PrusaSlicer-NonPlainar/src/slic3r/GUI/Selection.cpp
2019-10-09 11:17:48 +02:00

2360 lines
79 KiB
C++

#include "libslic3r/libslic3r.h"
#include "Selection.hpp"
#include "GLCanvas3D.hpp"
#include "GUI_App.hpp"
#include "GUI_ObjectManipulation.hpp"
#include "GUI_ObjectList.hpp"
#include "Gizmos/GLGizmoBase.hpp"
#include "3DScene.hpp"
#include "Camera.hpp"
#include <GL/glew.h>
#include <boost/algorithm/string/predicate.hpp>
static const float UNIFORM_SCALE_COLOR[3] = { 1.0f, 0.38f, 0.0f };
namespace Slic3r {
namespace GUI {
Selection::VolumeCache::TransformCache::TransformCache()
: position(Vec3d::Zero())
, rotation(Vec3d::Zero())
, scaling_factor(Vec3d::Ones())
, mirror(Vec3d::Ones())
, rotation_matrix(Transform3d::Identity())
, scale_matrix(Transform3d::Identity())
, mirror_matrix(Transform3d::Identity())
, full_matrix(Transform3d::Identity())
{
}
Selection::VolumeCache::TransformCache::TransformCache(const Geometry::Transformation& transform)
: position(transform.get_offset())
, rotation(transform.get_rotation())
, scaling_factor(transform.get_scaling_factor())
, mirror(transform.get_mirror())
, full_matrix(transform.get_matrix())
{
rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation);
scale_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scaling_factor);
mirror_matrix = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d::Ones(), mirror);
}
Selection::VolumeCache::VolumeCache(const Geometry::Transformation& volume_transform, const Geometry::Transformation& instance_transform)
: m_volume(volume_transform)
, m_instance(instance_transform)
{
}
bool Selection::Clipboard::is_sla_compliant() const
{
if (m_mode == Selection::Volume)
return false;
for (const ModelObject* o : m_model.objects)
{
if (o->is_multiparts())
return false;
for (const ModelVolume* v : o->volumes)
{
if (v->is_modifier())
return false;
}
}
return true;
}
Selection::Selection()
: m_volumes(nullptr)
, m_model(nullptr)
, m_enabled(false)
, m_mode(Instance)
, m_type(Empty)
, m_valid(false)
, m_curved_arrow(16)
, m_scale_factor(1.0f)
{
this->set_bounding_boxes_dirty();
#if ENABLE_RENDER_SELECTION_CENTER
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
#endif // ENABLE_RENDER_SELECTION_CENTER
}
#if ENABLE_RENDER_SELECTION_CENTER
Selection::~Selection()
{
if (m_quadric != nullptr)
::gluDeleteQuadric(m_quadric);
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void Selection::set_volumes(GLVolumePtrs* volumes)
{
m_volumes = volumes;
update_valid();
}
// Init shall be called from the OpenGL render function, so that the OpenGL context is initialized!
bool Selection::init()
{
if (!m_arrow.init())
return false;
m_arrow.set_scale(5.0 * Vec3d::Ones());
if (!m_curved_arrow.init())
return false;
m_curved_arrow.set_scale(5.0 * Vec3d::Ones());
return true;
}
void Selection::set_model(Model* model)
{
m_model = model;
update_valid();
}
void Selection::add(unsigned int volume_idx, bool as_single_selection, bool check_for_already_contained)
{
if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx))
return;
const GLVolume* volume = (*m_volumes)[volume_idx];
// wipe tower is already selected
if (is_wipe_tower() && volume->is_wipe_tower)
return;
bool keep_instance_mode = (m_mode == Instance) && !as_single_selection;
bool already_contained = check_for_already_contained && contains_volume(volume_idx);
// resets the current list if needed
bool needs_reset = as_single_selection && !already_contained;
needs_reset |= volume->is_wipe_tower;
needs_reset |= is_wipe_tower() && !volume->is_wipe_tower;
needs_reset |= as_single_selection && !is_any_modifier() && volume->is_modifier;
needs_reset |= is_any_modifier() && !volume->is_modifier;
if (!already_contained || needs_reset)
{
wxGetApp().plater()->take_snapshot(_(L("Selection-Add")));
if (needs_reset)
clear();
if (!keep_instance_mode)
m_mode = volume->is_modifier ? Volume : Instance;
}
else
// keep current mode
return;
switch (m_mode)
{
case Volume:
{
if ((volume->volume_idx() >= 0) && (is_empty() || (volume->instance_idx() == get_instance_idx())))
do_add_volume(volume_idx);
break;
}
case Instance:
{
Plater::SuppressSnapshots suppress(wxGetApp().plater());
add_instance(volume->object_idx(), volume->instance_idx(), as_single_selection);
break;
}
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove(unsigned int volume_idx)
{
if (!m_valid || ((unsigned int)m_volumes->size() <= volume_idx))
return;
if (!contains_volume(volume_idx))
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Remove")));
GLVolume* volume = (*m_volumes)[volume_idx];
switch (m_mode)
{
case Volume:
{
do_remove_volume(volume_idx);
break;
}
case Instance:
{
do_remove_instance(volume->object_idx(), volume->instance_idx());
break;
}
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_object(unsigned int object_idx, bool as_single_selection)
{
if (!m_valid)
return;
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_object(object_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Add Object")));
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_object(unsigned int object_idx)
{
if (!m_valid)
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Remove Object")));
do_remove_object(object_idx);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_instance(unsigned int object_idx, unsigned int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_instance(object_idx, instance_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Add Instance")));
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Instance;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
if (!m_valid)
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Remove Instance")));
do_remove_instance(object_idx, instance_idx);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_volume(unsigned int object_idx, unsigned int volume_idx, int instance_idx, bool as_single_selection)
{
if (!m_valid)
return;
std::vector<unsigned int> volume_idxs = get_volume_idxs_from_volume(object_idx, instance_idx, volume_idx);
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = Volume;
do_add_volumes(volume_idxs);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_volume(unsigned int object_idx, unsigned int volume_idx)
{
if (!m_valid)
return;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->volume_idx() == (int)volume_idx))
do_remove_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_volumes(EMode mode, const std::vector<unsigned int>& volume_idxs, bool as_single_selection)
{
if (!m_valid)
return;
if ((!as_single_selection && contains_all_volumes(volume_idxs)) ||
(as_single_selection && matches(volume_idxs)))
return;
// resets the current list if needed
if (as_single_selection)
clear();
m_mode = mode;
for (unsigned int i : volume_idxs)
{
if (i < (unsigned int)m_volumes->size())
do_add_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_volumes(EMode mode, const std::vector<unsigned int>& volume_idxs)
{
if (!m_valid)
return;
m_mode = mode;
for (unsigned int i : volume_idxs)
{
if (i < (unsigned int)m_volumes->size())
do_remove_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::add_all()
{
if (!m_valid)
return;
unsigned int count = 0;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
if (!(*m_volumes)[i]->is_wipe_tower)
++count;
}
if ((unsigned int)m_list.size() == count)
return;
wxGetApp().plater()->take_snapshot(_(L("Selection-Add All")));
m_mode = Instance;
clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
if (!(*m_volumes)[i]->is_wipe_tower)
do_add_volume(i);
}
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::remove_all()
{
if (!m_valid)
return;
if (is_empty())
return;
// Not taking the snapshot with non-empty Redo stack will likely be more confusing than losing the Redo stack.
// Let's wait for user feedback.
