PrusaSlicer-NonPlainar/src/slic3r/GUI/GLCanvas3D.cpp

5359 lines
199 KiB
C++

#include "libslic3r/libslic3r.h"
#include "slic3r/GUI/Gizmos/GLGizmos.hpp"
#include "GLCanvas3D.hpp"
#include "admesh/stl.h"
#include "polypartition.h"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/GCode/PreviewData.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Technologies.hpp"
#include "libslic3r/Tesselate.hpp"
#include "slic3r/GUI/3DScene.hpp"
#include "slic3r/GUI/BackgroundSlicingProcess.hpp"
#include "slic3r/GUI/GLShader.hpp"
#include "slic3r/GUI/GUI.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
#include "GUI_App.hpp"
#include "GUI_ObjectList.hpp"
#include "GUI_ObjectManipulation.hpp"
#include "I18N.hpp"
#if ENABLE_RETINA_GL
#include "slic3r/Utils/RetinaHelper.hpp"
#endif
#include <GL/glew.h>
#include <wx/glcanvas.h>
#include <wx/bitmap.h>
#include <wx/dcmemory.h>
#include <wx/image.h>
#include <wx/settings.h>
#include <wx/tooltip.h>
#include <wx/debug.h>
#include <wx/fontutil.h>
// Print now includes tbb, and tbb includes Windows. This breaks compilation of wxWidgets if included before wx.
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "wxExtensions.hpp"
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <iostream>
#include <float.h>
#include <algorithm>
#include <cmath>
static const float TRACKBALLSIZE = 0.8f;
static const float GROUND_Z = -0.02f;
static const float GIZMO_RESET_BUTTON_HEIGHT = 22.0f;
static const float GIZMO_RESET_BUTTON_WIDTH = 70.f;
static const float UNIT_MATRIX[] = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
static const float DEFAULT_BG_DARK_COLOR[3] = { 0.478f, 0.478f, 0.478f };
static const float DEFAULT_BG_LIGHT_COLOR[3] = { 0.753f, 0.753f, 0.753f };
static const float ERROR_BG_DARK_COLOR[3] = { 0.478f, 0.192f, 0.039f };
static const float ERROR_BG_LIGHT_COLOR[3] = { 0.753f, 0.192f, 0.039f };
//static const float AXES_COLOR[3][3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };
namespace Slic3r {
namespace GUI {
Size::Size()
: m_width(0)
, m_height(0)
{
}
Size::Size(int width, int height, float scale_factor)
: m_width(width)
, m_height(height)
, m_scale_factor(scale_factor)
{
}
int Size::get_width() const
{
return m_width;
}
void Size::set_width(int width)
{
m_width = width;
}
int Size::get_height() const
{
return m_height;
}
void Size::set_height(int height)
{
m_height = height;
}
int Size::get_scale_factor() const
{
return m_scale_factor;
}
void Size::set_scale_factor(int scale_factor)
{
m_scale_factor = scale_factor;
}
#if !ENABLE_TEXTURES_FROM_SVG
GLCanvas3D::Shader::Shader()
: m_shader(nullptr)
{
}
GLCanvas3D::Shader::~Shader()
{
_reset();
}
bool GLCanvas3D::Shader::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (is_initialized())
return true;
m_shader = new GLShader();
if (m_shader != nullptr)
{
if (!m_shader->load_from_file(fragment_shader_filename.c_str(), vertex_shader_filename.c_str()))
{
std::cout << "Compilaton of shader failed:" << std::endl;
std::cout << m_shader->last_error << std::endl;
_reset();
return false;
}
}
return true;
}
bool GLCanvas3D::Shader::is_initialized() const
{
return (m_shader != nullptr);
}
bool GLCanvas3D::Shader::start_using() const
{
if (is_initialized())
{
m_shader->enable();
return true;
}
else
return false;
}
void GLCanvas3D::Shader::stop_using() const
{
if (m_shader != nullptr)
m_shader->disable();
}
void GLCanvas3D::Shader::set_uniform(const std::string& name, float value) const
{
if (m_shader != nullptr)
m_shader->set_uniform(name.c_str(), value);
}
void GLCanvas3D::Shader::set_uniform(const std::string& name, const float* matrix) const
{
if (m_shader != nullptr)
m_shader->set_uniform(name.c_str(), matrix);
}
const GLShader* GLCanvas3D::Shader::get_shader() const
{
return m_shader;
}
void GLCanvas3D::Shader::_reset()
{
if (m_shader != nullptr)
{
m_shader->release();
delete m_shader;
m_shader = nullptr;
}
}
#endif // !ENABLE_TEXTURES_FROM_SVG
GLCanvas3D::LayersEditing::LayersEditing()
: m_use_legacy_opengl(false)
, m_enabled(false)
, m_z_texture_id(0)
, m_model_object(nullptr)
, m_object_max_z(0.f)
, m_slicing_parameters(nullptr)
, m_layer_height_profile_modified(false)
, state(Unknown)
, band_width(2.0f)
, strength(0.005f)
, last_object_id(-1)
, last_z(0.0f)
, last_action(LAYER_HEIGHT_EDIT_ACTION_INCREASE)
{
}
GLCanvas3D::LayersEditing::~LayersEditing()
{
if (m_z_texture_id != 0)
{
glsafe(::glDeleteTextures(1, &m_z_texture_id));
m_z_texture_id = 0;
}
delete m_slicing_parameters;
}
const float GLCanvas3D::LayersEditing::THICKNESS_BAR_WIDTH = 70.0f;
const float GLCanvas3D::LayersEditing::THICKNESS_RESET_BUTTON_HEIGHT = 22.0f;
bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (!m_shader.init(vertex_shader_filename, fragment_shader_filename))
return false;
glsafe(::glGenTextures(1, (GLuint*)&m_z_texture_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::LayersEditing::set_config(const DynamicPrintConfig* config)
{
m_config = config;
delete m_slicing_parameters;
m_slicing_parameters = nullptr;
m_layers_texture.valid = false;
}
void GLCanvas3D::LayersEditing::select_object(const Model &model, int object_id)
{
const ModelObject *model_object_new = (object_id >= 0) ? model.objects[object_id] : nullptr;
// Maximum height of an object changes when the object gets rotated or scaled.
// Changing maximum height of an object will invalidate the layer heigth editing profile.
// m_model_object->raw_bounding_box() is cached, therefore it is cheap even if this method is called frequently.
float new_max_z = (m_model_object == nullptr) ? 0.f : m_model_object->raw_bounding_box().size().z();
if (m_model_object != model_object_new || this->last_object_id != object_id || m_object_max_z != new_max_z ||
(model_object_new != nullptr && m_model_object->id() != model_object_new->id())) {
m_layer_height_profile.clear();
m_layer_height_profile_modified = false;
delete m_slicing_parameters;
m_slicing_parameters = nullptr;
m_layers_texture.valid = false;
this->last_object_id = object_id;
m_model_object = model_object_new;
m_object_max_z = new_max_z;
}
}
bool GLCanvas3D::LayersEditing::is_allowed() const
{
return !m_use_legacy_opengl && m_shader.is_initialized() && m_shader.get_shader()->shader_program_id > 0 && m_z_texture_id > 0;
}
void GLCanvas3D::LayersEditing::set_use_legacy_opengl(bool use_legacy_opengl)
{
m_use_legacy_opengl = use_legacy_opengl;
}
bool GLCanvas3D::LayersEditing::is_enabled() const
{
return m_enabled;
}
void GLCanvas3D::LayersEditing::set_enabled(bool enabled)
{
m_enabled = is_allowed() && enabled;
}
void GLCanvas3D::LayersEditing::render_overlay(const GLCanvas3D& canvas) const
{
if (!m_enabled)
return;
const Rect& bar_rect = get_bar_rect_viewport(canvas);
const Rect& reset_rect = get_reset_rect_viewport(canvas);
glsafe(::glDisable(GL_DEPTH_TEST));
// The viewport and camera are set to complete view and glOrtho(-$x / 2, $x / 2, -$y / 2, $y / 2, -$depth, $depth),
// where x, y is the window size divided by $self->_zoom.
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
_render_tooltip_texture(canvas, bar_rect, reset_rect);
_render_reset_texture(reset_rect);
_render_active_object_annotations(canvas, bar_rect);
_render_profile(bar_rect);
// Revert the matrices.
glsafe(::glPopMatrix());
glsafe(::glEnable(GL_DEPTH_TEST));
}
float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas)
{
const Vec2d mouse_pos = canvas.get_local_mouse_position();
const Rect& rect = get_bar_rect_screen(canvas);
float x = (float)mouse_pos(0);
float y = (float)mouse_pos(1);
float t = rect.get_top();
float b = rect.get_bottom();
return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ?
// Inside the bar.
(b - y - 1.0f) / (b - t - 1.0f) :
// Outside the bar.
-1000.0f;
}
bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y)
{
const Rect& rect = get_bar_rect_screen(canvas);
return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom());
}
bool GLCanvas3D::LayersEditing::reset_rect_contains(const GLCanvas3D& canvas, float x, float y)
{
const Rect& rect = get_reset_rect_screen(canvas);
return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom());
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - thickness_bar_width(canvas), 0.0f, w, h - reset_button_height(canvas));
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - thickness_bar_width(canvas), h - reset_button_height(canvas), w, h);
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float half_w = 0.5f * (float)cnv_size.get_width();
float half_h = 0.5f * (float)cnv_size.get_height();
float zoom = canvas.get_camera().zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + reset_button_height(canvas)) * inv_zoom);
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float half_w = 0.5f * (float)cnv_size.get_width();
float half_h = 0.5f * (float)cnv_size.get_height();
float zoom = canvas.get_camera().zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, (-half_h + reset_button_height(canvas)) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom);
}
bool GLCanvas3D::LayersEditing::_is_initialized() const
{
return m_shader.is_initialized();
}
void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas, const Rect& bar_rect, const Rect& reset_rect) const
{
// TODO: do this with ImGui
if (m_tooltip_texture.get_id() == 0)
{
std::string filename = resources_dir() + "/icons/variable_layer_height_tooltip.png";
if (!m_tooltip_texture.load_from_file(filename, false))
return;
}
#if ENABLE_RETINA_GL
const float scale = canvas.get_canvas_size().get_scale_factor();
#else
const float scale = canvas.get_wxglcanvas()->GetContentScaleFactor();
#endif
const float width = (float)m_tooltip_texture.get_width() * scale;
const float height = (float)m_tooltip_texture.get_height() * scale;
float zoom = canvas.get_camera().zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float gap = 10.0f * inv_zoom;
float bar_left = bar_rect.get_left();
float reset_bottom = reset_rect.get_bottom();
float l = bar_left - width * inv_zoom - gap;
float r = bar_left - gap;
float t = reset_bottom + height * inv_zoom + gap;
float b = reset_bottom + gap;
GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t);
}
void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) const
{
if (m_reset_texture.get_id() == 0)
{
std::string filename = resources_dir() + "/icons/variable_layer_height_reset.png";
if (!m_reset_texture.load_from_file(filename, false))
return;
}
GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top());
}
void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const Rect& bar_rect) const
{
m_shader.start_using();
m_shader.set_uniform("z_to_texture_row", float(m_layers_texture.cells - 1) / (float(m_layers_texture.width) * m_object_max_z));
m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)m_layers_texture.height);
m_shader.set_uniform("z_cursor", m_object_max_z * this->get_cursor_z_relative(canvas));
m_shader.set_uniform("z_cursor_band_width", band_width);
// The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix
m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX);
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
// Render the color bar
float l = bar_rect.get_left();
float r = bar_rect.get_right();
float t = bar_rect.get_top();
float b = bar_rect.get_bottom();
::glBegin(GL_QUADS);
::glNormal3f(0.0f, 0.0f, 1.0f);
::glVertex3f(l, b, 0.0f);
::glVertex3f(r, b, 0.0f);
::glVertex3f(r, t, m_object_max_z);
::glVertex3f(l, t, m_object_max_z);
glsafe(::glEnd());
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
m_shader.stop_using();
}
void GLCanvas3D::LayersEditing::_render_profile(const Rect& bar_rect) const
{
//FIXME show some kind of legend.
// Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
assert(m_slicing_parameters != nullptr);
float scale_x = bar_rect.get_width() / (float)(1.12 * m_slicing_parameters->max_layer_height);
float scale_y = bar_rect.get_height() / m_object_max_z;
float x = bar_rect.get_left() + (float)m_slicing_parameters->layer_height * scale_x;
// Baseline
glsafe(::glColor3f(0.0f, 0.0f, 0.0f));
::glBegin(GL_LINE_STRIP);
::glVertex2f(x, bar_rect.get_bottom());
::glVertex2f(x, bar_rect.get_top());
glsafe(::glEnd());
// Curve
glsafe(::glColor3f(0.0f, 0.0f, 1.0f));
::glBegin(GL_LINE_STRIP);
for (unsigned int i = 0; i < m_layer_height_profile.size(); i += 2)
::glVertex2f(bar_rect.get_left() + (float)m_layer_height_profile[i + 1] * scale_x, bar_rect.get_bottom() + (float)m_layer_height_profile[i] * scale_y);
glsafe(::glEnd());
}
void GLCanvas3D::LayersEditing::render_volumes(const GLCanvas3D& canvas, const GLVolumeCollection &volumes) const
{
assert(this->is_allowed());
assert(this->last_object_id != -1);
GLint shader_id = m_shader.get_shader()->shader_program_id;
assert(shader_id > 0);
GLint current_program_id;
glsafe(::glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id));
if (shader_id > 0 && shader_id != current_program_id)
// The layer editing shader is not yet active. Activate it.
glsafe(::glUseProgram(shader_id));
else
// The layer editing shader was already active.
current_program_id = -1;
GLint z_to_texture_row_id = ::glGetUniformLocation(shader_id, "z_to_texture_row");
GLint z_texture_row_to_normalized_id = ::glGetUniformLocation(shader_id, "z_texture_row_to_normalized");
GLint z_cursor_id = ::glGetUniformLocation(shader_id, "z_cursor");
GLint z_cursor_band_width_id = ::glGetUniformLocation(shader_id, "z_cursor_band_width");
GLint world_matrix_id = ::glGetUniformLocation(shader_id, "volume_world_matrix");
glcheck();
if (z_to_texture_row_id != -1 && z_texture_row_to_normalized_id != -1 && z_cursor_id != -1 && z_cursor_band_width_id != -1 && world_matrix_id != -1)
{
const_cast<LayersEditing*>(this)->generate_layer_height_texture();
// Uniforms were resolved, go ahead using the layer editing shader.
glsafe(::glUniform1f(z_to_texture_row_id, GLfloat(m_layers_texture.cells - 1) / (GLfloat(m_layers_texture.width) * GLfloat(m_object_max_z))));
glsafe(::glUniform1f(z_texture_row_to_normalized_id, GLfloat(1.0f / m_layers_texture.height)));
glsafe(::glUniform1f(z_cursor_id, GLfloat(m_object_max_z) * GLfloat(this->get_cursor_z_relative(canvas))));
glsafe(::glUniform1f(z_cursor_band_width_id, GLfloat(this->band_width)));
// Initialize the layer height texture mapping.
