|
|
bool is_last = i_to == 0 && (i_from + 1) == contour.size();
|
|
if (is_last)
|
|
inside = true;
|
|
}
|
|
|
|
if (inside) {
|
|
// Is this face oriented towards p or away from p?
|
|
const auto &a = cgalcube.point(cgalcube.source(hi));
|
|
const auto &b = cgalcube.point(cgalcube.target(hi));
|
|
const auto &c = cgalcube.point(cgalcube.target(cgalcube.next(hi)));
|
|
//FIXME prosim nahrad skutecnou projekci.
|
|
//projection.project()
|
|
const auto p = a + MeshBoolean::cgal2::EpicKernel::Vector_3(0, 0, 10);
|
|
auto abcp = CGAL::orientation(a, b, c, p);
|
|
if (abcp == CGAL::POSITIVE)
|
|
color = marked;
|
|
}
|
|
break;
|
|
}
|
|
// next half edge index inside of face
|
|
hi = cgalcube.next(hi);
|
|
} while (hi != hi_end);
|
|
face_colors[fi] = color;
|
|
}
|
|
|
|
CGAL::IO::write_OFF("c:\\data\\temp\\corefined-0.off", cgalcube);
|
|
|
|
// Seed fill the other faces inside the region.
|
|
std::vector<MyMesh::Face_index> queue;
|
|
for (auto fi_seed : cgalcube.faces())
|
|
if (face_colors[fi_seed] != marked) {
|
|
// Is this face completely unconstrained?
|
|
auto hi = cgalcube.halfedge(fi_seed);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
if (! get(ecm, cgalcube.edge(hi)) && ! get(ecm, cgalcube.edge(hi_prev)) && ! get(ecm, cgalcube.edge(hi_next))) {
|
|
queue.emplace_back(fi_seed);
|
|
do {
|
|
auto fi = queue.back();
|
|
queue.pop_back();
|
|
auto hi = cgalcube.halfedge(fi);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
// The following condition may not apply if crossing a silhouette wrt. the glyph projection direction.
|
|
// assert(! get(ecm, cgalcube.edge(hi)) && ! get(ecm, cgalcube.edge(hi_prev)) && ! get(ecm, cgalcube.edge(hi_next)));
|
|
auto this_opposite = cgalcube.face(cgalcube.opposite(hi));
|
|
bool this_marked = face_colors[this_opposite] == marked;
|
|
auto prev_opposite = cgalcube.face(cgalcube.opposite(hi_prev));
|
|
bool prev_marked = face_colors[prev_opposite] == marked;
|
|
auto next_opposite = cgalcube.face(cgalcube.opposite(hi_next));
|
|
bool next_marked = face_colors[next_opposite] == marked;
|
|
int num_marked = this_marked + prev_marked + next_marked;
|
|
if (num_marked >= 2) {
|
|
face_colors[fi] = marked;
|
|
if (num_marked == 2)
|
|
queue.emplace_back(! this_marked ? this_opposite : ! prev_marked ? prev_opposite : next_opposite);
|
|
}
|
|
} while (! queue.empty());
|
|
}
|
|
}
|
|
|
|
CGAL::IO::write_OFF("c:\\data\\temp\\corefined.off", cgalcube);
|
|
|
|
// Mapping of its_extruded faces to source faces.
|
|
enum class FaceState : int8_t {
|
|
Unknown = -1,
|
|
Unmarked = -2,
|
|
UnmarkedSplit = -3,
|
|
Marked = -4,
|
|
MarkedSplit = -5,
|
|
UnmarkedEmitted = -6,
|
|
};
|
|
std::vector<FaceState> face_states(cube.indices.size(), FaceState::Unknown);
|
|
for (auto fi_seed : cgalcube.faces()) {
|
|
FaceState &state = face_states[face_map[fi_seed]];
|
|
bool m = face_colors[fi_seed] == marked;
|
|
switch (state) {
|
|
case FaceState::Unknown:
|
|
state = m ? FaceState::Marked : FaceState::Unmarked;
|
|
break;
|
|
case FaceState::Unmarked:
|
|
case FaceState::UnmarkedSplit:
|
|
state = m ? FaceState::MarkedSplit : FaceState::UnmarkedSplit;
|
|
break;
|
|
case FaceState::Marked:
|
|
case FaceState::MarkedSplit:
|
|
state = FaceState::MarkedSplit;
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
indexed_triangle_set its_extruded;
|
|
its_extruded.indices.reserve(cgalcube.number_of_faces());
|
|
its_extruded.vertices.reserve(cgalcube.number_of_vertices());
|
|
// Mapping of its_extruded vertices (original and offsetted) to cgalcuble's vertices.
|
|
std::vector<std::pair<int32_t, int32_t>> map_vertices(cgalcube.number_of_vertices(), std::pair<int32_t, int32_t>{-1, -1});
|
|
|
|
Vec3f extrude_dir { 0, 0, 5.f };
|
|
for (auto fi : cgalcube.faces()) {
|
|
const int32_t source_face_id = face_map[fi];
|
|
const FaceState state = face_states[source_face_id];
|
|
assert(state == FaceState::Unmarked || state == FaceState::UnmarkedSplit || state == FaceState::UnmarkedEmitted ||
|
|
state == FaceState::Marked || state == FaceState::MarkedSplit);
|
|
if (state == FaceState::UnmarkedEmitted) {
|
|
// Already emitted.