// if (!wxGetApp().plater()->can_redo())
wxGetApp().plater()->take_snapshot(_(L("Selection-Remove All")));
m_mode = Instance;
clear();
}
void Selection::set_deserialized(EMode mode, const std::vector<std::pair<size_t, size_t>> &volumes_and_instances)
{
if (! m_valid)
return;
m_mode = mode;
for (unsigned int i : m_list)
(*m_volumes)[i]->selected = false;
m_list.clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++ i)
if (std::binary_search(volumes_and_instances.begin(), volumes_and_instances.end(), (*m_volumes)[i]->geometry_id))
this->do_add_volume(i);
update_type();
this->set_bounding_boxes_dirty();
}
void Selection::clear()
{
if (!m_valid)
return;
if (m_list.empty())
return;
for (unsigned int i : m_list)
{
(*m_volumes)[i]->selected = false;
}
m_list.clear();
update_type();
this->set_bounding_boxes_dirty();
// resets the cache in the sidebar
wxGetApp().obj_manipul()->reset_cache();
// #et_FIXME fake KillFocus from sidebar
wxGetApp().plater()->canvas3D()->handle_sidebar_focus_event("", false);
}
// Update the selection based on the new instance IDs.
void Selection::instances_changed(const std::vector<size_t> &instance_ids_selected)
{
assert(m_valid);
assert(m_mode == Instance);
m_list.clear();
for (unsigned int volume_idx = 0; volume_idx < (unsigned int)m_volumes->size(); ++ volume_idx) {
const GLVolume *volume = (*m_volumes)[volume_idx];
auto it = std::lower_bound(instance_ids_selected.begin(), instance_ids_selected.end(), volume->geometry_id.second);
if (it != instance_ids_selected.end() && *it == volume->geometry_id.second)
this->do_add_volume(volume_idx);
}
update_type();
this->set_bounding_boxes_dirty();
}
// Update the selection based on the map from old indices to new indices after m_volumes changed.
// If the current selection is by instance, this call may select newly added volumes, if they belong to already selected instances.
void Selection::volumes_changed(const std::vector<size_t> &map_volume_old_to_new)
{
assert(m_valid);
assert(m_mode == Volume);
IndicesList list_new;
for (unsigned int idx : m_list)
if (map_volume_old_to_new[idx] != size_t(-1)) {
unsigned int new_idx = (unsigned int)map_volume_old_to_new[idx];
(*m_volumes)[new_idx]->selected = true;
list_new.insert(new_idx);
}
m_list = std::move(list_new);
update_type();
this->set_bounding_boxes_dirty();
}
bool Selection::is_single_full_instance() const
{
if (m_type == SingleFullInstance)
return true;
if (m_type == SingleFullObject)
return get_instance_idx() != -1;
if (m_list.empty() || m_volumes->empty())
return false;
int object_idx = m_valid ? get_object_idx() : -1;
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
return false;
int instance_idx = (*m_volumes)[*m_list.begin()]->instance_idx();
std::set<int> volumes_idxs;
for (unsigned int i : m_list)
{
const GLVolume* v = (*m_volumes)[i];
if ((object_idx != v->object_idx()) || (instance_idx != v->instance_idx()))
return false;
int volume_idx = v->volume_idx();
if (volume_idx >= 0)
volumes_idxs.insert(volume_idx);
}
return m_model->objects[object_idx]->volumes.size() == volumes_idxs.size();
}
bool Selection::is_from_single_object() const
{
int idx = get_object_idx();
return (0 <= idx) && (idx < 1000);
}
bool Selection::is_sla_compliant() const
{
if (m_mode == Volume)
return false;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->is_modifier)
return false;
}
return true;
}
bool Selection::contains_all_volumes(const std::vector<unsigned int>& volume_idxs) const
{
for (unsigned int i : volume_idxs)
{
if (m_list.find(i) == m_list.end())
return false;
}
return true;
}
bool Selection::contains_any_volume(const std::vector<unsigned int>& volume_idxs) const
{
for (unsigned int i : volume_idxs)
{
if (m_list.find(i) != m_list.end())
return true;
}
return false;
}
bool Selection::matches(const std::vector<unsigned int>& volume_idxs) const
{
unsigned int count = 0;
for (unsigned int i : volume_idxs)
{
if (m_list.find(i) != m_list.end())
++count;
else
return false;
}
return count == (unsigned int)m_list.size();
}
bool Selection::requires_uniform_scale() const
{
if (is_single_full_instance() || is_single_modifier() || is_single_volume())
return false;
return true;
}
int Selection::get_object_idx() const
{
return (m_cache.content.size() == 1) ? m_cache.content.begin()->first : -1;
}
int Selection::get_instance_idx() const
{
if (m_cache.content.size() == 1)
{
const InstanceIdxsList& idxs = m_cache.content.begin()->second;
if (idxs.size() == 1)
return *idxs.begin();
}
return -1;
}
const Selection::InstanceIdxsList& Selection::get_instance_idxs() const
{
assert(m_cache.content.size() == 1);
return m_cache.content.begin()->second;
}
const GLVolume* Selection::get_volume(unsigned int volume_idx) const
{
return (m_valid && (volume_idx < (unsigned int)m_volumes->size())) ? (*m_volumes)[volume_idx] : nullptr;
}
const BoundingBoxf3& Selection::get_bounding_box() const
{
if (m_bounding_box_dirty)
calc_bounding_box();
return m_bounding_box;
}
const BoundingBoxf3& Selection::get_unscaled_instance_bounding_box() const
{
if (m_unscaled_instance_bounding_box_dirty)
calc_unscaled_instance_bounding_box();
return m_unscaled_instance_bounding_box;
}
const BoundingBoxf3& Selection::get_scaled_instance_bounding_box() const
{
if (m_scaled_instance_bounding_box_dirty)
calc_scaled_instance_bounding_box();
return m_scaled_instance_bounding_box;
}
void Selection::start_dragging()
{
if (!m_valid)
return;
set_caches();
}
void Selection::translate(const Vec3d& displacement, bool local)
{
if (!m_valid)
return;
EMode translation_type = m_mode;
for (unsigned int i : m_list)
{
if ((m_mode == Volume) || (*m_volumes)[i]->is_wipe_tower)
{
if (local)
(*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + displacement);
else
{
Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
(*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
}
}
else if (m_mode == Instance)
{
if (is_from_fully_selected_instance(i))
(*m_volumes)[i]->set_instance_offset(m_cache.volumes_data[i].get_instance_position() + displacement);
else
{
Vec3d local_displacement = (m_cache.volumes_data[i].get_instance_rotation_matrix() * m_cache.volumes_data[i].get_instance_scale_matrix() * m_cache.volumes_data[i].get_instance_mirror_matrix()).inverse() * displacement;
(*m_volumes)[i]->set_volume_offset(m_cache.volumes_data[i].get_volume_position() + local_displacement);
translation_type = Volume;
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (translation_type == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (translation_type == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
this->set_bounding_boxes_dirty();
}
// Rotate an object around one of the axes. Only one rotation component is expected to be changing.
void Selection::rotate(const Vec3d& rotation, TransformationType transformation_type)
{
if (!m_valid)
return;
// Only relative rotation values are allowed in the world coordinate system.
assert(!transformation_type.world() || transformation_type.relative());
if (!is_wipe_tower()) {
int rot_axis_max = 0;
if (rotation.isApprox(Vec3d::Zero()))
{
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (m_mode == Instance)
{
volume.set_instance_rotation(m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_offset(m_cache.volumes_data[i].get_instance_position());
}
else if (m_mode == Volume)
{
volume.set_volume_rotation(m_cache.volumes_data[i].get_volume_rotation());
volume.set_volume_offset(m_cache.volumes_data[i].get_volume_position());
}
}
}
else { // this is not the wipe tower
//FIXME this does not work for absolute rotations (transformation_type.absolute() is true)
rotation.cwiseAbs().maxCoeff(&rot_axis_max);
// if ( single instance or single volume )
// Rotate around center , if only a single object or volume
// transformation_type.set_independent();
// For generic rotation, we want to rotate the first volume in selection, and then to synchronize the other volumes with it.
std::vector<int> object_instance_first(m_model->objects.size(), -1);
auto rotate_instance = [this, &rotation, &object_instance_first, rot_axis_max, transformation_type](GLVolume &volume, int i) {
int first_volume_idx = object_instance_first[volume.object_idx()];
if (rot_axis_max != 2 && first_volume_idx != -1) {
// Generic rotation, but no rotation around the Z axis.