GLsizei w = (GLsizei)m_layers_texture.width;
GLsizei h = (GLsizei)m_layers_texture.height;
GLsizei half_w = w / 2;
GLsizei half_h = h / 2;
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data()));
glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data() + m_layers_texture.width * m_layers_texture.height * 4));
for (const GLVolume *glvolume : volumes.volumes) {
// Render the object using the layer editing shader and texture.
if (! glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier)
continue;
glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
glvolume->render();
}
// Revert back to the previous shader.
glBindTexture(GL_TEXTURE_2D, 0);
if (current_program_id > 0)
glsafe(::glUseProgram(current_program_id));
}
else
{
// Something went wrong. Just render the object.
assert(false);
for (const GLVolume *glvolume : volumes.volumes) {
// Render the object using the layer editing shader and texture.
if (!glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier)
continue;
glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
glvolume->render();
}
}
}
void GLCanvas3D::LayersEditing::adjust_layer_height_profile()
{
this->update_slicing_parameters();
PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile);
Slic3r::adjust_layer_height_profile(*m_slicing_parameters, m_layer_height_profile, this->last_z, this->strength, this->band_width, this->last_action);
m_layer_height_profile_modified = true;
m_layers_texture.valid = false;
}
void GLCanvas3D::LayersEditing::reset_layer_height_profile(GLCanvas3D& canvas)
{
const_cast<ModelObject*>(m_model_object)->layer_height_profile.clear();
m_layer_height_profile.clear();
m_layers_texture.valid = false;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
void GLCanvas3D::LayersEditing::generate_layer_height_texture()
{
this->update_slicing_parameters();
// Always try to update the layer height profile.
bool update = ! m_layers_texture.valid;
if (PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile)) {
// Initialized to the default value.
m_layer_height_profile_modified = false;
update = true;
}
// Update if the layer height profile was changed, or when the texture is not valid.
if (! update && ! m_layers_texture.data.empty() && m_layers_texture.cells > 0)
// Texture is valid, don't update.
return;
if (m_layers_texture.data.empty()) {
m_layers_texture.width = 1024;
m_layers_texture.height = 1024;
m_layers_texture.levels = 2;
m_layers_texture.data.assign(m_layers_texture.width * m_layers_texture.height * 5, 0);
}
bool level_of_detail_2nd_level = true;
m_layers_texture.cells = Slic3r::generate_layer_height_texture(
*m_slicing_parameters,
Slic3r::generate_object_layers(*m_slicing_parameters, m_layer_height_profile),
m_layers_texture.data.data(), m_layers_texture.height, m_layers_texture.width, level_of_detail_2nd_level);
m_layers_texture.valid = true;
}
void GLCanvas3D::LayersEditing::accept_changes(GLCanvas3D& canvas)
{
if (last_object_id >= 0) {
if (m_layer_height_profile_modified) {
const_cast<ModelObject*>(m_model_object)->layer_height_profile = m_layer_height_profile;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
}
m_layer_height_profile_modified = false;
}
void GLCanvas3D::LayersEditing::update_slicing_parameters()
{
if (m_slicing_parameters == nullptr) {
m_slicing_parameters = new SlicingParameters();
*m_slicing_parameters = PrintObject::slicing_parameters(*m_config, *m_model_object, m_object_max_z);
}
}
float GLCanvas3D::LayersEditing::thickness_bar_width(const GLCanvas3D &canvas)
{
return
#if ENABLE_RETINA_GL
canvas.get_canvas_size().get_scale_factor()
#else
canvas.get_wxglcanvas()->GetContentScaleFactor()
#endif
* THICKNESS_BAR_WIDTH;
}
float GLCanvas3D::LayersEditing::reset_button_height(const GLCanvas3D &canvas)
{
return
#if ENABLE_RETINA_GL
canvas.get_canvas_size().get_scale_factor()
#else
canvas.get_wxglcanvas()->GetContentScaleFactor()
#endif
* THICKNESS_RESET_BUTTON_HEIGHT;
}
const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX);
const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX);
const int GLCanvas3D::Mouse::Drag::MoveThresholdPx = 5;
GLCanvas3D::Mouse::Drag::Drag()
: start_position_2D(Invalid_2D_Point)
, start_position_3D(Invalid_3D_Point)
, move_volume_idx(-1)
, move_requires_threshold(false)
, move_start_threshold_position_2D(Invalid_2D_Point)
{
}
GLCanvas3D::Mouse::Mouse()
: dragging(false)
, position(DBL_MAX, DBL_MAX)
, scene_position(DBL_MAX, DBL_MAX, DBL_MAX)
{
}
const unsigned char GLCanvas3D::WarningTexture::Background_Color[3] = { 120, 120, 120 };//{ 9, 91, 134 };
const unsigned char GLCanvas3D::WarningTexture::Opacity = 255;
GLCanvas3D::WarningTexture::WarningTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
void GLCanvas3D::WarningTexture::activate(WarningTexture::Warning warning, bool state, const GLCanvas3D& canvas)
{
auto it = std::find(m_warnings.begin(), m_warnings.end(), warning);
if (state) {
if (it != m_warnings.end()) // this warning is already set to be shown
return;
m_warnings.push_back(warning);
std::sort(m_warnings.begin(), m_warnings.end());
}
else {
if (it == m_warnings.end()) // deactivating something that is not active is an easy task
return;
m_warnings.erase(it);
if (m_warnings.empty()) { // nothing remains to be shown
reset();
return;
}
}
// Look at the end of our vector and generate proper texture.
std::string text;
bool red_colored = false;
switch (m_warnings.back()) {
case ObjectOutside : text = L("Detected object outside print volume"); break;
case ToolpathOutside : text = L("Detected toolpath outside print volume"); break;
case SomethingNotShown : text = L("Some objects are not visible when editing supports"); break;
case ObjectClashed: {
text = L("Detected object outside print volume\n"
"Resolve a clash to continue slicing/export process correctly");
red_colored = true;
break;
}
}
_generate(text, canvas, red_colored); // GUI::GLTexture::reset() is called at the beginning of generate(...)
}
#ifdef __WXMSW__
static bool is_font_cleartype(const wxFont &font)
{
// Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon.
wxString font_desc = font.GetNativeFontInfoDesc();
// Find the quality field.
wxString sep(";");
size_t startpos = 0;
for (size_t i = 0; i < 12; ++ i)
startpos = font_desc.find(sep, startpos + 1);
++ startpos;
size_t endpos = font_desc.find(sep, startpos);
int quality = wxAtoi(font_desc(startpos, endpos - startpos));
return quality == CLEARTYPE_QUALITY;
}
// ClearType produces renders, which are difficult to convert into an alpha blended OpenGL texture.
// Therefore it is better to disable it, though Vojtech found out, that the font returned with ClearType
// disabled is signifcantly thicker than the default ClearType font.
// This function modifies the font provided.
static void msw_disable_cleartype(wxFont &font)
{
// Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon.
wxString font_desc = font.GetNativeFontInfoDesc();
// Find the quality field.
wxString sep(";");
size_t startpos_weight = 0;
for (size_t i = 0; i < 5; ++ i)
startpos_weight = font_desc.find(sep, startpos_weight + 1);
++ startpos_weight;
size_t endpos_weight = font_desc.find(sep, startpos_weight);
// Parse the weight field.
unsigned int weight = atoi(font_desc(startpos_weight, endpos_weight - startpos_weight));
size_t startpos = endpos_weight;
for (size_t i = 0; i < 6; ++ i)
startpos = font_desc.find(sep, startpos + 1);
++ startpos;
size_t endpos = font_desc.find(sep, startpos);
int quality = wxAtoi(font_desc(startpos, endpos - startpos));
if (quality == CLEARTYPE_QUALITY) {
// Replace the weight with a smaller value to compensate the weight of non ClearType font.
wxString sweight = std::to_string(weight * 2 / 4);
size_t len_weight = endpos_weight - startpos_weight;
wxString squality = std::to_string(ANTIALIASED_QUALITY);
font_desc.replace(startpos_weight, len_weight, sweight);
font_desc.replace(startpos + sweight.size() - len_weight, endpos - startpos, squality);
font.SetNativeFontInfo(font_desc);
wxString font_desc2 = font.GetNativeFontInfoDesc();
}
wxString font_desc2 = font.GetNativeFontInfoDesc();
}
#endif /* __WXMSW__ */
bool GLCanvas3D::WarningTexture::_generate(const std::string& msg_utf8, const GLCanvas3D& canvas, const bool red_colored/* = false*/)
{
reset();
if (msg_utf8.empty())
return false;
wxString msg = GUI::from_u8(msg_utf8);
wxMemoryDC memDC;
// select default font
const float scale = canvas.get_canvas_size().get_scale_factor();
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale);
font.MakeLarger();
font.MakeBold();
memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
memDC.GetMultiLineTextExtent(msg, &w, &h);
m_original_width = (int)w;
m_original_height = (int)h;
m_width = (int)next_highest_power_of_2((uint32_t)w);
m_height = (int)next_highest_power_of_2((uint32_t)h);
// generates bitmap
wxBitmap bitmap(m_width, m_height);
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(*wxBLACK));
memDC.Clear();
// draw message
memDC.SetTextForeground(*wxRED);
memDC.DrawLabel(msg, wxRect(0,0, m_original_width, m_original_height), wxALIGN_CENTER);
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
const unsigned char *src = image.GetData();
for (int h = 0; h < m_height; ++h)
{
unsigned char* dst = data.data() + 4 * h * m_width;
for (int w = 0; w < m_width; ++w)
{
*dst++ = 255;
if (red_colored) {
*dst++ = 72; // 204
*dst++ = 65; // 204
} else {
*dst++ = 255;
*dst++ = 255;
}
*dst++ = (unsigned char)std::min<int>(255, *src);
src += 3;
}
}
// sends buffer to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::WarningTexture::render(const GLCanvas3D& canvas) const
{
if (m_warnings.empty())
return;
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
const Size& cnv_size = canvas.get_canvas_size();
float zoom = canvas.get_camera().zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float left = (-0.5f * (float)m_original_width) * inv_zoom;
float top = (-0.5f * (float)cnv_size.get_height() + (float)m_original_height + 2.0f) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
glsafe(::glPopMatrix());
glsafe(::glEnable(GL_DEPTH_TEST));
}
}
const unsigned char GLCanvas3D::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 };
const unsigned char GLCanvas3D::LegendTexture::Default_Background_Color[3] = { (unsigned char)(DEFAULT_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[2] * 255.0f) };
const unsigned char GLCanvas3D::LegendTexture::Error_Background_Color[3] = { (unsigned char)(ERROR_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[2] * 255.0f) };
const unsigned char GLCanvas3D::LegendTexture::Opacity = 255;
GLCanvas3D::LegendTexture::LegendTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
void GLCanvas3D::LegendTexture::fill_color_print_legend_values(const GCodePreviewData& preview_data, const GLCanvas3D& canvas,
std::vector<std::pair<double, double>>& cp_legend_values)
{
if (preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint)
{
auto& config = wxGetApp().preset_bundle->project_config;
const std::vector<double>& color_print_values = config.option<ConfigOptionFloats>("colorprint_heights")->values;
const int values_cnt = color_print_values.size();
if (values_cnt > 0) {
auto print_zs = canvas.get_current_print_zs(true);
auto z = 0;
for (auto i = 0; i < values_cnt; ++i)
{
double prev_z = -1.0;
for (z; z < print_zs.size(); ++z)
if (fabs(color_print_values[i] - print_zs[z]) < EPSILON) {
prev_z = print_zs[z - 1];
break;
}
if (prev_z < 0)
continue;
cp_legend_values.push_back(std::pair<double, double>(prev_z, color_print_values[i]));
}
}
}
}
bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors, const GLCanvas3D& canvas)
{
reset();
// collects items to render
auto title = _(preview_data.get_legend_title());
std::vector<std::pair<double, double>> cp_legend_values;
fill_color_print_legend_values(preview_data, canvas, cp_legend_values);
const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors, cp_legend_values);
unsigned int items_count = (unsigned int)items.size();
if (items_count == 0)
// nothing to render, return
return false;
wxMemoryDC memDC;
wxMemoryDC mask_memDC;
// calculate scaling
const float scale_gl = canvas.get_canvas_size().get_scale_factor();
const float scale = scale_gl * wxGetApp().em_unit()*0.1; // get scale from em_unit() value, because of get_scale_factor() return 1
const int scaled_square = std::floor((float)Px_Square * scale);
const int scaled_title_offset = Px_Title_Offset * scale;
const int scaled_text_offset = Px_Text_Offset * scale;
const int scaled_square_contour = Px_Square_Contour * scale;
const int scaled_border = Px_Border * scale;
// select default font
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale_gl);
#ifdef __WXMSW__
// Disabling ClearType works, but the font returned is very different (much thicker) from the default.