|
|
} else if (state == FaceState::Unmarked || state == FaceState::UnmarkedSplit) {
|
|
// Just copy the unsplit source face.
|
|
const Vec3i source_vertices = cube.indices[source_face_id];
|
|
Vec3i target_vertices;
|
|
for (int i = 0; i < 3; ++i) {
|
|
target_vertices(i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
|
|
its_extruded.vertices.emplace_back(cube.vertices[source_vertices(i)]);
|
|
}
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices);
|
|
face_states[source_face_id] = FaceState::UnmarkedEmitted;
|
|
} else {
|
|
auto hi = cgalcube.halfedge(fi);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
const Vec3i source_vertices{ int((std::size_t)cgalcube.target(hi)), int((std::size_t)cgalcube.target(hi_next)), int((std::size_t)cgalcube.target(hi_prev)) };
|
|
Vec3i target_vertices;
|
|
if (face_colors[fi] == marked) {
|
|
// Extrude the face. Neighbor edges separating extruded face from non-extruded face will be extruded.
|
|
bool boundary_vertex[3] = { false, false, false };
|
|
Vec3i target_vertices_extruded { -1, -1, -1 };
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (face_colors[cgalcube.face(cgalcube.opposite(hi))] != marked)
|
|
// Edge separating extruded / non-extruded region.
|
|
boundary_vertex[i] = boundary_vertex[(i + 2) % 3] = true;
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
for (int i = 0; i < 3; ++ i) {
|
|
target_vertices_extruded(i) = map_vertices[source_vertices(i)].second;
|
|
if (target_vertices_extruded(i) == -1) {
|
|
map_vertices[source_vertices(i)].second = target_vertices_extruded(i) = int(its_extruded.vertices.size());
|
|
const auto& p = cgalcube.point(cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(Vec3f{ float(p.x()), float(p.y()), float(p.z()) } + extrude_dir);
|
|
}
|
|
if (boundary_vertex[i]) {
|
|
target_vertices(i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
|
|
const auto& p = cgalcube.point(cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
|
|
}
|
|
}
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices_extruded);
|
|
// Add the sides.
|
|
for (int i = 0; i < 3; ++ i) {
|
|
int j = (i + 1) % 3;
|
|
assert(target_vertices_extruded[i] != -1 && target_vertices_extruded[j] != -1);
|
|
if (boundary_vertex[i] && boundary_vertex[j]) {
|
|
assert(target_vertices[i] != -1 && target_vertices[j] != -1);
|
|
its_extruded.indices.emplace_back(Vec3i{ target_vertices[i], target_vertices[j], target_vertices_extruded[i] });
|
|
its_extruded.indices.emplace_back(Vec3i{ target_vertices_extruded[i], target_vertices[j], target_vertices_extruded[j] });
|
|
}
|
|
}
|
|
} else {
|
|
// Copy the face.
|
|
Vec3i target_vertices;
|
|
for (int i = 0; i < 3; ++ i) {
|
|
target_vertices(i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first = target_vertices(i) = int(its_extruded.vertices.size());
|
|
const auto &p = cgalcube.point(cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(p.x(), p.y(), p.z());
|
|
}
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices);
|
|
}
|
|
}
|
|
}
|
|
|
|
its_write_obj(its_extruded, "c:\\data\\temp\\text-extruded.obj");
|
|
|
|
indexed_triangle_set edges_its;
|
|
std::vector<Vec3f> edges_its_colors;
|
|
for (auto ei : cgalcube.edges())
|
|
if (cgalcube.is_valid(ei)) {
|
|
const auto &p1 = cgalcube.point(cgalcube.vertex(ei, 0));
|
|
const auto &p2 = cgalcube.point(cgalcube.vertex(ei, 1));
|
|
bool constrained = get(ecm, ei);
|
|
Vec3f color = constrained ? Vec3f{ 1.f, 0, 0 } : Vec3f{ 0, 1., 0 };
|
|
edges_its.indices.emplace_back(Vec3i(edges_its.vertices.size(), edges_its.vertices.size() + 1, edges_its.vertices.size() + 2));
|
|
edges_its.vertices.emplace_back(Vec3f(p1.x(), p1.y(), p1.z()));
|
|
edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z()));
|
|
edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z() + 0.001));
|
|
edges_its_colors.emplace_back(color);
|
|
edges_its_colors.emplace_back(color);
|
|
edges_its_colors.emplace_back(color);
|
|
}
|
|
its_write_obj(edges_its, edges_its_colors, "c:\\data\\temp\\corefined-edges.obj");
|
|
|
|
// MeshBoolean::cgal::minus(cube, cube2);
|
|
|
|
// REQUIRE(!MeshBoolean::cgal::does_self_intersect(cube));
|
|
}
|