// Always do a local rotation (do not consider the selection to be a rigid body).
assert(is_approx(rotation.z(), 0.0));
const GLVolume &first_volume = *(*m_volumes)[first_volume_idx];
const Vec3d &rotation = first_volume.get_instance_rotation();
double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[first_volume_idx].get_instance_rotation(), m_cache.volumes_data[i].get_instance_rotation());
volume.set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
}
else {
// extracts rotations from the composed transformation
Vec3d new_rotation = transformation_type.world() ?
Geometry::extract_euler_angles(Geometry::assemble_transform(Vec3d::Zero(), rotation) * m_cache.volumes_data[i].get_instance_rotation_matrix()) :
transformation_type.absolute() ? rotation : rotation + m_cache.volumes_data[i].get_instance_rotation();
if (rot_axis_max == 2 && transformation_type.joint()) {
// Only allow rotation of multiple instances as a single rigid body when rotating around the Z axis.
double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), new_rotation);
volume.set_instance_offset(m_cache.dragging_center + Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()) * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
}
volume.set_instance_rotation(new_rotation);
object_instance_first[volume.object_idx()] = i;
}
};
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (is_single_full_instance())
rotate_instance(volume, i);
else if (is_single_volume() || is_single_modifier())
{
if (transformation_type.independent())
volume.set_volume_rotation(volume.get_volume_rotation() + rotation);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
volume.set_volume_rotation(new_rotation);
}
}
else
{
if (m_mode == Instance)
rotate_instance(volume, i);
else if (m_mode == Volume)
{
// extracts rotations from the composed transformation
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), rotation);
Vec3d new_rotation = Geometry::extract_euler_angles(m * m_cache.volumes_data[i].get_volume_rotation_matrix());
if (transformation_type.joint())
{
Vec3d local_pivot = m_cache.volumes_data[i].get_instance_full_matrix().inverse() * m_cache.dragging_center;
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() - local_pivot);
volume.set_volume_offset(local_pivot + offset);
}
volume.set_volume_rotation(new_rotation);
}
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances((rot_axis_max == 2) ? SYNC_ROTATION_NONE : SYNC_ROTATION_GENERAL);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
}
else { // it's the wipe tower that's selected and being rotated
GLVolume& volume = *((*m_volumes)[*m_list.begin()]); // the wipe tower is always alone in the selection
// make sure the wipe tower rotates around its center, not origin
// we can assume that only Z rotation changes
Vec3d center_local = volume.transformed_bounding_box().center() - volume.get_volume_offset();
Vec3d center_local_new = Eigen::AngleAxisd(rotation(2)-volume.get_volume_rotation()(2), Vec3d(0, 0, 1)) * center_local;
volume.set_volume_rotation(rotation);
volume.set_volume_offset(volume.get_volume_offset() + center_local - center_local_new);
}
this->set_bounding_boxes_dirty();
}
void Selection::flattening_rotate(const Vec3d& normal)
{
// We get the normal in untransformed coordinates. We must transform it using the instance matrix, find out
// how to rotate the instance so it faces downwards and do the rotation. All that for all selected instances.
// The function assumes that is_from_single_object() holds.
if (!m_valid)
return;
for (unsigned int i : m_list)
{
Transform3d wst = m_cache.volumes_data[i].get_instance_scale_matrix();
Vec3d scaling_factor = Vec3d(1. / wst(0, 0), 1. / wst(1, 1), 1. / wst(2, 2));
Transform3d wmt = m_cache.volumes_data[i].get_instance_mirror_matrix();
Vec3d mirror(wmt(0, 0), wmt(1, 1), wmt(2, 2));
Vec3d rotation = Geometry::extract_euler_angles(m_cache.volumes_data[i].get_instance_rotation_matrix());
Vec3d transformed_normal = Geometry::assemble_transform(Vec3d::Zero(), rotation, scaling_factor, mirror) * normal;
transformed_normal.normalize();
Vec3d axis = transformed_normal(2) > 0.999f ? Vec3d(1., 0., 0.) : Vec3d(transformed_normal.cross(Vec3d(0., 0., -1.)));
axis.normalize();
Transform3d extra_rotation = Transform3d::Identity();
extra_rotation.rotate(Eigen::AngleAxisd(acos(-transformed_normal(2)), axis));
Vec3d new_rotation = Geometry::extract_euler_angles(extra_rotation * m_cache.volumes_data[i].get_instance_rotation_matrix());
(*m_volumes)[i]->set_instance_rotation(new_rotation);
}
#if !DISABLE_INSTANCES_SYNCH
// we want to synchronize z-rotation as well, otherwise the flattening behaves funny
// when applied on one of several identical instances
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_FULL);
#endif // !DISABLE_INSTANCES_SYNCH
this->set_bounding_boxes_dirty();
}
void Selection::scale(const Vec3d& scale, TransformationType transformation_type)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
GLVolume &volume = *(*m_volumes)[i];
if (is_single_full_instance()) {
if (transformation_type.relative())
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale);
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint())
volume.set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
volume.set_instance_scaling_factor(new_scale);
}
else
{
if (transformation_type.world() && (std::abs(scale.x() - scale.y()) > EPSILON || std::abs(scale.x() - scale.z()) > EPSILON)) {
// Non-uniform scaling. Transform the scaling factors into the local coordinate system.
// This is only possible, if the instance rotation is mulitples of ninety degrees.