// msw_disable_cleartype(font);
bool cleartype = is_font_cleartype(font);
#else
bool cleartype = false;
#endif /* __WXMSW__ */
memDC.SetFont(font);
mask_memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(title, &w, &h);
int title_width = (int)w;
int title_height = (int)h;
int max_text_width = 0;
int max_text_height = 0;
for (const GCodePreviewData::LegendItem& item : items)
{
memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h);
max_text_width = std::max(max_text_width, (int)w);
max_text_height = std::max(max_text_height, (int)h);
}
m_original_width = std::max(2 * scaled_border + title_width, 2 * (scaled_border + scaled_square_contour) + scaled_square + scaled_text_offset + max_text_width);
m_original_height = 2 * (scaled_border + scaled_square_contour) + title_height + scaled_title_offset + items_count * scaled_square;
if (items_count > 1)
m_original_height += (items_count - 1) * scaled_square_contour;
m_width = (int)next_highest_power_of_2((uint32_t)m_original_width);
m_height = (int)next_highest_power_of_2((uint32_t)m_original_height);
// generates bitmap
wxBitmap bitmap(m_width, m_height);
wxBitmap mask(m_width, m_height);
memDC.SelectObject(bitmap);
mask_memDC.SelectObject(mask);
memDC.SetBackground(wxBrush(*wxBLACK));
mask_memDC.SetBackground(wxBrush(*wxBLACK));
memDC.Clear();
mask_memDC.Clear();
// draw title
memDC.SetTextForeground(*wxWHITE);
mask_memDC.SetTextForeground(*wxRED);
int title_x = scaled_border;
int title_y = scaled_border;
memDC.DrawText(title, title_x, title_y);
mask_memDC.DrawText(title, title_x, title_y);
// draw icons contours as background
int squares_contour_x = scaled_border;
int squares_contour_y = scaled_border + title_height + scaled_title_offset;
int squares_contour_width = scaled_square + 2 * scaled_square_contour;
int squares_contour_height = items_count * scaled_square + 2 * scaled_square_contour;
if (items_count > 1)
squares_contour_height += (items_count - 1) * scaled_square_contour;
wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]);
wxPen pen(color);
wxBrush brush(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height));
// draw items (colored icon + text)
int icon_x = squares_contour_x + scaled_square_contour;
int icon_x_inner = icon_x + 1;
int icon_y = squares_contour_y + scaled_square_contour;
int icon_y_step = scaled_square + scaled_square_contour;
int text_x = icon_x + scaled_square + scaled_text_offset;
int text_y_offset = (scaled_square - max_text_height) / 2;
int px_inner_square = scaled_square - 2;
for (const GCodePreviewData::LegendItem& item : items)
{
// draw darker icon perimeter
const std::vector<unsigned char>& item_color_bytes = item.color.as_bytes();
wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2]));
dark_hsv.value *= 0.75;
wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv);
color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x, icon_y, scaled_square, scaled_square));
// draw icon interior
color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square));
// draw text
mask_memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset);
// update y
icon_y += icon_y_step;
}
memDC.SelectObject(wxNullBitmap);
mask_memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
wxImage mask_image = mask.ConvertToImage();
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
const unsigned char *src_image = image.GetData();
const unsigned char *src_mask = mask_image.GetData();
for (int h = 0; h < m_height; ++h)
{
int hh = h * m_width;
unsigned char* px_ptr = data.data() + 4 * hh;
for (int w = 0; w < m_width; ++w)
{
if (w >= squares_contour_x && w < squares_contour_x + squares_contour_width &&
h >= squares_contour_y && h < squares_contour_y + squares_contour_height) {
// Color palette, use the color verbatim.
*px_ptr++ = *src_image++;
*px_ptr++ = *src_image++;
*px_ptr++ = *src_image++;
*px_ptr++ = 255;
} else {
// Text or background
unsigned char alpha = *src_mask;
// Compensate the white color for the 50% opacity reduction at the character edges.
//unsigned char color = (unsigned char)floor(alpha * 255.f / (128.f + 0.5f * alpha));
unsigned char color = alpha;
*px_ptr++ = color;
*px_ptr++ = color; // *src_mask ++;
*px_ptr++ = color; // *src_mask ++;
*px_ptr++ = 128 + (alpha / 2); // (alpha > 0) ? 255 : 128;
src_image += 3;
}
src_mask += 3;
}
}
// sends buffer to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::LegendTexture::render(const GLCanvas3D& canvas) const
{
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
const Size& cnv_size = canvas.get_canvas_size();
float zoom = canvas.get_camera().zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom;
float top = (0.5f * (float)cnv_size.get_height()) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
glsafe(::glPopMatrix());
glsafe(::glEnable(GL_DEPTH_TEST));
}
}
wxDEFINE_EVENT(EVT_GLCANVAS_INIT, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_OBJECT_SELECT, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RIGHT_CLICK, Vec2dEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_REMOVE_OBJECT, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_ARRANGE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_SELECT_ALL, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_QUESTION_MARK, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INCREASE_INSTANCES, Event<int>);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_MOVED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_ROTATED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_SCALED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_MOVED, Vec3dEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, Event<bool>);
wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_GEOMETRY, Vec3dsEvent<2>);
wxDEFINE_EVENT(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_BED_SHAPE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_TAB, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RESETGIZMOS, SimpleEvent);
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, Bed3D& bed, Camera& camera, GLToolbar& view_toolbar)
: m_canvas(canvas)
, m_context(nullptr)
#if ENABLE_RETINA_GL
, m_retina_helper(nullptr)
#endif
, m_in_render(false)
, m_bed(bed)
, m_camera(camera)
, m_view_toolbar(view_toolbar)
#if ENABLE_SVG_ICONS
, m_toolbar(GLToolbar::Normal, "Top")
#else
, m_toolbar(GLToolbar::Normal)
#endif // ENABLE_SVG_ICONS
, m_use_clipping_planes(false)
, m_sidebar_field("")
, m_config(nullptr)
, m_process(nullptr)
, m_model(nullptr)
, m_dirty(true)
, m_initialized(false)
, m_use_VBOs(false)
, m_apply_zoom_to_volumes_filter(false)
, m_hover_volume_id(-1)
, m_legend_texture_enabled(false)
, m_picking_enabled(false)
, m_moving_enabled(false)
, m_dynamic_background_enabled(false)
, m_multisample_allowed(false)
, m_regenerate_volumes(true)
, m_moving(false)
, m_tab_down(false)
, m_color_by("volume")
, m_reload_delayed(false)
, m_render_sla_auxiliaries(true)
{
if (m_canvas != nullptr) {
m_timer.SetOwner(m_canvas);
#if ENABLE_RETINA_GL
m_retina_helper.reset(new RetinaHelper(canvas));
#endif
}
m_selection.set_volumes(&m_volumes.volumes);
}
GLCanvas3D::~GLCanvas3D()
{
reset_volumes();
}
void GLCanvas3D::post_event(wxEvent &&event)
{
event.SetEventObject(m_canvas);
wxPostEvent(m_canvas, event);
}
bool GLCanvas3D::init(bool useVBOs, bool use_legacy_opengl)
{
if (m_initialized)
return true;
if ((m_canvas == nullptr) || (m_context == nullptr))
return false;
glsafe(::glClearColor(1.0f, 1.0f, 1.0f, 1.0f));
glsafe(::glClearDepth(1.0f));
glsafe(::glDepthFunc(GL_LESS));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
// Set antialiasing / multisampling
glsafe(::glDisable(GL_LINE_SMOOTH));
glsafe(::glDisable(GL_POLYGON_SMOOTH));
// ambient lighting
GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
glsafe(::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient));
glsafe(::glEnable(GL_LIGHT0));
glsafe(::glEnable(GL_LIGHT1));
// light from camera
GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam));
GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam));
// light from above
GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top));
GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top));
// Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
glsafe(::glShadeModel(GL_SMOOTH));
// A handy trick -- have surface material mirror the color.
glsafe(::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE));
glsafe(::glEnable(GL_COLOR_MATERIAL));
if (m_multisample_allowed)
glsafe(::glEnable(GL_MULTISAMPLE));
if (useVBOs && !m_shader.init("gouraud.vs", "gouraud.fs"))
return false;
if (m_toolbar.is_enabled() && useVBOs && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs"))
return false;
m_use_VBOs = useVBOs;
m_layers_editing.set_use_legacy_opengl(use_legacy_opengl);
// on linux the gl context is not valid until the canvas is not shown on screen
// we defer the geometry finalization of volumes until the first call to render()
if (!m_volumes.empty())
m_volumes.finalize_geometry(m_use_VBOs);
if (m_gizmos.is_enabled()) {
if (! m_gizmos.init(*this)) {
std::cout << "Unable to initialize gizmos: please, check that all the required textures are available" << std::endl;
return false;
}
}
if (!_init_toolbar())
return false;
if (m_selection.is_enabled() && !m_selection.init(m_use_VBOs))
return false;
post_event(SimpleEvent(EVT_GLCANVAS_INIT));
m_initialized = true;
return true;
}
void GLCanvas3D::set_as_dirty()
{
m_dirty = true;
}
unsigned int GLCanvas3D::get_volumes_count() const
{
return (unsigned int)m_volumes.volumes.size();
}
void GLCanvas3D::reset_volumes()
{
if (!m_initialized)
return;
_set_current();
if (!m_volumes.empty())
{
m_selection.clear();
m_volumes.release_geometry();
m_volumes.clear();
m_dirty = true;
}
_set_warning_texture(WarningTexture::ObjectOutside, false);
}
int GLCanvas3D::check_volumes_outside_state() const
{
ModelInstance::EPrintVolumeState state;
m_volumes.check_outside_state(m_config, &state);
return (int)state;
}
void GLCanvas3D::toggle_sla_auxiliaries_visibility(bool visible, const ModelObject* mo, int instance_idx)
{
for (GLVolume* vol : m_volumes.volumes) {
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)
&& vol->composite_id.volume_id < 0)
vol->is_active = visible;
}
m_render_sla_auxiliaries = visible;
}
void GLCanvas3D::toggle_model_objects_visibility(bool visible, const ModelObject* mo, int instance_idx)
{
for (GLVolume* vol : m_volumes.volumes) {
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)) {
vol->is_active = visible;
vol->force_native_color = (instance_idx != -1);
}
}
if (visible && !mo)
toggle_sla_auxiliaries_visibility(true, mo, instance_idx);
if (!mo && !visible && !m_model->objects.empty() && (m_model->objects.size() > 1 || m_model->objects.front()->instances.size() > 1))
_set_warning_texture(WarningTexture::SomethingNotShown, true);
if (!mo && visible)
_set_warning_texture(WarningTexture::SomethingNotShown, false);
}
void GLCanvas3D::set_config(const DynamicPrintConfig* config)
{
m_config = config;
m_layers_editing.set_config(config);
}
void GLCanvas3D::set_process(BackgroundSlicingProcess *process)
{
m_process = process;
}
void GLCanvas3D::set_model(Model* model)
{
m_model = model;
m_selection.set_model(m_model);
}
void GLCanvas3D::bed_shape_changed()
{
m_camera.set_scene_box(scene_bounding_box());
m_camera.requires_zoom_to_bed = true;
m_dirty = true;
}
void GLCanvas3D::set_color_by(const std::string& value)
{
m_color_by = value;
}
BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const
{
BoundingBoxf3 bb;
for (const GLVolume* volume : m_volumes.volumes)
{
if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes))
bb.merge(volume->transformed_bounding_box());
}
return bb;
}
BoundingBoxf3 GLCanvas3D::scene_bounding_box() const
{
BoundingBoxf3 bb = volumes_bounding_box();
bb.merge(m_bed.get_bounding_box());
if (m_config != nullptr)
{
double h = m_config->opt_float("max_print_height");
bb.min(2) = std::min(bb.min(2), -h);
bb.max(2) = std::max(bb.max(2), h);
}
return bb;
}
bool GLCanvas3D::is_layers_editing_enabled() const
{
return m_layers_editing.is_enabled();
}
bool GLCanvas3D::is_layers_editing_allowed() const
{
return m_layers_editing.is_allowed();
}
bool GLCanvas3D::is_reload_delayed() const
{
return m_reload_delayed;
}
void GLCanvas3D::enable_layers_editing(bool enable)
{
m_layers_editing.set_enabled(enable);
const Selection::IndicesList& idxs = m_selection.get_volume_idxs();
for (unsigned int idx : idxs)
{
GLVolume* v = m_volumes.volumes[idx];
if (v->is_modifier)
v->force_transparent = enable;
}
}
void GLCanvas3D::enable_legend_texture(bool enable)
{
m_legend_texture_enabled = enable;
}
void GLCanvas3D::enable_picking(bool enable)
{
m_picking_enabled = enable;
m_selection.set_mode(Selection::Instance);
}
void GLCanvas3D::enable_moving(bool enable)
{
m_moving_enabled = enable;
}
void GLCanvas3D::enable_gizmos(bool enable)
{
m_gizmos.set_enabled(enable);
}
void GLCanvas3D::enable_selection(bool enable)
{
m_selection.set_enabled(enable);
}
void GLCanvas3D::enable_toolbar(bool enable)
{
m_toolbar.set_enabled(enable);
}
void GLCanvas3D::enable_dynamic_background(bool enable)
{
m_dynamic_background_enabled = enable;
}
void GLCanvas3D::allow_multisample(bool allow)
{
m_multisample_allowed = allow;
}
void GLCanvas3D::zoom_to_bed()
{
_zoom_to_bounding_box(m_bed.get_bounding_box());
}
void GLCanvas3D::zoom_to_volumes()
{
m_apply_zoom_to_volumes_filter = true;
_zoom_to_bounding_box(volumes_bounding_box());