assert(Geometry::is_rotation_ninety_degrees(volume.get_instance_rotation()));
volume.set_instance_scaling_factor((volume.get_instance_transformation().get_matrix(true, false, true, true).matrix().block<3, 3>(0, 0).transpose() * scale).cwiseAbs());
}
else
volume.set_instance_scaling_factor(scale);
}
}
else if (is_single_volume() || is_single_modifier())
volume.set_volume_scaling_factor(scale);
else
{
Transform3d m = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), scale);
if (m_mode == Instance)
{
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_instance_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint())
volume.set_instance_offset(m_cache.dragging_center + m * (m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center));
volume.set_instance_scaling_factor(new_scale);
}
else if (m_mode == Volume)
{
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> new_matrix = (m * m_cache.volumes_data[i].get_volume_scale_matrix()).matrix().block(0, 0, 3, 3);
// extracts scaling factors from the composed transformation
Vec3d new_scale(new_matrix.col(0).norm(), new_matrix.col(1).norm(), new_matrix.col(2).norm());
if (transformation_type.joint())
{
Vec3d offset = m * (m_cache.volumes_data[i].get_volume_position() + m_cache.volumes_data[i].get_instance_position() - m_cache.dragging_center);
volume.set_volume_offset(m_cache.dragging_center - m_cache.volumes_data[i].get_instance_position() + offset);
}
volume.set_volume_scaling_factor(new_scale);
}
}
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
ensure_on_bed();
this->set_bounding_boxes_dirty();
}
void Selection::scale_to_fit_print_volume(const DynamicPrintConfig& config)
{
if (is_empty() || (m_mode == Volume))
return;
// adds 1/100th of a mm on all sides to avoid false out of print volume detections due to floating-point roundings
Vec3d box_size = get_bounding_box().size() + 0.01 * Vec3d::Ones();
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config.option("bed_shape"));
if (opt != nullptr)
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume(Vec3d(unscale<double>(bed_box_2D.min(0)), unscale<double>(bed_box_2D.min(1)), 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)), unscale<double>(bed_box_2D.max(1)), config.opt_float("max_print_height")));
Vec3d print_volume_size = print_volume.size();
double sx = (box_size(0) != 0.0) ? print_volume_size(0) / box_size(0) : 0.0;
double sy = (box_size(1) != 0.0) ? print_volume_size(1) / box_size(1) : 0.0;
double sz = (box_size(2) != 0.0) ? print_volume_size(2) / box_size(2) : 0.0;
if ((sx != 0.0) && (sy != 0.0) && (sz != 0.0))
{
double s = std::min(sx, std::min(sy, sz));
if (s != 1.0)
{
wxGetApp().plater()->take_snapshot(_(L("Scale To Fit")));
TransformationType type;
type.set_world();
type.set_relative();
type.set_joint();
// apply scale
start_dragging();
scale(s * Vec3d::Ones(), type);
wxGetApp().plater()->canvas3D()->do_scale(""); // avoid storing another snapshot
// center selection on print bed
start_dragging();
translate(print_volume.center() - get_bounding_box().center());
wxGetApp().plater()->canvas3D()->do_move(""); // avoid storing another snapshot
wxGetApp().obj_manipul()->set_dirty();
}
}
}
}
void Selection::mirror(Axis axis)
{
if (!m_valid)
return;
bool single_full_instance = is_single_full_instance();
for (unsigned int i : m_list)
{
if (single_full_instance)
(*m_volumes)[i]->set_instance_mirror(axis, -(*m_volumes)[i]->get_instance_mirror(axis));
else if (m_mode == Volume)
(*m_volumes)[i]->set_volume_mirror(axis, -(*m_volumes)[i]->get_volume_mirror(axis));
}
#if !DISABLE_INSTANCES_SYNCH
if (m_mode == Instance)
synchronize_unselected_instances(SYNC_ROTATION_NONE);
else if (m_mode == Volume)
synchronize_unselected_volumes();
#endif // !DISABLE_INSTANCES_SYNCH
this->set_bounding_boxes_dirty();
}
void Selection::translate(unsigned int object_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == (int)object_idx)
v->set_instance_offset(v->get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if (v->object_idx() != object_idx)
continue;
v->set_instance_offset(v->get_instance_offset() + displacement);
done.insert(j);
}
}
this->set_bounding_boxes_dirty();
}
void Selection::translate(unsigned int object_idx, unsigned int instance_idx, const Vec3d& displacement)
{
if (!m_valid)
return;
for (unsigned int i : m_list)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->instance_idx() == (int)instance_idx))
v->set_instance_offset(v->get_instance_offset() + displacement);
}
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
int object_idx = (*m_volumes)[i]->object_idx();
if (object_idx >= 1000)
continue;
// Process unselected volumes of the object.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->instance_idx() != (int)instance_idx))
continue;
v->set_instance_offset(v->get_instance_offset() + displacement);
done.insert(j);
}
}
this->set_bounding_boxes_dirty();
}
void Selection::erase()
{
if (!m_valid)
return;
if (is_single_full_object())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itObject, get_object_idx(), 0);
else if (is_multiple_full_object())
{
std::vector<ItemForDelete> items;
items.reserve(m_cache.content.size());
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it)
{
items.emplace_back(ItemType::itObject, it->first, 0);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_multiple_full_instance())
{
std::set<std::pair<int, int>> instances_idxs;
for (ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.begin(); obj_it != m_cache.content.end(); ++obj_it)
{
for (InstanceIdxsList::reverse_iterator inst_it = obj_it->second.rbegin(); inst_it != obj_it->second.rend(); ++inst_it)
{
instances_idxs.insert(std::make_pair(obj_it->first, *inst_it));
}
}
std::vector<ItemForDelete> items;
items.reserve(instances_idxs.size());
for (const std::pair<int, int>& i : instances_idxs)
{
items.emplace_back(ItemType::itInstance, i.first, i.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else if (is_single_full_instance())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx());
else if (is_mixed())
{
std::set<ItemForDelete> items_set;
std::map<int, int> volumes_in_obj;
for (auto i : m_list) {
const auto gl_vol = (*m_volumes)[i];
const auto glv_obj_idx = gl_vol->object_idx();
const auto model_object = m_model->objects[glv_obj_idx];
if (model_object->instances.size() == 1) {
if (model_object->volumes.size() == 1)
items_set.insert(ItemForDelete(ItemType::itObject, glv_obj_idx, -1));
else {
items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx()));
int idx = (volumes_in_obj.find(glv_obj_idx) == volumes_in_obj.end()) ? 0 : volumes_in_obj.at(glv_obj_idx);
volumes_in_obj[glv_obj_idx] = ++idx;
}
continue;
}
const auto glv_ins_idx = gl_vol->instance_idx();
for (auto obj_ins : m_cache.content) {
if (obj_ins.first == glv_obj_idx) {
if (obj_ins.second.find(glv_ins_idx) != obj_ins.second.end()) {
if (obj_ins.second.size() == model_object->instances.size())
items_set.insert(ItemForDelete(ItemType::itVolume, glv_obj_idx, gl_vol->volume_idx()));
else
items_set.insert(ItemForDelete(ItemType::itInstance, glv_obj_idx, glv_ins_idx));
break;
}
}
}
}
std::vector<ItemForDelete> items;
items.reserve(items_set.size());
for (const ItemForDelete& i : items_set) {
if (i.type == ItemType::itVolume) {
const int vol_in_obj_cnt = volumes_in_obj.find(i.obj_idx) == volumes_in_obj.end() ? 0 : volumes_in_obj.at(i.obj_idx);
if (vol_in_obj_cnt == (int)m_model->objects[i.obj_idx]->volumes.size()) {
if (i.sub_obj_idx == vol_in_obj_cnt - 1)
items.emplace_back(ItemType::itObject, i.obj_idx, 0);
continue;
}
}
items.emplace_back(i.type, i.obj_idx, i.sub_obj_idx);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
else
{
std::set<std::pair<int, int>> volumes_idxs;
for (unsigned int i : m_list)
{
const GLVolume* v = (*m_volumes)[i];
// Only remove volumes associated with ModelVolumes from the object list.
// Temporary meshes (SLA supports or pads) are not managed by the object list.
if (v->volume_idx() >= 0)
volumes_idxs.insert(std::make_pair(v->object_idx(), v->volume_idx()));
}
std::vector<ItemForDelete> items;
items.reserve(volumes_idxs.size());
for (const std::pair<int, int>& v : volumes_idxs)
{
items.emplace_back(ItemType::itVolume, v.first, v.second);
}
wxGetApp().obj_list()->delete_from_model_and_list(items);
}
}
void Selection::render(float scale_factor) const
{
if (!m_valid || is_empty())
return;
m_scale_factor = scale_factor;
// render cumulative bounding box of selected volumes
render_selected_volumes();
render_synchronized_volumes();
}
#if ENABLE_RENDER_SELECTION_CENTER
void Selection::render_center(bool gizmo_is_dragging) const
{
if (!m_valid || is_empty() || (m_quadric == nullptr))
return;
Vec3d center = gizmo_is_dragging ? m_cache.dragging_center : get_bounding_box().center();
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_LIGHTING));
glsafe(::glColor3f(1.0f, 1.0f, 1.0f));
glsafe(::glPushMatrix());
glsafe(::glTranslated(center(0), center(1), center(2)));
glsafe(::gluSphere(m_quadric, 0.75, 32, 32));
glsafe(::glPopMatrix());
glsafe(::glDisable(GL_LIGHTING));
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void Selection::render_sidebar_hints(const std::string& sidebar_field, const Shader& shader) const
{
if (sidebar_field.empty())
return;
if (!boost::starts_with(sidebar_field, "layer"))
{
shader.start_using();
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
glsafe(::glEnable(GL_LIGHTING));
}
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
if (!boost::starts_with(sidebar_field, "layer"))
{
const Vec3d& center = get_bounding_box().center();
if (is_single_full_instance() && !wxGetApp().obj_manipul()->get_world_coordinates())
{
glsafe(::glTranslated(center(0), center(1), center(2)));
if (!boost::starts_with(sidebar_field, "position"))
{
Transform3d orient_matrix = Transform3d::Identity();
if (boost::starts_with(sidebar_field, "scale"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::starts_with(sidebar_field, "rotation"))
{
if (boost::ends_with(sidebar_field, "x"))
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else if (boost::ends_with(sidebar_field, "y"))
{
const Vec3d& rotation = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_rotation();
if (rotation(0) == 0.0)
orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
else
orient_matrix.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
}
}
glsafe(::glMultMatrixd(orient_matrix.data()));
}
}
else if (is_single_volume() || is_single_modifier())
{
glsafe(::glTranslated(center(0), center(1), center(2)));
Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
if (!boost::starts_with(sidebar_field, "position"))
orient_matrix = orient_matrix * (*m_volumes)[*m_list.begin()]->get_volume_transformation().get_matrix(true, false, true, true);
glsafe(::glMultMatrixd(orient_matrix.data()));
}
else
{
glsafe(::glTranslated(center(0), center(1), center(2)));
if (requires_local_axes())
{
Transform3d orient_matrix = (*m_volumes)[*m_list.begin()]->get_instance_transformation().get_matrix(true, false, true, true);
glsafe(::glMultMatrixd(orient_matrix.data()));
}
}
}
if (boost::starts_with(sidebar_field, "position"))
render_sidebar_position_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "rotation"))
render_sidebar_rotation_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "scale"))
render_sidebar_scale_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "size"))
render_sidebar_size_hints(sidebar_field);
else if (boost::starts_with(sidebar_field, "layer"))
render_sidebar_layers_hints(sidebar_field);
glsafe(::glPopMatrix());
if (!boost::starts_with(sidebar_field, "layer"))
{
glsafe(::glDisable(GL_LIGHTING));
shader.stop_using();
}
}
bool Selection::requires_local_axes() const
{
return (m_mode == Volume) && is_from_single_instance();
}
void Selection::copy_to_clipboard()
{
if (!m_valid)
return;
m_clipboard.reset();
for (const ObjectIdxsToInstanceIdxsMap::value_type& object : m_cache.content)
{
ModelObject* src_object = m_model->objects[object.first];
ModelObject* dst_object = m_clipboard.add_object();
dst_object->name = src_object->name;
dst_object->input_file = src_object->input_file;
static_cast<DynamicPrintConfig&>(dst_object->config) = static_cast<const DynamicPrintConfig&>(src_object->config);
dst_object->sla_support_points = src_object->sla_support_points;
dst_object->sla_points_status = src_object->sla_points_status;
dst_object->layer_config_ranges = src_object->layer_config_ranges; // #ys_FIXME_experiment
dst_object->layer_height_profile = src_object->layer_height_profile;
dst_object->origin_translation = src_object->origin_translation;
for (int i : object.second)
{
dst_object->add_instance(*src_object->instances[i]);
}
for (unsigned int i : m_list)
{
// Copy the ModelVolumes only for the selected GLVolumes of the 1st selected instance.
const GLVolume* volume = (*m_volumes)[i];
if ((volume->object_idx() == object.first) && (volume->instance_idx() == *object.second.begin()))
{
int volume_idx = volume->volume_idx();
if ((0 <= volume_idx) && (volume_idx < (int)src_object->volumes.size()))
{
ModelVolume* src_volume = src_object->volumes[volume_idx];
ModelVolume* dst_volume = dst_object->add_volume(*src_volume);
dst_volume->set_new_unique_id();
} else {
assert(false);
}
}
}
}
m_clipboard.set_mode(m_mode);
}
void Selection::paste_from_clipboard()
{
if (!m_valid || m_clipboard.is_empty())
return;
switch (m_clipboard.get_mode())
{
case Volume:
{
if (is_from_single_instance())
paste_volumes_from_clipboard();
break;
}
case Instance:
{
if (m_mode == Instance)
paste_objects_from_clipboard();
break;
}
}
}
std::vector<unsigned int> Selection::get_volume_idxs_from_object(unsigned int object_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
if ((*m_volumes)[i]->object_idx() == (int)object_idx)
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_volume_idxs_from_instance(unsigned int object_idx, unsigned int instance_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->instance_idx() == (int)instance_idx))
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_volume_idxs_from_volume(unsigned int object_idx, unsigned int instance_idx, unsigned int volume_idx) const
{
std::vector<unsigned int> idxs;
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->volume_idx() == (int)volume_idx))
{
if (((int)instance_idx != -1) && (v->instance_idx() == (int)instance_idx))
idxs.push_back(i);
}
}
return idxs;
}
std::vector<unsigned int> Selection::get_missing_volume_idxs_from(const std::vector<unsigned int>& volume_idxs) const
{
std::vector<unsigned int> idxs;
for (unsigned int i : m_list)
{
std::vector<unsigned int>::const_iterator it = std::find(volume_idxs.begin(), volume_idxs.end(), i);
if (it == volume_idxs.end())
idxs.push_back(i);
}
return idxs;
}
std::vector<unsigned int> Selection::get_unselected_volume_idxs_from(const std::vector<unsigned int>& volume_idxs) const
{
std::vector<unsigned int> idxs;
for (unsigned int i : volume_idxs)
{
if (m_list.find(i) == m_list.end())
idxs.push_back(i);
}
return idxs;
}
void Selection::toggle_instance_printable_state()
{
int instance_idx = get_instance_idx();
if (instance_idx == -1)
return;
int obj_idx = get_object_idx();
if ((0 <= obj_idx) && (obj_idx < (int)m_model->objects.size()))
{
ModelObject* model_object = m_model->objects[obj_idx];
if ((0 <= instance_idx) && (instance_idx < (int)model_object->instances.size()))
{
ModelInstance* instance = model_object->instances[instance_idx];
const bool printable = !instance->printable;
wxString snapshot_text = model_object->instances.size() == 1 ? wxString::Format("%s %s",