m_apply_zoom_to_volumes_filter = false;
}
void GLCanvas3D::zoom_to_selection()
{
if (!m_selection.is_empty())
_zoom_to_bounding_box(m_selection.get_bounding_box());
}
void GLCanvas3D::select_view(const std::string& direction)
{
if (m_camera.select_view(direction) && (m_canvas != nullptr))
m_canvas->Refresh();
}
void GLCanvas3D::update_volumes_colors_by_extruder()
{
if (m_config != nullptr)
m_volumes.update_colors_by_extruder(m_config);
}
void GLCanvas3D::render()
{
wxCHECK_RET(!m_in_render, "GLCanvas3D::render() called recursively");
m_in_render = true;
Slic3r::ScopeGuard in_render_guard([this]() { m_in_render = false; });
(void)in_render_guard;
if (m_canvas == nullptr)
return;
#ifndef __WXMAC__
// on Mac this check causes flickering when changing view
if (!_is_shown_on_screen())
return;
#endif // __WXMAC__
// ensures this canvas is current and initialized
if (!_set_current() || !_3DScene::init(m_canvas))
return;
if (m_bed.get_shape().empty())
{
// this happens at startup when no data is still saved under <>\AppData\Roaming\Slic3rPE
post_event(SimpleEvent(EVT_GLCANVAS_UPDATE_BED_SHAPE));
return;
}
if (m_camera.requires_zoom_to_bed)
{
zoom_to_bed();
const Size& cnv_size = get_canvas_size();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
m_camera.requires_zoom_to_bed = false;
}
m_camera.apply_view_matrix();
GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_POSITION, position_cam));
GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_POSITION, position_top));
float theta = m_camera.get_theta();
if (theta > 180.f)
// absolute value of the rotation
theta = 360.f - theta;
wxGetApp().imgui()->new_frame();
// picking pass
_picking_pass();
// draw scene
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
_render_background();
// textured bed needs to be rendered after objects if the texture is transparent
bool early_bed_render = m_bed.is_custom() || (theta <= 90.0f);
if (early_bed_render)
_render_bed(theta);
_render_objects();
_render_sla_slices();
_render_selection();
_render_axes();
if (!early_bed_render)
_render_bed(theta);
#if ENABLE_RENDER_SELECTION_CENTER
_render_selection_center();
#endif // ENABLE_RENDER_SELECTION_CENTER
// we need to set the mouse's scene position here because the depth buffer
// could be invalidated by the following gizmo render methods
// this position is used later into on_mouse() to drag the objects
m_mouse.scene_position = _mouse_to_3d(m_mouse.position.cast<int>());
_render_current_gizmo();
_render_selection_sidebar_hints();
#if ENABLE_SHOW_CAMERA_TARGET
_render_camera_target();
#endif // ENABLE_SHOW_CAMERA_TARGET
// draw overlays
_render_gizmos_overlay();
_render_warning_texture();
_render_legend_texture();
#if !ENABLE_SVG_ICONS
_resize_toolbars();
#endif // !ENABLE_SVG_ICONS
_render_toolbar();
_render_view_toolbar();
if (m_layers_editing.last_object_id >= 0)
m_layers_editing.render_overlay(*this);
wxGetApp().imgui()->render();
m_canvas->SwapBuffers();
}
void GLCanvas3D::select_all()
{
m_selection.add_all();
m_dirty = true;
}
void GLCanvas3D::delete_selected()
{
m_selection.erase();
}
void GLCanvas3D::ensure_on_bed(unsigned int object_idx)
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_min_z;
for (GLVolume* volume : m_volumes.volumes)
{
if ((volume->object_idx() == object_idx) && !volume->is_modifier)
{
double min_z = volume->transformed_convex_hull_bounding_box().min(2);
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it == instances_min_z.end())
it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first;
it->second = std::min(it->second, min_z);
}
}
for (GLVolume* volume : m_volumes.volumes)
{
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it != instances_min_z.end())
volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second);
}
}
std::vector<double> GLCanvas3D::get_current_print_zs(bool active_only) const
{
return m_volumes.get_current_print_zs(active_only);
}
void GLCanvas3D::set_toolpaths_range(double low, double high)
{
m_volumes.set_range(low, high);
}
std::vector<int> GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector<int> instance_idxs)
{
if (instance_idxs.empty())
{
for (unsigned int i = 0; i < model_object.instances.size(); ++i)
{
instance_idxs.push_back(i);
}
}
return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_use_VBOs && m_initialized);
}
std::vector<int> GLCanvas3D::load_object(const Model& model, int obj_idx)
{
if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size()))
{
const ModelObject* model_object = model.objects[obj_idx];
if (model_object != nullptr)
return load_object(*model_object, obj_idx, std::vector<int>());
}
return std::vector<int>();
}
void GLCanvas3D::mirror_selection(Axis axis)
{
m_selection.mirror(axis);
do_mirror();
wxGetApp().obj_manipul()->update_settings_value(m_selection);
}
// Reload the 3D scene of
// 1) Model / ModelObjects / ModelInstances / ModelVolumes
// 2) Print bed
// 3) SLA support meshes for their respective ModelObjects / ModelInstances
// 4) Wipe tower preview
// 5) Out of bed collision status & message overlay (texture)
void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_refresh)
{
if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr))
return;
if (m_initialized)
_set_current();
struct ModelVolumeState {
ModelVolumeState(const GLVolume *volume) :
model_volume(nullptr), geometry_id(volume->geometry_id), volume_idx(-1) {}
ModelVolumeState(const ModelVolume *model_volume, const ModelID &instance_id, const GLVolume::CompositeID &composite_id) :
model_volume(model_volume), geometry_id(std::make_pair(model_volume->id().id, instance_id.id)), composite_id(composite_id), volume_idx(-1) {}
ModelVolumeState(const ModelID &volume_id, const ModelID &instance_id) :
model_volume(nullptr), geometry_id(std::make_pair(volume_id.id, instance_id.id)), volume_idx(-1) {}
bool new_geometry() const { return this->volume_idx == size_t(-1); }
const ModelVolume *model_volume;
// ModelID of ModelVolume + ModelID of ModelInstance
// or timestamp of an SLAPrintObjectStep + ModelID of ModelInstance
std::pair<size_t, size_t> geometry_id;
GLVolume::CompositeID composite_id;
// Volume index in the new GLVolume vector.
size_t volume_idx;
};
std::vector<ModelVolumeState> model_volume_state;
std::vector<ModelVolumeState> aux_volume_state;
// SLA steps to pull the preview meshes for.
typedef std::array<SLAPrintObjectStep, 2> SLASteps;
SLASteps sla_steps = { slaposSupportTree, slaposBasePool };
struct SLASupportState {
std::array<PrintStateBase::StateWithTimeStamp, std::tuple_size<SLASteps>::value> step;
};
// State of the sla_steps for all SLAPrintObjects.
std::vector<SLASupportState> sla_support_state;
std::vector<size_t> map_glvolume_old_to_new(m_volumes.volumes.size(), size_t(-1));
std::vector<GLVolume*> glvolumes_new;
glvolumes_new.reserve(m_volumes.volumes.size());
auto model_volume_state_lower = [](const ModelVolumeState &m1, const ModelVolumeState &m2) { return m1.geometry_id < m2.geometry_id; };
m_reload_delayed = ! m_canvas->IsShown() && ! refresh_immediately && ! force_full_scene_refresh;
PrinterTechnology printer_technology = m_process->current_printer_technology();
int volume_idx_wipe_tower_old = -1;
if (m_regenerate_volumes)
{
// Release invalidated volumes to conserve GPU memory in case of delayed refresh (see m_reload_delayed).
// First initialize model_volumes_new_sorted & model_instances_new_sorted.
for (int object_idx = 0; object_idx < (int)m_model->objects.size(); ++ object_idx) {
const ModelObject *model_object = m_model->objects[object_idx];
for (int instance_idx = 0; instance_idx < (int)model_object->instances.size(); ++ instance_idx) {
const ModelInstance *model_instance = model_object->instances[instance_idx];
for (int volume_idx = 0; volume_idx < (int)model_object->volumes.size(); ++ volume_idx) {
const ModelVolume *model_volume = model_object->volumes[volume_idx];
model_volume_state.emplace_back(model_volume, model_instance->id(), GLVolume::CompositeID(object_idx, volume_idx, instance_idx));
}
}
}
if (printer_technology == ptSLA) {
const SLAPrint *sla_print = this->sla_print();
#ifndef NDEBUG
// Verify that the SLAPrint object is synchronized with m_model.
check_model_ids_equal(*m_model, sla_print->model());
#endif /* NDEBUG */
sla_support_state.reserve(sla_print->objects().size());
for (const SLAPrintObject *print_object : sla_print->objects()) {
SLASupportState state;
for (size_t istep = 0; istep < sla_steps.size(); ++ istep) {
state.step[istep] = print_object->step_state_with_timestamp(sla_steps[istep]);
if (state.step[istep].state == PrintStateBase::DONE) {
if (! print_object->has_mesh(sla_steps[istep]))
// Consider the DONE step without a valid mesh as invalid for the purpose
// of mesh visualization.
state.step[istep].state = PrintStateBase::INVALID;
else
for (const ModelInstance *model_instance : print_object->model_object()->instances)
aux_volume_state.emplace_back(state.step[istep].timestamp, model_instance->id());
}
}
sla_support_state.emplace_back(state);
}
}
std::sort(model_volume_state.begin(), model_volume_state.end(), model_volume_state_lower);
std::sort(aux_volume_state .begin(), aux_volume_state .end(), model_volume_state_lower);
// Release all ModelVolume based GLVolumes not found in the current Model.
for (size_t volume_id = 0; volume_id < m_volumes.volumes.size(); ++ volume_id) {
GLVolume *volume = m_volumes.volumes[volume_id];
ModelVolumeState key(volume);
ModelVolumeState *mvs = nullptr;
if (volume->volume_idx() < 0) {
auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower);
if (it != aux_volume_state.end() && it->geometry_id == key.geometry_id)
mvs = &(*it);
} else {
auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower);
if (it != model_volume_state.end() && it->geometry_id == key.geometry_id)
mvs = &(*it);
}
if (mvs == nullptr || force_full_scene_refresh) {
// This GLVolume will be released.
if (volume->is_wipe_tower) {
// There is only one wipe tower.
assert(volume_idx_wipe_tower_old == -1);
volume_idx_wipe_tower_old = (int)volume_id;
}
volume->release_geometry();
if (! m_reload_delayed)
delete volume;
} else {
// This GLVolume will be reused.
volume->set_sla_shift_z(0.0);
map_glvolume_old_to_new[volume_id] = glvolumes_new.size();
mvs->volume_idx = glvolumes_new.size();
glvolumes_new.emplace_back(volume);
// Update color of the volume based on the current extruder.
if (mvs->model_volume != nullptr) {
int extruder_id = mvs->model_volume->extruder_id();
if (extruder_id != -1)
volume->extruder_id = extruder_id;
volume->is_modifier = !mvs->model_volume->is_model_part();
volume->set_color_from_model_volume(mvs->model_volume);
// updates volumes transformations
volume->set_instance_transformation(mvs->model_volume->get_object()->instances[mvs->composite_id.instance_id]->get_transformation());
volume->set_volume_transformation(mvs->model_volume->get_transformation());
}
}
}
}
if (m_reload_delayed)
return;
if (m_regenerate_volumes)
{
m_volumes.volumes = std::move(glvolumes_new);
for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++ obj_idx) {
const ModelObject &model_object = *m_model->objects[obj_idx];
for (int volume_idx = 0; volume_idx < (int)model_object.volumes.size(); ++ volume_idx) {
const ModelVolume &model_volume = *model_object.volumes[volume_idx];
for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) {
const ModelInstance &model_instance = *model_object.instances[instance_idx];
ModelVolumeState key(model_volume.id(), model_instance.id());
auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower);
assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id);
if (it->new_geometry()) {
// New volume.
m_volumes.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, m_color_by, m_use_VBOs && m_initialized);
m_volumes.volumes.back()->geometry_id = key.geometry_id;
} else {
// Recycling an old GLVolume.
GLVolume &existing_volume = *m_volumes.volumes[it->volume_idx];
assert(existing_volume.geometry_id == key.geometry_id);
// Update the Object/Volume/Instance indices into the current Model.
existing_volume.composite_id = it->composite_id;
}
}
}
}
if (printer_technology == ptSLA) {
size_t idx = 0;
const SLAPrint *sla_print = this->sla_print();
std::vector<double> shift_zs(m_model->objects.size(), 0);
double relative_correction_z = sla_print->relative_correction().z();
if (relative_correction_z <= EPSILON)
relative_correction_z = 1.;
for (const SLAPrintObject *print_object : sla_print->objects()) {
SLASupportState &state = sla_support_state[idx ++];
const ModelObject *model_object = print_object->model_object();
// Find an index of the ModelObject
int object_idx;
if (std::all_of(state.step.begin(), state.step.end(), [](const PrintStateBase::StateWithTimeStamp &state){ return state.state != PrintStateBase::DONE; }))
continue;
// There may be new SLA volumes added to the scene for this print_object.
// Find the object index of this print_object in the Model::objects list.
auto it = std::find(sla_print->model().objects.begin(), sla_print->model().objects.end(), model_object);
assert(it != sla_print->model().objects.end());
object_idx = it - sla_print->model().objects.begin();
// Cache the Z offset to be applied to all volumes with this object_idx.
shift_zs[object_idx] = print_object->get_current_elevation() / relative_correction_z;
// Collect indices of this print_object's instances, for which the SLA support meshes are to be added to the scene.