printable ? _(L("Set Printable")) : _(L("Set Unprintable")), model_object->name) :
printable ? _(L("Set Printable Instance")) : _(L("Set Unprintable Instance"));
wxGetApp().plater()->take_snapshot(snapshot_text);
instance->printable = printable;
for (GLVolume* volume : *m_volumes)
{
if ((volume->object_idx() == obj_idx) && (volume->instance_idx() == instance_idx))
volume->printable = instance->printable;
}
wxGetApp().obj_list()->update_printable_state(obj_idx, instance_idx);
wxGetApp().plater()->update();
}
}
}
void Selection::update_valid()
{
m_valid = (m_volumes != nullptr) && (m_model != nullptr);
}
void Selection::update_type()
{
m_cache.content.clear();
m_type = Mixed;
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int obj_idx = volume->object_idx();
int inst_idx = volume->instance_idx();
ObjectIdxsToInstanceIdxsMap::iterator obj_it = m_cache.content.find(obj_idx);
if (obj_it == m_cache.content.end())
obj_it = m_cache.content.insert(ObjectIdxsToInstanceIdxsMap::value_type(obj_idx, InstanceIdxsList())).first;
obj_it->second.insert(inst_idx);
}
bool requires_disable = false;
if (!m_valid)
m_type = Invalid;
else
{
if (m_list.empty())
m_type = Empty;
else if (m_list.size() == 1)
{
const GLVolume* first = (*m_volumes)[*m_list.begin()];
if (first->is_wipe_tower)
m_type = WipeTower;
else if (first->is_modifier)
{
m_type = SingleModifier;
requires_disable = true;
}
else
{
const ModelObject* model_object = m_model->objects[first->object_idx()];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
if (volumes_count * instances_count == 1)
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (volumes_count == 1) // instances_count > 1
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
m_type = SingleVolume;
requires_disable = true;
}
}
}
else
{
if (m_cache.content.size() == 1) // single object
{
const ModelObject* model_object = m_model->objects[m_cache.content.begin()->first];
unsigned int model_volumes_count = (unsigned int)model_object->volumes.size();
unsigned int sla_volumes_count = 0;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->volume_idx() < 0)
++sla_volumes_count;
}
unsigned int volumes_count = model_volumes_count + sla_volumes_count;
unsigned int instances_count = (unsigned int)model_object->instances.size();
unsigned int selected_instances_count = (unsigned int)m_cache.content.begin()->second.size();
if (volumes_count * instances_count == (unsigned int)m_list.size())
{
m_type = SingleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
else if (selected_instances_count == 1)
{
if (volumes_count == (unsigned int)m_list.size())
{
m_type = SingleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
else
{
unsigned int modifiers_count = 0;
for (unsigned int i : m_list)
{
if ((*m_volumes)[i]->is_modifier)
++modifiers_count;
}
if (modifiers_count == 0)
m_type = MultipleVolume;
else if (modifiers_count == (unsigned int)m_list.size())
m_type = MultipleModifier;
requires_disable = true;
}
}
else if ((selected_instances_count > 1) && (selected_instances_count * volumes_count == (unsigned int)m_list.size()))
{
m_type = MultipleFullInstance;
// ensures the correct mode is selected
m_mode = Instance;
}
}
else
{
unsigned int sels_cntr = 0;
for (ObjectIdxsToInstanceIdxsMap::iterator it = m_cache.content.begin(); it != m_cache.content.end(); ++it)
{
const ModelObject* model_object = m_model->objects[it->first];
unsigned int volumes_count = (unsigned int)model_object->volumes.size();
unsigned int instances_count = (unsigned int)model_object->instances.size();
sels_cntr += volumes_count * instances_count;
}
if (sels_cntr == (unsigned int)m_list.size())
{
m_type = MultipleFullObject;
// ensures the correct mode is selected
m_mode = Instance;
}
}
}
}
int object_idx = get_object_idx();
int instance_idx = get_instance_idx();
for (GLVolume* v : *m_volumes)
{
v->disabled = requires_disable ? (v->object_idx() != object_idx) || (v->instance_idx() != instance_idx) : false;
}
#if ENABLE_SELECTION_DEBUG_OUTPUT
std::cout << "Selection: ";
std::cout << "mode: ";
switch (m_mode)
{
case Volume:
{
std::cout << "Volume";
break;
}
case Instance:
{
std::cout << "Instance";
break;
}
}
std::cout << " - type: ";
switch (m_type)
{
case Invalid:
{
std::cout << "Invalid" << std::endl;
break;
}
case Empty:
{
std::cout << "Empty" << std::endl;
break;
}
case WipeTower:
{
std::cout << "WipeTower" << std::endl;
break;
}
case SingleModifier:
{
std::cout << "SingleModifier" << std::endl;
break;
}
case MultipleModifier:
{
std::cout << "MultipleModifier" << std::endl;
break;
}
case SingleVolume:
{
std::cout << "SingleVolume" << std::endl;
break;
}
case MultipleVolume:
{
std::cout << "MultipleVolume" << std::endl;
break;
}
case SingleFullObject:
{
std::cout << "SingleFullObject" << std::endl;
break;
}
case MultipleFullObject:
{
std::cout << "MultipleFullObject" << std::endl;
break;
}
case SingleFullInstance:
{
std::cout << "SingleFullInstance" << std::endl;
break;
}
case MultipleFullInstance:
{
std::cout << "MultipleFullInstance" << std::endl;
break;
}
case Mixed:
{
std::cout << "Mixed" << std::endl;
break;
}
}
#endif // ENABLE_SELECTION_DEBUG_OUTPUT
}
void Selection::set_caches()
{
m_cache.volumes_data.clear();
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
const GLVolume* v = (*m_volumes)[i];
m_cache.volumes_data.emplace(i, VolumeCache(v->get_volume_transformation(), v->get_instance_transformation()));
}
m_cache.dragging_center = get_bounding_box().center();
}
void Selection::do_add_volume(unsigned int volume_idx)
{
m_list.insert(volume_idx);
(*m_volumes)[volume_idx]->selected = true;
}
void Selection::do_add_volumes(const std::vector<unsigned int>& volume_idxs)
{
for (unsigned int i : volume_idxs)
{
if (i < (unsigned int)m_volumes->size())
do_add_volume(i);
}
}
void Selection::do_remove_volume(unsigned int volume_idx)
{
IndicesList::iterator v_it = m_list.find(volume_idx);
if (v_it == m_list.end())
return;
m_list.erase(v_it);
(*m_volumes)[volume_idx]->selected = false;
}
void Selection::do_remove_instance(unsigned int object_idx, unsigned int instance_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if ((v->object_idx() == (int)object_idx) && (v->instance_idx() == (int)instance_idx))
do_remove_volume(i);
}
}
void Selection::do_remove_object(unsigned int object_idx)
{
for (unsigned int i = 0; i < (unsigned int)m_volumes->size(); ++i)
{
GLVolume* v = (*m_volumes)[i];
if (v->object_idx() == (int)object_idx)
do_remove_volume(i);
}
}
void Selection::calc_bounding_box() const
{
m_bounding_box = BoundingBoxf3();
if (m_valid)
{
for (unsigned int i : m_list)
{
m_bounding_box.merge((*m_volumes)[i]->transformed_convex_hull_bounding_box());
}
}
m_bounding_box_dirty = false;
}
void Selection::calc_unscaled_instance_bounding_box() const
{
m_unscaled_instance_bounding_box = BoundingBoxf3();
if (m_valid) {
for (unsigned int i : m_list) {
const GLVolume &volume = *(*m_volumes)[i];
if (volume.is_modifier)
continue;
Transform3d trafo = volume.get_instance_transformation().get_matrix(false, false, true, false) * volume.get_volume_transformation().get_matrix();
trafo.translation()(2) += volume.get_sla_shift_z();
m_unscaled_instance_bounding_box.merge(volume.transformed_convex_hull_bounding_box(trafo));
}
}
m_unscaled_instance_bounding_box_dirty = false;
}
void Selection::calc_scaled_instance_bounding_box() const
{
m_scaled_instance_bounding_box = BoundingBoxf3();
if (m_valid) {
for (unsigned int i : m_list) {
const GLVolume &volume = *(*m_volumes)[i];
if (volume.is_modifier)
continue;
Transform3d trafo = volume.get_instance_transformation().get_matrix(false, false, false, false) * volume.get_volume_transformation().get_matrix();
trafo.translation()(2) += volume.get_sla_shift_z();