// pairs of <instance_idx, print_instance_idx>
std::vector<std::pair<size_t, size_t>> instances[std::tuple_size<SLASteps>::value];
for (size_t print_instance_idx = 0; print_instance_idx < print_object->instances().size(); ++ print_instance_idx) {
const SLAPrintObject::Instance &instance = print_object->instances()[print_instance_idx];
// Find index of ModelInstance corresponding to this SLAPrintObject::Instance.
auto it = std::find_if(model_object->instances.begin(), model_object->instances.end(),
[&instance](const ModelInstance *mi) { return mi->id() == instance.instance_id; });
assert(it != model_object->instances.end());
int instance_idx = it - model_object->instances.begin();
for (size_t istep = 0; istep < sla_steps.size(); ++ istep)
if (state.step[istep].state == PrintStateBase::DONE) {
ModelVolumeState key(state.step[istep].timestamp, instance.instance_id.id);
auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower);
assert(it != aux_volume_state.end() && it->geometry_id == key.geometry_id);
if (it->new_geometry())
instances[istep].emplace_back(std::pair<size_t, size_t>(instance_idx, print_instance_idx));
else
// Recycling an old GLVolume. Update the Object/Instance indices into the current Model.
m_volumes.volumes[it->volume_idx]->composite_id = GLVolume::CompositeID(object_idx, m_volumes.volumes[it->volume_idx]->volume_idx(), instance_idx);
}
}
// stores the current volumes count
size_t volumes_count = m_volumes.volumes.size();
for (size_t istep = 0; istep < sla_steps.size(); ++istep)
if (!instances[istep].empty())
m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp, m_use_VBOs && m_initialized);
}
// Shift-up all volumes of the object so that it has the right elevation with respect to the print bed
for (GLVolume* volume : m_volumes.volumes)
volume->set_sla_shift_z(shift_zs[volume->object_idx()]);
}
if (printer_technology == ptFFF && m_config->has("nozzle_diameter"))
{
// Should the wipe tower be visualized ?
unsigned int extruders_count = (unsigned int)dynamic_cast<const ConfigOptionFloats*>(m_config->option("nozzle_diameter"))->values.size();
bool semm = dynamic_cast<const ConfigOptionBool*>(m_config->option("single_extruder_multi_material"))->value;
bool wt = dynamic_cast<const ConfigOptionBool*>(m_config->option("wipe_tower"))->value;
bool co = dynamic_cast<const ConfigOptionBool*>(m_config->option("complete_objects"))->value;
if ((extruders_count > 1) && semm && wt && !co)
{
// Height of a print (Show at least a slab)
double height = std::max(m_model->bounding_box().max(2), 10.0);
float x = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_x"))->value;
float y = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_y"))->value;
float w = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_width"))->value;
float a = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_rotation_angle"))->value;
const Print *print = m_process->fff_print();
float depth = print->get_wipe_tower_depth();
// Calculate wipe tower brim spacing.
const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
float brim_spacing = print->config().nozzle_diameter.values[0] * 1.25f - first_layer_height * (1. - M_PI_4);
if (!print->is_step_done(psWipeTower))
depth = (900.f/w) * (float)(extruders_count - 1) ;
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000, x, y, w, depth, (float)height, a, m_use_VBOs && m_initialized, !print->is_step_done(psWipeTower),
brim_spacing * 4.5f);
if (volume_idx_wipe_tower_old != -1)
map_glvolume_old_to_new[volume_idx_wipe_tower_old] = volume_idx_wipe_tower_new;
}
}
update_volumes_colors_by_extruder();
// Update selection indices based on the old/new GLVolumeCollection.
m_selection.volumes_changed(map_glvolume_old_to_new);
}
m_gizmos.update_data(*this);
// Update the toolbar
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
// checks for geometry outside the print volume to render it accordingly
if (!m_volumes.empty())
{
ModelInstance::EPrintVolumeState state;
const bool contained_min_one = m_volumes.check_outside_state(m_config, &state);
_set_warning_texture(WarningTexture::ObjectClashed, state == ModelInstance::PVS_Partly_Outside);
_set_warning_texture(WarningTexture::ObjectOutside, state == ModelInstance::PVS_Fully_Outside);
post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS,
contained_min_one && !m_model->objects.empty() && state != ModelInstance::PVS_Partly_Outside));
// #ys_FIXME_delete_after_testing
// bool contained = m_volumes.check_outside_state(m_config, &state);
// if (!contained)
// {
// _set_warning_texture(WarningTexture::ObjectOutside, true);
// post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, state == ModelInstance::PVS_Fully_Outside));
// }
// else
// {
// m_volumes.reset_outside_state();
// _set_warning_texture(WarningTexture::ObjectOutside, false);
// post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, !m_model->objects.empty()));
// }
}
else
{
_set_warning_texture(WarningTexture::ObjectOutside, false);
_set_warning_texture(WarningTexture::ObjectClashed, false);
post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, false));
}
// restore to default value
m_regenerate_volumes = true;
m_camera.set_scene_box(scene_bounding_box());
if (m_selection.is_empty())
{
// If no object is selected, deactivate the active gizmo, if any
// Otherwise it may be shown after cleaning the scene (if it was active while the objects were deleted)
m_gizmos.reset_all_states();
// If no object is selected, reset the objects manipulator on the sidebar
// to force a reset of its cache
auto manip = wxGetApp().obj_manipul();
if (manip != nullptr)
manip->update_settings_value(m_selection);
}
// and force this canvas to be redrawn.
m_dirty = true;
}
void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector<std::string>& str_tool_colors)
{
const Print *print = this->fff_print();
if ((m_canvas != nullptr) && (print != nullptr))
{
_set_current();
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
if (m_volumes.empty())
{
m_gcode_preview_volume_index.reset();
_load_gcode_extrusion_paths(preview_data, tool_colors);
_load_gcode_travel_paths(preview_data, tool_colors);
_load_gcode_retractions(preview_data);
_load_gcode_unretractions(preview_data);
if (!m_volumes.empty())
{
// removes empty volumes
m_volumes.volumes.erase(std::remove_if(m_volumes.volumes.begin(), m_volumes.volumes.end(),
[](const GLVolume* volume) { return volume->print_zs.empty(); }), m_volumes.volumes.end());
_load_shells_fff();
}
_update_toolpath_volumes_outside_state();
}
_update_gcode_volumes_visibility(preview_data);
_show_warning_texture_if_needed();
if (m_volumes.empty())
reset_legend_texture();
else
_generate_legend_texture(preview_data, tool_colors);
}
}
void GLCanvas3D::load_sla_preview()
{
const SLAPrint* print = this->sla_print();
if ((m_canvas != nullptr) && (print != nullptr))
{
_set_current();
_load_shells_sla();
}
}
void GLCanvas3D::load_preview(const std::vector<std::string>& str_tool_colors, const std::vector<double>& color_print_values)
{
const Print *print = this->fff_print();
if (print == nullptr)
return;
_set_current();
_load_print_toolpaths();
_load_wipe_tower_toolpaths(str_tool_colors);
for (const PrintObject* object : print->objects())
{
if (object != nullptr)
_load_print_object_toolpaths(*object, str_tool_colors, color_print_values);
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_extrusion_path = true;
}
_update_toolpath_volumes_outside_state();
_show_warning_texture_if_needed();
if (color_print_values.empty())
reset_legend_texture();
else {
auto preview_data = GCodePreviewData();
preview_data.extrusion.view_type = GCodePreviewData::Extrusion::ColorPrint;
const std::vector<float> tool_colors = _parse_colors(str_tool_colors);
_generate_legend_texture(preview_data, tool_colors);
}
}
void GLCanvas3D::bind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this);
m_canvas->Bind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this);
m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
}
}
void GLCanvas3D::unbind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this);
m_canvas->Unbind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this);
m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
}
}
void GLCanvas3D::on_size(wxSizeEvent& evt)
{
m_dirty = true;
}
void GLCanvas3D::on_idle(wxIdleEvent& evt)
{
m_dirty |= m_toolbar.update_items_state();
m_dirty |= m_view_toolbar.update_items_state();
if (!m_dirty)
return;
_refresh_if_shown_on_screen();
}
void GLCanvas3D::on_char(wxKeyEvent& evt)
{
if (!m_initialized)
return;
// see include/wx/defs.h enum wxKeyCode
int keyCode = evt.GetKeyCode();
int ctrlMask = wxMOD_CONTROL;
auto imgui = wxGetApp().imgui();
if (imgui->update_key_data(evt)) {
render();
return;
}
if (m_gizmos.on_char(evt, *this))
return;
//#ifdef __APPLE__
// ctrlMask |= wxMOD_RAW_CONTROL;
//#endif /* __APPLE__ */
if ((evt.GetModifiers() & ctrlMask) != 0) {
switch (keyCode) {
#ifdef __APPLE__
case 'a':
case 'A':
#else /* __APPLE__ */
case WXK_CONTROL_A:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLCANVAS_SELECT_ALL));
break;
#ifdef __APPLE__
case WXK_BACK: // the low cost Apple solutions are not equipped with a Delete key, use Backspace instead.
#else /* __APPLE__ */
case WXK_DELETE:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); break;
default: evt.Skip();
}
} else if (evt.HasModifiers()) {
evt.Skip();
} else {
switch (keyCode)
{
#ifdef __APPLE__
case WXK_BACK: // the low cost Apple solutions are not equipped with a Delete key, use Backspace instead.
#else /* __APPLE__ */
case WXK_DELETE:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE));
break;
case '0': { select_view("iso"); break; }
case '1': { select_view("top"); break; }
case '2': { select_view("bottom"); break; }
case '3': { select_view("front"); break; }
case '4': { select_view("rear"); break; }
case '5': { select_view("left"); break; }
case '6': { select_view("right"); break; }
case '+': { post_event(Event<int>(EVT_GLCANVAS_INCREASE_INSTANCES, +1)); break; }
case '-': { post_event(Event<int>(EVT_GLCANVAS_INCREASE_INSTANCES, -1)); break; }
case '?': { post_event(SimpleEvent(EVT_GLCANVAS_QUESTION_MARK)); break; }
case 'A':
case 'a': { post_event(SimpleEvent(EVT_GLCANVAS_ARRANGE)); break; }
case 'B':
case 'b': { zoom_to_bed(); break; }
case 'I':
case 'i': { set_camera_zoom(1.0f); break; }
case 'O':
case 'o': { set_camera_zoom(-1.0f); break; }
case 'Z':
case 'z': { m_selection.is_empty() ? zoom_to_volumes() : zoom_to_selection(); break; }
default:
{
evt.Skip();
break;
}
}
}
}
void GLCanvas3D::on_key(wxKeyEvent& evt)
{
const int keyCode = evt.GetKeyCode();
auto imgui = wxGetApp().imgui();
if (imgui->update_key_data(evt)) {
render();
}
else
{
if (!m_gizmos.on_key(evt, *this))
{
if (evt.GetEventType() == wxEVT_KEY_UP) {
if (m_tab_down && keyCode == WXK_TAB && !evt.HasAnyModifiers()) {
// Enable switching between 3D and Preview with Tab
// m_canvas->HandleAsNavigationKey(evt); // XXX: Doesn't work in some cases / on Linux
post_event(SimpleEvent(EVT_GLCANVAS_TAB));
}
}
else if (evt.GetEventType() == wxEVT_KEY_DOWN) {
m_tab_down = keyCode == WXK_TAB && !evt.HasAnyModifiers();
}
}
}
if (keyCode != WXK_TAB
&& keyCode != WXK_LEFT
&& keyCode != WXK_UP
&& keyCode != WXK_RIGHT
&& keyCode != WXK_DOWN) {
evt.Skip(); // Needed to have EVT_CHAR generated as well
}
}
void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt)
{
if (!m_initialized)
return;
// Ignore the wheel events if the middle button is pressed.
if (evt.MiddleIsDown())
return;
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor();
evt.SetX(evt.GetX() * scale);
evt.SetY(evt.GetY() * scale);
#endif
// Performs layers editing updates, if enabled
if (is_layers_editing_enabled())
{
int object_idx_selected = m_selection.get_object_idx();
if (object_idx_selected != -1)
{
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY()))
{
// Adjust the width of the selection.
m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f);
if (m_canvas != nullptr)
m_canvas->Refresh();
return;
}
}
}
// Calculate the zoom delta and apply it to the current zoom factor
float zoom = (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta();
set_camera_zoom(zoom);
}
void GLCanvas3D::on_timer(wxTimerEvent& evt)
{
if (m_layers_editing.state == LayersEditing::Editing)
_perform_layer_editing_action();
}
#ifndef NDEBUG
// #define SLIC3R_DEBUG_MOUSE_EVENTS
#endif
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
std::string format_mouse_event_debug_message(const wxMouseEvent &evt)
{
static int idx = 0;
char buf[2048];
std::string out;
sprintf(buf, "Mouse Event %d - ", idx ++);
out = buf;
if (evt.Entering())
out += "Entering ";
if (evt.Leaving())
out += "Leaving ";
if (evt.Dragging())
out += "Dragging ";
if (evt.Moving())
out += "Moving ";
if (evt.Magnify())
out += "Magnify ";
if (evt.LeftDown())
out += "LeftDown ";
if (evt.LeftUp())
out += "LeftUp ";
if (evt.LeftDClick())
out += "LeftDClick ";
if (evt.MiddleDown())
out += "MiddleDown ";
if (evt.MiddleUp())
out += "MiddleUp ";
if (evt.MiddleDClick())
out += "MiddleDClick ";
if (evt.RightDown())
out += "RightDown ";
if (evt.RightUp())
out += "RightUp ";
if (evt.RightDClick())
out += "RightDClick ";
sprintf(buf, "(%d, %d)", evt.GetX(), evt.GetY());
out += buf;
return out;
}
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
auto mouse_up_cleanup = [this](){
m_moving = false;
m_mouse.drag.move_volume_idx = -1;
m_mouse.set_start_position_3D_as_invalid();
m_mouse.set_start_position_2D_as_invalid();
m_mouse.dragging = false;
m_dirty = true;
if (m_canvas->HasCapture())
m_canvas->ReleaseMouse();
};
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor();
evt.SetX(evt.GetX() * scale);
evt.SetY(evt.GetY() * scale);
#endif
Point pos(evt.GetX(), evt.GetY());
ImGuiWrapper *imgui = wxGetApp().imgui();
if (imgui->update_mouse_data(evt)) {
m_mouse.position = evt.Leaving() ? Vec2d(-1.0, -1.0) : pos.cast<double>();
render();
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - Consumed by ImGUI\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
return;
}
#ifdef __WXMSW__
bool on_enter_workaround = false;
if (! evt.Entering() && ! evt.Leaving() && m_mouse.position.x() == -1.0) {
// Workaround for SPE-832: There seems to be a mouse event sent to the window before evt.Entering()
m_mouse.position = pos.cast<double>();
render();
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - OnEnter workaround\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
on_enter_workaround = true;
} else
#endif /* __WXMSW__ */
{
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - other\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
}
if (m_toolbar.on_mouse(evt, *this))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
if (m_view_toolbar.on_mouse(evt, *this))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
if (m_gizmos.on_mouse(evt, *this))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
if (m_picking_enabled)
_set_current();
int selected_object_idx = m_selection.get_object_idx();
int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1;
m_layers_editing.select_object(*m_model, layer_editing_object_idx);
if (m_mouse.drag.move_requires_threshold && m_mouse.is_move_start_threshold_position_2D_defined() && m_mouse.is_move_threshold_met(pos))
{
m_mouse.drag.move_requires_threshold = false;
m_mouse.set_move_start_threshold_position_2D_as_invalid();
}
if (evt.ButtonDown() && wxWindow::FindFocus() != this->m_canvas)
// Grab keyboard focus on any mouse click event.
m_canvas->SetFocus();
if (evt.Entering())
{
//#if defined(__WXMSW__) || defined(__linux__)
// // On Windows and Linux needs focus in order to catch key events
// Set focus in order to remove it from sidebar fields
if (m_canvas != nullptr) {
// Only set focus, if the top level window of this canvas is active.
auto p = dynamic_cast<wxWindow*>(evt.GetEventObject());
while (p->GetParent())
p = p->GetParent();
auto *top_level_wnd = dynamic_cast<wxTopLevelWindow*>(p);
if (top_level_wnd && top_level_wnd->IsActive())
m_canvas->SetFocus();
m_mouse.position = pos.cast<double>();
// 1) forces a frame render to ensure that m_hover_volume_id is updated even when the user right clicks while
// the context menu is shown, ensuring it to disappear if the mouse is outside any volume and to
// change the volume hover state if any is under the mouse
// 2) when switching between 3d view and preview the size of the canvas changes if the side panels are visible,
// so forces a resize to avoid multiple renders with different sizes (seen as flickering)
_refresh_if_shown_on_screen();
}
m_mouse.set_start_position_2D_as_invalid();
//#endif
}
else if (evt.Leaving())
{
// to remove hover on objects when the mouse goes out of this canvas
m_mouse.position = Vec2d(-1.0, -1.0);
m_dirty = true;
}
else if (evt.LeftDown() || evt.RightDown())
{
// If user pressed left or right button we first check whether this happened
// on a volume or not.
m_layers_editing.state = LayersEditing::Unknown;
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1)))
{
// A volume is selected and the mouse is inside the layer thickness bar.