m_scaled_instance_bounding_box.merge(volume.transformed_convex_hull_bounding_box(trafo));
}
}
m_scaled_instance_bounding_box_dirty = false;
}
void Selection::render_selected_volumes() const
{
float color[3] = { 1.0f, 1.0f, 1.0f };
render_bounding_box(get_bounding_box(), color);
}
void Selection::render_synchronized_volumes() const
{
if (m_mode == Instance)
return;
float color[3] = { 1.0f, 1.0f, 0.0f };
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
int volume_idx = volume->volume_idx();
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (i == j)
continue;
const GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx))
continue;
render_bounding_box(v->transformed_convex_hull_bounding_box(), color);
}
}
}
void Selection::render_bounding_box(const BoundingBoxf3& box, float* color) const
{
if (color == nullptr)
return;
Vec3f b_min = box.min.cast<float>();
Vec3f b_max = box.max.cast<float>();
Vec3f size = 0.2f * box.size().cast<float>();
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glColor3fv(color));
glsafe(::glLineWidth(2.0f * m_scale_factor));
::glBegin(GL_LINES);
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_min(0), b_min(1), b_min(2)); ::glVertex3f(b_min(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_min(2));
::glVertex3f(b_max(0), b_min(1), b_min(2)); ::glVertex3f(b_max(0), b_min(1), b_min(2) + size(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_max(0), b_max(1), b_min(2)); ::glVertex3f(b_max(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_min(2));
::glVertex3f(b_min(0), b_max(1), b_min(2)); ::glVertex3f(b_min(0), b_max(1), b_min(2) + size(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_min(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_min(0), b_min(1), b_max(2)); ::glVertex3f(b_min(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_min(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1) + size(1), b_max(2));
::glVertex3f(b_max(0), b_min(1), b_max(2)); ::glVertex3f(b_max(0), b_min(1), b_max(2) - size(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0) - size(0), b_max(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_max(0), b_max(1), b_max(2)); ::glVertex3f(b_max(0), b_max(1), b_max(2) - size(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0) + size(0), b_max(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1) - size(1), b_max(2));
::glVertex3f(b_min(0), b_max(1), b_max(2)); ::glVertex3f(b_min(0), b_max(1), b_max(2) - size(2));
glsafe(::glEnd());
}
void Selection::render_sidebar_position_hints(const std::string& sidebar_field) const
{
if (boost::ends_with(sidebar_field, "x"))
{
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
render_sidebar_position_hint(X);
}
else if (boost::ends_with(sidebar_field, "y"))
render_sidebar_position_hint(Y);
else if (boost::ends_with(sidebar_field, "z"))
{
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
render_sidebar_position_hint(Z);
}
}
void Selection::render_sidebar_rotation_hints(const std::string& sidebar_field) const
{
if (boost::ends_with(sidebar_field, "x"))
{
glsafe(::glRotated(90.0, 0.0, 1.0, 0.0));
render_sidebar_rotation_hint(X);
}
else if (boost::ends_with(sidebar_field, "y"))
{
glsafe(::glRotated(-90.0, 1.0, 0.0, 0.0));
render_sidebar_rotation_hint(Y);
}
else if (boost::ends_with(sidebar_field, "z"))
render_sidebar_rotation_hint(Z);
}
void Selection::render_sidebar_scale_hints(const std::string& sidebar_field) const
{
bool uniform_scale = requires_uniform_scale() || wxGetApp().obj_manipul()->get_uniform_scaling();
if (boost::ends_with(sidebar_field, "x") || uniform_scale)
{
glsafe(::glPushMatrix());
glsafe(::glRotated(-90.0, 0.0, 0.0, 1.0));
render_sidebar_scale_hint(X);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "y") || uniform_scale)
{
glsafe(::glPushMatrix());
render_sidebar_scale_hint(Y);
glsafe(::glPopMatrix());
}
if (boost::ends_with(sidebar_field, "z") || uniform_scale)
{
glsafe(::glPushMatrix());
glsafe(::glRotated(90.0, 1.0, 0.0, 0.0));
render_sidebar_scale_hint(Z);
glsafe(::glPopMatrix());
}
}
void Selection::render_sidebar_size_hints(const std::string& sidebar_field) const
{
render_sidebar_scale_hints(sidebar_field);
}
void Selection::render_sidebar_layers_hints(const std::string& sidebar_field) const
{
static const double Margin = 10.0;
std::string field = sidebar_field;
// extract max_z
std::string::size_type pos = field.rfind("_");
if (pos == std::string::npos)
return;
double max_z = std::stod(field.substr(pos + 1));
// extract min_z
field = field.substr(0, pos);
pos = field.rfind("_");
if (pos == std::string::npos)
return;
double min_z = std::stod(field.substr(pos + 1));
// extract type
field = field.substr(0, pos);
pos = field.rfind("_");
if (pos == std::string::npos)
return;
int type = std::stoi(field.substr(pos + 1));
const BoundingBoxf3& box = get_bounding_box();
const float min_x = box.min(0) - Margin;
const float max_x = box.max(0) + Margin;
const float min_y = box.min(1) - Margin;
const float max_y = box.max(1) + Margin;
// view dependend order of rendering to keep correct transparency
bool camera_on_top = wxGetApp().plater()->get_camera().get_theta() <= 90.0f;
float z1 = camera_on_top ? min_z : max_z;
float z2 = camera_on_top ? max_z : min_z;
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glDisable(GL_CULL_FACE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
::glBegin(GL_QUADS);
if ((camera_on_top && (type == 1)) || (!camera_on_top && (type == 2)))
::glColor4f(1.0f, 0.38f, 0.0f, 1.0f);
else
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
::glVertex3f(min_x, min_y, z1);
::glVertex3f(max_x, min_y, z1);
::glVertex3f(max_x, max_y, z1);
::glVertex3f(min_x, max_y, z1);
glsafe(::glEnd());
::glBegin(GL_QUADS);
if ((camera_on_top && (type == 2)) || (!camera_on_top && (type == 1)))
::glColor4f(1.0f, 0.38f, 0.0f, 1.0f);
else
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
::glVertex3f(min_x, min_y, z2);
::glVertex3f(max_x, min_y, z2);
::glVertex3f(max_x, max_y, z2);
::glVertex3f(min_x, max_y, z2);
glsafe(::glEnd());
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glDisable(GL_BLEND));
}
void Selection::render_sidebar_position_hint(Axis axis) const
{
m_arrow.set_color(AXES_COLOR[axis], 3);
m_arrow.render();
}
void Selection::render_sidebar_rotation_hint(Axis axis) const
{
m_curved_arrow.set_color(AXES_COLOR[axis], 3);
m_curved_arrow.render();
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_curved_arrow.render();
}
void Selection::render_sidebar_scale_hint(Axis axis) const
{
m_arrow.set_color(((requires_uniform_scale() || wxGetApp().obj_manipul()->get_uniform_scaling()) ? UNIFORM_SCALE_COLOR : AXES_COLOR[axis]), 3);
glsafe(::glTranslated(0.0, 5.0, 0.0));
m_arrow.render();
glsafe(::glTranslated(0.0, -10.0, 0.0));
glsafe(::glRotated(180.0, 0.0, 0.0, 1.0));
m_arrow.render();
}
void Selection::render_sidebar_size_hint(Axis axis, double length) const
{
}
#ifndef NDEBUG
static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
Eigen::AngleAxisd angle_axis(Geometry::rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
Vec3d axis = angle_axis.axis();
double angle = angle_axis.angle();
if (std::abs(angle) < 1e-8)
return true;
assert(std::abs(axis.x()) < 1e-8);
assert(std::abs(axis.y()) < 1e-8);
assert(std::abs(std::abs(axis.z()) - 1.) < 1e-8);
return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8;
}
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{
for (size_t idx_object = 0; idx_object < model.objects.size(); ++idx_object) {
int idx_volume_first = -1;
for (int i = 0; i < (int)volumes.size(); ++i) {
if (volumes[i]->object_idx() == idx_object) {
idx_volume_first = i;
break;
}
}
assert(idx_volume_first != -1); // object without instances?