// Start editing the layer height.
m_layers_editing.state = LayersEditing::Editing;
_perform_layer_editing_action(&evt);
}
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos(0), pos(1)))
{
if (evt.LeftDown())
{
// A volume is selected and the mouse is inside the reset button. Reset the ModelObject's layer height profile.
m_layers_editing.reset_layer_height_profile(*this);
// Index 2 means no editing, just wait for mouse up event.
m_layers_editing.state = LayersEditing::Completed;
m_dirty = true;
}
}
else
{
// Select volume in this 3D canvas.
// Don't deselect a volume if layer editing is enabled. We want the object to stay selected
// during the scene manipulation.
if (m_picking_enabled && ((m_hover_volume_id != -1) || !is_layers_editing_enabled()))
{
if (evt.LeftDown() && (m_hover_volume_id != -1))
{
bool already_selected = m_selection.contains_volume(m_hover_volume_id);
bool ctrl_down = evt.CmdDown();
Selection::IndicesList curr_idxs = m_selection.get_volume_idxs();
if (already_selected && ctrl_down)
m_selection.remove(m_hover_volume_id);
else
{
m_selection.add(m_hover_volume_id, !ctrl_down, true);
m_mouse.drag.move_requires_threshold = !already_selected;
if (already_selected)
m_mouse.set_move_start_threshold_position_2D_as_invalid();
else
m_mouse.drag.move_start_threshold_position_2D = pos;
}
if (curr_idxs != m_selection.get_volume_idxs())
{
m_gizmos.refresh_on_off_state(m_selection);
m_gizmos.update_data(*this);
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
m_dirty = true;
}
}
}
// propagate event through callback
if (m_hover_volume_id != -1)
{
if (evt.LeftDown() && m_moving_enabled && (m_mouse.drag.move_volume_idx == -1))
{
// Only accept the initial position, if it is inside the volume bounding box.
BoundingBoxf3 volume_bbox = m_volumes.volumes[m_hover_volume_id]->transformed_bounding_box();
volume_bbox.offset(1.0);
if (volume_bbox.contains(m_mouse.scene_position))
{
// The dragging operation is initiated.
m_mouse.drag.move_volume_idx = m_hover_volume_id;
m_selection.start_dragging();
m_mouse.drag.start_position_3D = m_mouse.scene_position;
m_moving = true;
}
}
}
}
}
else if (evt.Dragging() && evt.LeftIsDown() && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1))
{
if (!m_mouse.drag.move_requires_threshold)
{
m_mouse.dragging = true;
Vec3d cur_pos = m_mouse.drag.start_position_3D;
// we do not want to translate objects if the user just clicked on an object while pressing shift to remove it from the selection and then drag
if (m_selection.contains_volume(m_hover_volume_id))
{
if (m_camera.get_theta() == 90.0f)
{
// side view -> move selected volumes orthogonally to camera view direction
Linef3 ray = mouse_ray(pos);
Vec3d dir = ray.unit_vector();
// finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position
// use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form
// in our case plane normal and ray direction are the same (orthogonal view)
// when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal
Vec3d inters = ray.a + (m_mouse.drag.start_position_3D - ray.a).dot(dir) / dir.squaredNorm() * dir;
// vector from the starting position to the found intersection
Vec3d inters_vec = inters - m_mouse.drag.start_position_3D;
Vec3d camera_right = m_camera.get_dir_right();
Vec3d camera_up = m_camera.get_dir_up();
// finds projection of the vector along the camera axes
double projection_x = inters_vec.dot(camera_right);
double projection_z = inters_vec.dot(camera_up);
// apply offset
cur_pos = m_mouse.drag.start_position_3D + projection_x * camera_right + projection_z * camera_up;
}
else
{
// Generic view
// Get new position at the same Z of the initial click point.
float z0 = 0.0f;
float z1 = 1.0f;
cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2));
}
}
m_regenerate_volumes = false;
m_selection.translate(cur_pos - m_mouse.drag.start_position_3D);
wxGetApp().obj_manipul()->update_settings_value(m_selection);
m_dirty = true;
}
}
else if (evt.Dragging())
{
m_mouse.dragging = true;
if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1))
{
if (m_layers_editing.state == LayersEditing::Editing)
_perform_layer_editing_action(&evt);
}
// do not process the dragging if the left mouse was set down in another canvas
else if (evt.LeftIsDown())
{
// if dragging over blank area with left button, rotate
if ((m_hover_volume_id == -1) && m_mouse.is_start_position_3D_defined())
{
const Vec3d& orig = m_mouse.drag.start_position_3D;
m_camera.phi += (((float)pos(0) - (float)orig(0)) * TRACKBALLSIZE);
m_camera.set_theta(m_camera.get_theta() - ((float)pos(1) - (float)orig(1)) * TRACKBALLSIZE, wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA);
m_dirty = true;
}
m_mouse.drag.start_position_3D = Vec3d((double)pos(0), (double)pos(1), 0.0);
}
else if (evt.MiddleIsDown() || evt.RightIsDown())
{
// If dragging over blank area with right button, pan.
if (m_mouse.is_start_position_2D_defined())
{
// get point in model space at Z = 0
float z = 0.0f;
const Vec3d& cur_pos = _mouse_to_3d(pos, &z);
Vec3d orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z);
m_camera.set_target(m_camera.get_target() + orig - cur_pos);
m_dirty = true;
}
m_mouse.drag.start_position_2D = pos;
}
}
else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
{
if (m_layers_editing.state != LayersEditing::Unknown)
{
m_layers_editing.state = LayersEditing::Unknown;
_stop_timer();
m_layers_editing.accept_changes(*this);
}
else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging)
{
m_regenerate_volumes = false;
do_move();
wxGetApp().obj_manipul()->update_settings_value(m_selection);
// Let the platter know that the dragging finished, so a delayed refresh
// of the scene with the background processing data should be performed.
post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED));
}
else if (evt.LeftUp() && !m_mouse.dragging && (m_hover_volume_id == -1) && !is_layers_editing_enabled())
{
// deselect and propagate event through callback
if (!evt.ShiftDown() && m_picking_enabled)
{
m_selection.clear();
m_selection.set_mode(Selection::Instance);
wxGetApp().obj_manipul()->update_settings_value(m_selection);
m_gizmos.reset_all_states();
m_gizmos.update_data(*this);
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
}
}
else if (evt.RightUp())
{
m_mouse.position = pos.cast<double>();
// forces a frame render to ensure that m_hover_volume_id is updated even when the user right clicks while
// the context menu is already shown
render();
if (m_hover_volume_id != -1)
{
// if right clicking on volume, propagate event through callback (shows context menu)
if (m_volumes.volumes[m_hover_volume_id]->hover
&& !m_volumes.volumes[m_hover_volume_id]->is_wipe_tower // no context menu for the wipe tower
&& m_gizmos.get_current_type() != GLGizmosManager::SlaSupports) // disable context menu when the gizmo is open
{
// forces the selection of the volume
m_selection.add(m_hover_volume_id);
m_gizmos.refresh_on_off_state(m_selection);
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
m_gizmos.update_data(*this);
wxGetApp().obj_manipul()->update_settings_value(m_selection);
// forces a frame render to update the view before the context menu is shown
render();
Vec2d logical_pos = pos.cast<double>();
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
logical_pos = logical_pos.cwiseQuotient(Vec2d(factor, factor));
#endif // ENABLE_RETINA_GL
post_event(Vec2dEvent(EVT_GLCANVAS_RIGHT_CLICK, logical_pos));
}
}
}
mouse_up_cleanup();
}
else if (evt.Moving())
{
m_mouse.position = pos.cast<double>();
std::string tooltip = "";
if (tooltip.empty())
tooltip = m_gizmos.get_tooltip();
if (tooltip.empty())
tooltip = m_toolbar.get_tooltip();
if (tooltip.empty())
tooltip = m_view_toolbar.get_tooltip();
set_tooltip(tooltip);
// updates gizmos overlay
if (m_selection.is_empty())
m_gizmos.reset_all_states();
// Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over.
if (m_picking_enabled)
m_dirty = true;
}
else
evt.Skip();
#ifdef __WXMSW__
if (on_enter_workaround)
m_mouse.position = Vec2d(-1., -1.);
#endif /* __WXMSW__ */
}
void GLCanvas3D::on_paint(wxPaintEvent& evt)
{
if (m_initialized)
m_dirty = true;
else
// Call render directly, so it gets initialized immediately, not from On Idle handler.
this->render();
}
Size GLCanvas3D::get_canvas_size() const
{
int w = 0;
int h = 0;
if (m_canvas != nullptr)
m_canvas->GetSize(&w, &h);
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
w *= factor;
h *= factor;
#else
const float factor = 1.0f;
#endif
return Size(w, h, factor);
}
Vec2d GLCanvas3D::get_local_mouse_position() const
{
if (m_canvas == nullptr)
return Vec2d::Zero();
wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition());
const double factor =
#if ENABLE_RETINA_GL
m_retina_helper->get_scale_factor();
#else
1.0;
#endif
return Vec2d(factor * mouse_pos.x, factor * mouse_pos.y);
}
void GLCanvas3D::reset_legend_texture()
{
if (m_legend_texture.get_id() != 0)
{
_set_current();
m_legend_texture.reset();
}
}
void GLCanvas3D::set_tooltip(const std::string& tooltip) const
{
if (m_canvas != nullptr)
{
wxToolTip* t = m_canvas->GetToolTip();
if (t != nullptr)
{
if (tooltip.empty())
m_canvas->UnsetToolTip();
else
t->SetTip(tooltip);
}
else if (!tooltip.empty()) // Avoid "empty" tooltips => unset of the empty tooltip leads to application crash under OSX
m_canvas->SetToolTip(tooltip);
}
}
void GLCanvas3D::do_move()
{
if (m_model == nullptr)
return;
std::set<std::pair<int, int>> done; // keeps track of modified instances
bool object_moved = false;
Vec3d wipe_tower_origin = Vec3d::Zero();
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
std::pair<int, int> done_id(object_idx, instance_idx);
if ((0 <= object_idx) && (object_idx < (int)m_model->objects.size()))
{
done.insert(done_id);
// Move instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
else if (selection_mode == Selection::Volume)
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
object_moved = true;
model_object->invalidate_bounding_box();
}
}
else if (object_idx == 1000)
// Move a wipe tower proxy.
wipe_tower_origin = v->get_volume_offset();
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (object_moved)
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_MOVED));
if (wipe_tower_origin != Vec3d::Zero())
post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_MOVED, std::move(wipe_tower_origin)));
}
void GLCanvas3D::do_rotate()
{
if (m_model == nullptr)
return;
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Rotate instances/volumes.
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
{
model_object->instances[instance_idx]->set_rotation(v->get_instance_rotation());
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
}
else if (selection_mode == Selection::Volume)
{
model_object->volumes[volume_idx]->set_rotation(v->get_volume_rotation());
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
}
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (!done.empty())
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED));
}
void GLCanvas3D::do_scale()
{
if (m_model == nullptr)
return;
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Rotate instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
{
model_object->instances[instance_idx]->set_scaling_factor(v->get_instance_scaling_factor());
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
}
else if (selection_mode == Selection::Volume)
{
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
model_object->volumes[volume_idx]->set_scaling_factor(v->get_volume_scaling_factor());
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
}
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (!done.empty())
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED));
}
void GLCanvas3D::do_flatten()
{
do_rotate();
}
void GLCanvas3D::do_mirror()
{
if (m_model == nullptr)
return;
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Mirror instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
model_object->instances[instance_idx]->set_mirror(v->get_instance_mirror());
else if (selection_mode == Selection::Volume)
model_object->volumes[volume_idx]->set_mirror(v->get_volume_mirror());
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
void GLCanvas3D::set_camera_zoom(float zoom)
{
zoom = std::max(std::min(zoom, 4.0f), -4.0f) / 10.0f;
zoom = m_camera.zoom / (1.0f - zoom);
// Don't allow to zoom too far outside the scene.
float zoom_min = _get_zoom_to_bounding_box_factor(_max_bounding_box());
if (zoom_min > 0.0f)
zoom = std::max(zoom, zoom_min * 0.7f);
// Don't allow to zoom too close to the scene.
zoom = std::min(zoom, 100.0f);
m_camera.zoom = zoom;
_refresh_if_shown_on_screen();
}
void GLCanvas3D::update_gizmos_on_off_state()
{
set_as_dirty();
m_gizmos.update_data(*this);
m_gizmos.refresh_on_off_state(get_selection());
}
void GLCanvas3D::handle_sidebar_focus_event(const std::string& opt_key, bool focus_on)
{
m_sidebar_field = focus_on ? opt_key : "";
if (!m_sidebar_field.empty())
{
m_gizmos.reset_all_states();
m_dirty = true;
}
}
void GLCanvas3D::update_ui_from_settings()
{
#if ENABLE_RETINA_GL
const float orig_scaling = m_retina_helper->get_scale_factor();
const bool use_retina = wxGetApp().app_config->get("use_retina_opengl") == "1";
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Use Retina OpenGL: " << use_retina;
m_retina_helper->set_use_retina(use_retina);
const float new_scaling = m_retina_helper->get_scale_factor();
if (new_scaling != orig_scaling) {
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Scaling factor: " << new_scaling;
m_camera.zoom /= orig_scaling;
m_camera.zoom *= new_scaling;
_refresh_if_shown_on_screen();
}
#endif
}
Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos)
{
float z0 = 0.0f;
float z1 = 1.0f;
return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1));
}
double GLCanvas3D::get_size_proportional_to_max_bed_size(double factor) const
{
return factor * m_bed.get_bounding_box().max_size();
}
bool GLCanvas3D::_is_shown_on_screen() const
{
return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false;
}
bool GLCanvas3D::_init_toolbar()
{
if (!m_toolbar.is_enabled())
return true;
#if !ENABLE_SVG_ICONS
ItemsIconsTexture::Metadata icons_data;
icons_data.filename = "toolbar.png";
icons_data.icon_size = 37;
#endif // !ENABLE_SVG_ICONS
BackgroundTexture::Metadata background_data;
background_data.filename = "toolbar_background.png";
background_data.left = 16;
background_data.top = 16;
background_data.right = 16;
background_data.bottom = 16;
#if ENABLE_SVG_ICONS
if (!m_toolbar.init(background_data))
#else
if (!m_toolbar.init(icons_data, background_data))
#endif // ENABLE_SVG_ICONS
{
// unable to init the toolbar texture, disable it
m_toolbar.set_enabled(false);
return true;
}
#if ENABLE_SVG_ICONS
m_toolbar.set_icons_size(40);
#endif // ENABLE_SVG_ICONS
// m_toolbar.set_layout_type(GLToolbar::Layout::Vertical);
m_toolbar.set_layout_type(GLToolbar::Layout::Horizontal);
m_toolbar.set_layout_orientation(GLToolbar::Layout::Top);
m_toolbar.set_border(5.0f);
m_toolbar.set_separator_size(5);
m_toolbar.set_gap_size(2);
GLToolbarItem::Data item;
item.name = "add";
#if ENABLE_SVG_ICONS
item.icon_filename = "add.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Add...") + " [" + GUI::shortkey_ctrl_prefix() + "I]";
item.sprite_id = 0;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ADD)); };
if (!m_toolbar.add_item(item))
return false;
item.name = "delete";
#if ENABLE_SVG_ICONS
item.icon_filename = "remove.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Delete") + " [Del]";
item.sprite_id = 1;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE)); };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_delete(); };
if (!m_toolbar.add_item(item))
return false;
item.name = "deleteall";
#if ENABLE_SVG_ICONS
item.icon_filename = "delete_all.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Delete all") + " [" + GUI::shortkey_ctrl_prefix() + "Del]";
item.sprite_id = 2;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_delete_all(); };
if (!m_toolbar.add_item(item))
return false;
item.name = "arrange";
#if ENABLE_SVG_ICONS
item.icon_filename = "arrange.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Arrange [A]");
item.sprite_id = 3;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ARRANGE)); };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_arrange(); };
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "copy";
#if ENABLE_SVG_ICONS
item.icon_filename = "copy.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Copy") + " [" + GUI::shortkey_ctrl_prefix() + "C]";
item.sprite_id = 4;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_COPY)); };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_copy(); };
if (!m_toolbar.add_item(item))
return false;
item.name = "paste";
#if ENABLE_SVG_ICONS
item.icon_filename = "paste.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Paste") + " [" + GUI::shortkey_ctrl_prefix() + "V]";
item.sprite_id = 5;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_PASTE)); };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_paste(); };
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "more";
#if ENABLE_SVG_ICONS
item.icon_filename = "instance_add.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Add instance [+]");
item.sprite_id = 6;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_MORE)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_increase_instances(); };
if (!m_toolbar.add_item(item))
return false;
item.name = "fewer";
#if ENABLE_SVG_ICONS
item.icon_filename = "instance_remove.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Remove instance [-]");
item.sprite_id = 7;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_FEWER)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_decrease_instances(); };
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "splitobjects";
#if ENABLE_SVG_ICONS
item.icon_filename = "split_objects.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Split to objects");
item.sprite_id = 8;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_OBJECTS)); };
item.visibility_callback = GLToolbarItem::Default_Visibility_Callback;
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_split_to_objects(); };
if (!m_toolbar.add_item(item))
return false;
item.name = "splitvolumes";
#if ENABLE_SVG_ICONS
item.icon_filename = "split_parts.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Split to parts");
item.sprite_id = 9;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_VOLUMES)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_split_to_volumes(); };
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "layersediting";
#if ENABLE_SVG_ICONS
item.icon_filename = "layers.svg";
#endif // ENABLE_SVG_ICONS
item.tooltip = GUI::L_str("Layers editing");
item.sprite_id = 10;
item.is_toggable = true;
item.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_LAYERSEDITING)); };
item.visibility_callback = [this]()->bool { return m_process->current_printer_technology() == ptFFF; };
item.enabled_state_callback = []()->bool { return wxGetApp().plater()->can_layers_editing(); };
if (!m_toolbar.add_item(item))
return false;
return true;
}
bool GLCanvas3D::_set_current()
{
if (_is_shown_on_screen() && (m_context != nullptr)) {
return m_canvas->SetCurrent(*m_context);
}
return false;
}
void GLCanvas3D::_resize(unsigned int w, unsigned int h)
{
if ((m_canvas == nullptr) && (m_context == nullptr))
return;
auto *imgui = wxGetApp().imgui();
imgui->set_display_size((float)w, (float)h);
const float font_size = 1.5f * wxGetApp().em_unit();
#if ENABLE_RETINA_GL
imgui->set_scaling(font_size, 1.0f, m_retina_helper->get_scale_factor());
#else
imgui->set_scaling(font_size, m_canvas->GetContentScaleFactor(), 1.0f);
#endif
// ensures that this canvas is current
_set_current();
m_camera.apply_viewport(0, 0, w, h);
const BoundingBoxf3& bbox = _max_bounding_box();
switch (m_camera.type)
{
case Camera::Ortho:
{
float w2 = w;
float h2 = h;
float two_zoom = 2.0f * m_camera.zoom;
if (two_zoom != 0.0f)
{
float inv_two_zoom = 1.0f / two_zoom;
w2 *= inv_two_zoom;
h2 *= inv_two_zoom;
}
// FIXME: calculate a tighter value for depth will improve z-fighting
float depth = 5.0f * (float)bbox.max_size();
m_camera.apply_ortho_projection(-w2, w2, -h2, h2, -depth, depth);
break;
}
// case Camera::Perspective:
// {
// float bbox_r = (float)bbox.radius();
// float fov = PI * 45.0f / 180.0f;
// float fov_tan = tan(0.5f * fov);
// float cam_distance = 0.5f * bbox_r / fov_tan;
// m_camera.distance = cam_distance;
//
// float nr = cam_distance - bbox_r * 1.1f;
// float fr = cam_distance + bbox_r * 1.1f;
// if (nr < 1.0f)
// nr = 1.0f;
//
// if (fr < nr + 1.0f)
// fr = nr + 1.0f;
//
// float h2 = fov_tan * nr;
// float w2 = h2 * w / h;
// ::glFrustum(-w2, w2, -h2, h2, nr, fr);
//
// break;
// }
default:
{
throw std::runtime_error("Invalid camera type.");
break;
}
}
m_dirty = false;
}
BoundingBoxf3 GLCanvas3D::_max_bounding_box() const
{
BoundingBoxf3 bb = volumes_bounding_box();
bb.merge(m_bed.get_bounding_box());
return bb;
}
void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox)
{
// Calculate the zoom factor needed to adjust viewport to bounding box.
float zoom = _get_zoom_to_bounding_box_factor(bbox);
if (zoom > 0.0f)
{
m_camera.zoom = zoom;
// center view around bounding box center
m_camera.set_target(bbox.center());
m_dirty = true;
}
}
float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const
{
float max_bb_size = bbox.max_size();
if (max_bb_size == 0.0f)
return -1.0f;
// project the bbox vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
// we need the view matrix, we let opengl calculate it (same as done in render())
m_camera.apply_view_matrix();
Vec3d right = m_camera.get_dir_right();
Vec3d up = m_camera.get_dir_up();
Vec3d forward = m_camera.get_dir_forward();
Vec3d bb_min = bbox.min;
Vec3d bb_max = bbox.max;
Vec3d bb_center = bbox.center();
// bbox vertices in world space
std::vector<Vec3d> vertices;
vertices.reserve(8);
vertices.push_back(bb_min);
vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2));
vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2));
vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2));
vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2));
vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2));
vertices.push_back(bb_max);
vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2));
double max_x = 0.0;
double max_y = 0.0;
// margin factor to give some empty space around the bbox
double margin_factor = 1.25;
for (const Vec3d& v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2));
Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up);
max_x = std::max(max_x, margin_factor * std::abs(x_on_plane));
max_y = std::max(max_y, margin_factor * std::abs(y_on_plane));
}
if ((max_x == 0.0) || (max_y == 0.0))
return -1.0f;
max_x *= 2.0;
max_y *= 2.0;
const Size& cnv_size = get_canvas_size();
return (float)std::min((double)cnv_size.get_width() / max_x, (double)cnv_size.get_height() / max_y);
}
void GLCanvas3D::_refresh_if_shown_on_screen()
{
if (_is_shown_on_screen())
{
const Size& cnv_size = get_canvas_size();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
// Because of performance problems on macOS, where PaintEvents are not delivered
// frequently enough, we call render() here directly when we can.
render();
}
}
void GLCanvas3D::_picking_pass() const
{
const Vec2d& pos = m_mouse.position;
if (m_picking_enabled && !m_mouse.dragging && (pos != Vec2d(DBL_MAX, DBL_MAX)))
{
// Render the object for picking.
// FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing.
// Better to use software ray - casting on a bounding - box hierarchy.
if (m_multisample_allowed)
glsafe(::glDisable(GL_MULTISAMPLE));
glsafe(::glDisable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
m_camera_clipping_plane = m_gizmos.get_sla_clipping_plane();
if (m_camera_clipping_plane.is_active()) {
::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)m_camera_clipping_plane.get_data());
::glEnable(GL_CLIP_PLANE0);
}
_render_volumes_for_picking();
if (m_camera_clipping_plane.is_active())
::glDisable(GL_CLIP_PLANE0);
m_gizmos.render_current_gizmo_for_picking_pass(m_selection);
if (m_multisample_allowed)
glsafe(::glEnable(GL_MULTISAMPLE));
int volume_id = -1;
GLubyte color[4] = { 0, 0, 0, 0 };
const Size& cnv_size = get_canvas_size();
bool inside = (0 <= pos(0)) && (pos(0) < cnv_size.get_width()) && (0 <= pos(1)) && (pos(1) < cnv_size.get_height());
if (inside)
{
glsafe(::glReadPixels(pos(0), cnv_size.get_height() - pos(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color));
volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
}
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size()))
{
m_hover_volume_id = volume_id;
m_gizmos.set_hover_id(-1);
}
else
{
m_hover_volume_id = -1;
m_gizmos.set_hover_id(inside && volume_id <= GLGizmoBase::BASE_ID ? (GLGizmoBase::BASE_ID - volume_id) : -1);
}
_update_volumes_hover_state();
}
}
void GLCanvas3D::_render_background() const
{
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
glsafe(::glMatrixMode(GL_PROJECTION));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
// Draws a bottom to top gradient over the complete screen.
glsafe(::glDisable(GL_DEPTH_TEST));
::glBegin(GL_QUADS);
if (m_dynamic_background_enabled && _is_any_volume_outside())
::glColor3fv(ERROR_BG_DARK_COLOR);
else
::glColor3fv(DEFAULT_BG_DARK_COLOR);
::glVertex2f(-1.0f, -1.0f);
::glVertex2f(1.0f, -1.0f);
if (m_dynamic_background_enabled && _is_any_volume_outside())
::glColor3fv(ERROR_BG_LIGHT_COLOR);
else
::glColor3fv(DEFAULT_BG_LIGHT_COLOR);
::glVertex2f(1.0f, 1.0f);
::glVertex2f(-1.0f, 1.0f);
glsafe(::glEnd());
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glPopMatrix());
glsafe(::glMatrixMode(GL_MODELVIEW));
glsafe(::glPopMatrix());
}
void GLCanvas3D::_render_bed(float theta) const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif // ENABLE_RETINA_GL
m_bed.render(theta, m_use_VBOs, scale_factor);
}
void GLCanvas3D::_render_axes() const
{
m_bed.render_axes();
}
void GLCanvas3D::_render_objects() const
{
if (m_volumes.empty())
return;
glsafe(::glEnable(GL_LIGHTING));
glsafe(::glEnable(GL_DEPTH_TEST));
m_camera_clipping_plane = m_gizmos.get_sla_clipping_plane();
if (m_use_VBOs)
{
if (m_picking_enabled)
{
// Update the layer editing selection to the first object selected, update the current object maximum Z.
const_cast<LayersEditing&>(m_layers_editing).select_object(*m_model, this->is_layers_editing_enabled() ? m_selection.get_object_idx() : -1);
if (m_config != nullptr)
{
const BoundingBoxf3& bed_bb = m_bed.get_bounding_box();
m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height"));
m_volumes.check_outside_state(m_config, nullptr);
}
}
if (m_use_clipping_planes)
m_volumes.set_z_range(-m_clipping_planes[0].get_data()[3], m_clipping_planes[1].get_data()[3]);
else
m_volumes.set_z_range(-FLT_MAX, FLT_MAX);
m_volumes.set_clipping_plane(m_camera_clipping_plane.get_data());
m_shader.start_using();
if (m_picking_enabled && m_layers_editing.is_enabled() && m_layers_editing.last_object_id != -1) {
int object_id = m_layers_editing.last_object_id;
m_volumes.render_VBOs(GLVolumeCollection::Opaque, false, m_camera.get_view_matrix(), [object_id](const GLVolume &volume) {
// Which volume to paint without the layer height profile shader?