if (idx_volume_first == -1)
continue;
const Vec3d &rotation0 = volumes[idx_volume_first]->get_instance_rotation();
for (int i = idx_volume_first + 1; i < (int)volumes.size(); ++i)
if (volumes[i]->object_idx() == idx_object) {
const Vec3d &rotation = volumes[i]->get_instance_rotation();
assert(is_rotation_xy_synchronized(rotation, rotation0));
}
}
}
#endif /* NDEBUG */
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list)
{
if (done.size() == m_volumes->size())
break;
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
int instance_idx = volume->instance_idx();
const Vec3d& rotation = volume->get_instance_rotation();
const Vec3d& scaling_factor = volume->get_instance_scaling_factor();
const Vec3d& mirror = volume->get_instance_mirror();
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx))
continue;
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
switch (sync_rotation_type) {
case SYNC_ROTATION_NONE:
// z only rotation -> keep instance z
// The X,Y rotations should be synchronized from start to end of the rotation.
assert(is_rotation_xy_synchronized(rotation, v->get_instance_rotation()));
break;
case SYNC_ROTATION_FULL:
// rotation comes from place on face -> force given z
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2)));
break;
case SYNC_ROTATION_GENERAL:
// generic rotation -> update instance z with the delta of the rotation.
double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), rotation(2) + z_diff));
break;
}
v->set_instance_scaling_factor(scaling_factor);
v->set_instance_mirror(mirror);
done.insert(j);
}
}
#ifndef NDEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */
}
void Selection::synchronize_unselected_volumes()
{
for (unsigned int i : m_list)
{
const GLVolume* volume = (*m_volumes)[i];
int object_idx = volume->object_idx();
if (object_idx >= 1000)
continue;
int volume_idx = volume->volume_idx();
const Vec3d& offset = volume->get_volume_offset();
const Vec3d& rotation = volume->get_volume_rotation();
const Vec3d& scaling_factor = volume->get_volume_scaling_factor();
const Vec3d& mirror = volume->get_volume_mirror();
// Process unselected volumes.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j)
{
if (j == i)
continue;
GLVolume* v = (*m_volumes)[j];
if ((v->object_idx() != object_idx) || (v->volume_idx() != volume_idx))
continue;
v->set_volume_offset(offset);
v->set_volume_rotation(rotation);
v->set_volume_scaling_factor(scaling_factor);
v->set_volume_mirror(mirror);
}
}
}
void Selection::ensure_on_bed()
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_min_z;
for (GLVolume* volume : *m_volumes)
{
if (!volume->is_wipe_tower && !volume->is_modifier)
{
double min_z = volume->transformed_convex_hull_bounding_box().min(2);
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it == instances_min_z.end())
it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first;
it->second = std::min(it->second, min_z);
}
}
for (GLVolume* volume : *m_volumes)
{
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it != instances_min_z.end())
volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second);
}
}
bool Selection::is_from_fully_selected_instance(unsigned int volume_idx) const
{
struct SameInstance
{
int obj_idx;
int inst_idx;
GLVolumePtrs& volumes;
SameInstance(int obj_idx, int inst_idx, GLVolumePtrs& volumes) : obj_idx(obj_idx), inst_idx(inst_idx), volumes(volumes) {}
bool operator () (unsigned int i) { return (volumes[i]->volume_idx() >= 0) && (volumes[i]->object_idx() == obj_idx) && (volumes[i]->instance_idx() == inst_idx); }
};
if ((unsigned int)m_volumes->size() <= volume_idx)
return false;
GLVolume* volume = (*m_volumes)[volume_idx];
int object_idx = volume->object_idx();
if ((int)m_model->objects.size() <= object_idx)
return false;
unsigned int count = (unsigned int)std::count_if(m_list.begin(), m_list.end(), SameInstance(object_idx, volume->instance_idx(), *m_volumes));
return count == (unsigned int)m_model->objects[object_idx]->volumes.size();
}
void Selection::paste_volumes_from_clipboard()
{
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
int dst_obj_idx = get_object_idx();
if ((dst_obj_idx < 0) || ((int)m_model->objects.size() <= dst_obj_idx))
return;
ModelObject* dst_object = m_model->objects[dst_obj_idx];
int dst_inst_idx = get_instance_idx();
if ((dst_inst_idx < 0) || ((int)dst_object->instances.size() <= dst_inst_idx))
return;
ModelObject* src_object = m_clipboard.get_object(0);
if (src_object != nullptr)
{
ModelInstance* dst_instance = dst_object->instances[dst_inst_idx];
BoundingBoxf3 dst_instance_bb = dst_object->instance_bounding_box(dst_inst_idx);
Transform3d src_matrix = src_object->instances[0]->get_transformation().get_matrix(true);
Transform3d dst_matrix = dst_instance->get_transformation().get_matrix(true);
bool from_same_object = (src_object->input_file == dst_object->input_file) && src_matrix.isApprox(dst_matrix);
// used to keep relative position of multivolume selections when pasting from another object
BoundingBoxf3 total_bb;
ModelVolumePtrs volumes;
for (ModelVolume* src_volume : src_object->volumes)
{
ModelVolume* dst_volume = dst_object->add_volume(*src_volume);
dst_volume->set_new_unique_id();
if (from_same_object)
{
// // if the volume comes from the same object, apply the offset in world system
// double offset = wxGetApp().plater()->canvas3D()->get_size_proportional_to_max_bed_size(0.05);
// dst_volume->translate(dst_matrix.inverse() * Vec3d(offset, offset, 0.0));
}
else
{
// if the volume comes from another object, apply the offset as done when adding modifiers
// see ObjectList::load_generic_subobject()
total_bb.merge(dst_volume->mesh().bounding_box().transformed(src_volume->get_matrix()));
}
volumes.push_back(dst_volume);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
// keeps relative position of multivolume selections
if (!from_same_object)
{
for (ModelVolume* v : volumes)
{
v->set_offset((v->get_offset() - total_bb.center()) + dst_matrix.inverse() * (Vec3d(dst_instance_bb.max(0), dst_instance_bb.min(1), dst_instance_bb.min(2)) + 0.5 * total_bb.size() - dst_instance->get_transformation().get_offset()));
}
}
wxGetApp().obj_list()->paste_volumes_into_list(dst_obj_idx, volumes);
}
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
void Selection::paste_objects_from_clipboard()
{
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
std::vector<size_t> object_idxs;
const ModelObjectPtrs& src_objects = m_clipboard.get_objects();
for (const ModelObject* src_object : src_objects)
{
ModelObject* dst_object = m_model->add_object(*src_object);
double offset = wxGetApp().plater()->canvas3D()->get_size_proportional_to_max_bed_size(0.05);
Vec3d displacement(offset, offset, 0.0);
for (ModelInstance* inst : dst_object->instances)
{
inst->set_offset(inst->get_offset() + displacement);
}
object_idxs.push_back(m_model->objects.size() - 1);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
wxGetApp().obj_list()->paste_objects_into_list(object_idxs);
#ifdef _DEBUG
check_model_ids_validity(*m_model);
#endif /* _DEBUG */
}
} // namespace GUI
} // namespace Slic3r