return volume.is_active && (volume.is_modifier || volume.composite_id.object_id != object_id);
});
// Let LayersEditing handle rendering of the active object using the layer height profile shader.
m_layers_editing.render_volumes(*this, this->m_volumes);
} else {
// do not cull backfaces to show broken geometry, if any
m_volumes.render_VBOs(GLVolumeCollection::Opaque, m_picking_enabled, m_camera.get_view_matrix(), [this](const GLVolume& volume) {
return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0);
});
}
m_volumes.render_VBOs(GLVolumeCollection::Transparent, false, m_camera.get_view_matrix());
m_shader.stop_using();
}
else
{
::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)m_camera_clipping_plane.get_data());
::glEnable(GL_CLIP_PLANE0);
if (m_use_clipping_planes)
{
glsafe(::glClipPlane(GL_CLIP_PLANE1, (GLdouble*)m_clipping_planes[0].get_data()));
glsafe(::glEnable(GL_CLIP_PLANE1));
glsafe(::glClipPlane(GL_CLIP_PLANE2, (GLdouble*)m_clipping_planes[1].get_data()));
glsafe(::glEnable(GL_CLIP_PLANE2));
}
// do not cull backfaces to show broken geometry, if any
m_volumes.render_legacy(GLVolumeCollection::Opaque, m_picking_enabled, m_camera.get_view_matrix(), [this](const GLVolume& volume) {
return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0);
});
m_volumes.render_legacy(GLVolumeCollection::Transparent, false, m_camera.get_view_matrix());
::glDisable(GL_CLIP_PLANE0);
if (m_use_clipping_planes)
{
glsafe(::glDisable(GL_CLIP_PLANE1));
glsafe(::glDisable(GL_CLIP_PLANE2));
}
}
m_camera_clipping_plane = ClippingPlane::ClipsNothing();
glsafe(::glDisable(GL_LIGHTING));
}
void GLCanvas3D::_render_selection() const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif
if (!m_gizmos.is_running())
m_selection.render(scale_factor);
}
#if ENABLE_RENDER_SELECTION_CENTER
void GLCanvas3D::_render_selection_center() const
{
if (!m_gizmos.is_running())
m_selection.render_center();
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void GLCanvas3D::_render_warning_texture() const
{
m_warning_texture.render(*this);
}
void GLCanvas3D::_render_legend_texture() const
{
if (!m_legend_texture_enabled)
return;
m_legend_texture.render(*this);
}
void GLCanvas3D::_render_volumes_for_picking() const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
// do not cull backfaces to show broken geometry, if any
glsafe(::glDisable(GL_CULL_FACE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
const Transform3d& view_matrix = m_camera.get_view_matrix();
GLVolumeWithIdAndZList to_render = volumes_to_render(m_volumes.volumes, GLVolumeCollection::Opaque, view_matrix);
for (const GLVolumeWithIdAndZ& volume : to_render)
{
// Object picking mode. Render the object with a color encoding the object index.
unsigned int r = (volume.second.first & 0x000000FF) >> 0;
unsigned int g = (volume.second.first & 0x0000FF00) >> 8;
unsigned int b = (volume.second.first & 0x00FF0000) >> 16;
glsafe(::glColor3f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255));
if (!volume.first->disabled && ((volume.first->composite_id.volume_id >= 0) || m_render_sla_auxiliaries))
volume.first->render();
}
to_render = volumes_to_render(m_volumes.volumes, GLVolumeCollection::Transparent, view_matrix);
for (const GLVolumeWithIdAndZ& volume : to_render)
{
// Object picking mode. Render the object with a color encoding the object index.
unsigned int r = (volume.second.first & 0x000000FF) >> 0;
unsigned int g = (volume.second.first & 0x0000FF00) >> 8;
unsigned int b = (volume.second.first & 0x00FF0000) >> 16;
glsafe(::glColor3f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255));
if (!volume.first->disabled && ((volume.first->composite_id.volume_id >= 0) || m_render_sla_auxiliaries))
volume.first->render();
}
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glDisable(GL_BLEND));
glsafe(::glEnable(GL_CULL_FACE));
}
void GLCanvas3D::_render_current_gizmo() const
{
m_gizmos.render_current_gizmo(m_selection);
}
void GLCanvas3D::_render_gizmos_overlay() const
{
#if ENABLE_RETINA_GL
m_gizmos.set_overlay_scale(m_retina_helper->get_scale_factor());
#else
m_gizmos.set_overlay_scale(m_canvas->GetContentScaleFactor());
#endif /* __WXMSW__ */
m_gizmos.render_overlay(*this, m_selection);
}
void GLCanvas3D::_render_toolbar() const
{
#if ENABLE_SVG_ICONS
#if ENABLE_RETINA_GL
m_toolbar.set_scale(m_retina_helper->get_scale_factor());
#else
m_toolbar.set_scale(m_canvas->GetContentScaleFactor());
#endif // ENABLE_RETINA_GL
Size cnv_size = get_canvas_size();
float zoom = m_camera.zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
GLToolbar::Layout::EOrientation orientation = m_toolbar.get_layout_orientation();
float top = 0.0f;
float left = 0.0f;
switch (m_toolbar.get_layout_type())
{
default:
case GLToolbar::Layout::Horizontal:
{
// centers the toolbar on the top edge of the 3d scene
if (orientation == GLToolbar::Layout::Top)
{
top = 0.5f * (float)cnv_size.get_height() * inv_zoom;
left = -0.5f * m_toolbar.get_width() * inv_zoom;
}
else
{
top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom;
left = -0.5f * m_toolbar.get_width() * inv_zoom;
}
break;
}
case GLToolbar::Layout::Vertical:
{
// centers the toolbar on the right edge of the 3d scene
if (orientation == GLToolbar::Layout::Left)
{
top = 0.5f * m_toolbar.get_height() * inv_zoom;
left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom;
}
else
{
top = 0.5f * m_toolbar.get_height() * inv_zoom;
left = (0.5f * (float)cnv_size.get_width() - m_toolbar.get_width()) * inv_zoom;
}
break;
}
}
m_toolbar.set_position(top, left);
#else
#if ENABLE_RETINA_GL
m_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#else
m_toolbar.set_icons_scale(m_canvas->GetContentScaleFactor());
#endif /* __WXMSW__ */
#endif // ENABLE_SVG_ICONS
m_toolbar.render(*this);
}
void GLCanvas3D::_render_view_toolbar() const
{
#if ENABLE_SVG_ICONS
#if ENABLE_RETINA_GL
m_view_toolbar.set_scale(m_retina_helper->get_scale_factor());
#else
m_view_toolbar.set_scale(m_canvas->GetContentScaleFactor());
#endif // ENABLE_RETINA_GL
Size cnv_size = get_canvas_size();
float zoom = m_camera.zoom;
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
// places the toolbar on the bottom-left corner of the 3d scene
float top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom;
float left = -0.5f * (float)cnv_size.get_width() * inv_zoom;
m_view_toolbar.set_position(top, left);
#else
#if ENABLE_RETINA_GL
m_view_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#else
m_view_toolbar.set_icons_scale(m_canvas->GetContentScaleFactor());
#endif /* __WXMSW__ */
#endif // ENABLE_SVG_ICONS
m_view_toolbar.render(*this);
}
#if ENABLE_SHOW_CAMERA_TARGET
void GLCanvas3D::_render_camera_target() const
{
double half_length = 5.0;
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glLineWidth(2.0f));
::glBegin(GL_LINES);
const Vec3d& target = m_camera.get_target();
// draw line for x axis
::glColor3f(1.0f, 0.0f, 0.0f);
::glVertex3d(target(0) - half_length, target(1), target(2));
::glVertex3d(target(0) + half_length, target(1), target(2));
// draw line for y axis
::glColor3f(0.0f, 1.0f, 0.0f);
::glVertex3d(target(0), target(1) - half_length, target(2));
::glVertex3d(target(0), target(1) + half_length, target(2));
// draw line for z axis
::glColor3f(0.0f, 0.0f, 1.0f);
::glVertex3d(target(0), target(1), target(2) - half_length);
::glVertex3d(target(0), target(1), target(2) + half_length);
glsafe(::glEnd());
}
#endif // ENABLE_SHOW_CAMERA_TARGET
void GLCanvas3D::_render_sla_slices() const
{
if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
return;
const SLAPrint* print = this->sla_print();
const PrintObjects& print_objects = print->objects();
if (print_objects.empty())
// nothing to render, return
return;
double clip_min_z = -m_clipping_planes[0].get_data()[3];
double clip_max_z = m_clipping_planes[1].get_data()[3];
for (unsigned int i = 0; i < (unsigned int)print_objects.size(); ++i)
{
const SLAPrintObject* obj = print_objects[i];
if (!obj->is_step_done(slaposSliceSupports))
continue;
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_bottom = m_sla_caps[0].triangles.find(i);
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_top = m_sla_caps[1].triangles.find(i);
{
if (it_caps_bottom == m_sla_caps[0].triangles.end())
it_caps_bottom = m_sla_caps[0].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[0].matches(clip_min_z)) {
m_sla_caps[0].z = clip_min_z;
it_caps_bottom->second.object.clear();
it_caps_bottom->second.supports.clear();
}
if (it_caps_top == m_sla_caps[1].triangles.end())
it_caps_top = m_sla_caps[1].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[1].matches(clip_max_z)) {
m_sla_caps[1].z = clip_max_z;
it_caps_top->second.object.clear();
it_caps_top->second.supports.clear();
}
}
Pointf3s &bottom_obj_triangles = it_caps_bottom->second.object;
Pointf3s &bottom_sup_triangles = it_caps_bottom->second.supports;
Pointf3s &top_obj_triangles = it_caps_top->second.object;
Pointf3s &top_sup_triangles = it_caps_top->second.supports;
if ((bottom_obj_triangles.empty() || bottom_sup_triangles.empty() || top_obj_triangles.empty() || top_sup_triangles.empty()) &&
!obj->get_slice_index().empty())
{
double layer_height = print->default_object_config().layer_height.value;
double initial_layer_height = print->material_config().initial_layer_height.value;
bool left_handed = obj->is_left_handed();
coord_t key_zero = obj->get_slice_index().front().print_level();
// Slice at the center of the slab starting at clip_min_z will be rendered for the lower plane.
coord_t key_low = coord_t((clip_min_z - initial_layer_height + layer_height) / SCALING_FACTOR) + key_zero;
// Slice at the center of the slab ending at clip_max_z will be rendered for the upper plane.
coord_t key_high = coord_t((clip_max_z - initial_layer_height) / SCALING_FACTOR) + key_zero;
const SliceRecord& slice_low = obj->closest_slice_to_print_level(key_low, coord_t(SCALED_EPSILON));
const SliceRecord& slice_high = obj->closest_slice_to_print_level(key_high, coord_t(SCALED_EPSILON));
// Offset to avoid OpenGL Z fighting between the object's horizontal surfaces and the triangluated surfaces of the cuts.
double plane_shift_z = 0.002;
if (slice_low.is_valid()) {
const ExPolygons& obj_bottom = slice_low.get_slice(soModel);
const ExPolygons& sup_bottom = slice_low.get_slice(soSupport);
// calculate model bottom cap
if (bottom_obj_triangles.empty() && !obj_bottom.empty())
bottom_obj_triangles = triangulate_expolygons_3d(obj_bottom, clip_min_z - plane_shift_z, ! left_handed);
// calculate support bottom cap
if (bottom_sup_triangles.empty() && !sup_bottom.empty())
bottom_sup_triangles = triangulate_expolygons_3d(sup_bottom, clip_min_z - plane_shift_z, ! left_handed);
}
if (slice_high.is_valid()) {
const ExPolygons& obj_top = slice_high.get_slice(soModel);
const ExPolygons& sup_top = slice_high.get_slice(soSupport);
// calculate model top cap
if (top_obj_triangles.empty() && !obj_top.empty())
top_obj_triangles = triangulate_expolygons_3d(obj_top, clip_max_z + plane_shift_z, left_handed);
// calculate support top cap
if (top_sup_triangles.empty() && !sup_top.empty())
top_sup_triangles = triangulate_expolygons_3d(sup_top, clip_max_z + plane_shift_z, left_handed);
}
}
if (!bottom_obj_triangles.empty() || !top_obj_triangles.empty() || !bottom_sup_triangles.empty() || !top_sup_triangles.empty())
{
for (const SLAPrintObject::Instance& inst : obj->instances())
{
glsafe(::glPushMatrix());
glsafe(::glTranslated(unscale<double>(inst.shift.x()), unscale<double>(inst.shift.y()), 0));
glsafe(::glRotatef(Geometry::rad2deg(inst.rotation), 0.0, 0.0, 1.0));
if (obj->is_left_handed())
// The polygons are mirrored by X.
glsafe(::glScalef(-1.0, 1.0, 1.0));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glColor3f(1.0f, 0.37f, 0.0f));
if (!bottom_obj_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_obj_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_obj_triangles.size()));
}
if (! top_obj_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_obj_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_obj_triangles.size()));
}
glsafe(::glColor3f(1.0f, 0.0f, 0.37f));
if (! bottom_sup_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_sup_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_sup_triangles.size()));
}
if (! top_sup_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_sup_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_sup_triangles.size()));
}
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glPopMatrix());
}
}
}
}
void GLCanvas3D::_render_selection_sidebar_hints() const
{
if (m_use_VBOs)
m_shader.start_using();
m_selection.render_sidebar_hints(m_sidebar_field);
if (m_use_VBOs)
m_shader.stop_using();
}
void GLCanvas3D::_update_volumes_hover_state() const
{
for (GLVolume* v : m_volumes.volumes)
{
v->hover = false;
}
if (m_hover_volume_id == -1)
return;
GLVolume* volume = m_volumes.volumes[m_hover_volume_id];
if (volume->is_modifier)
volume->hover = true;
else
{
int object_idx = volume->object_idx();
int instance_idx = volume->instance_idx();
for (GLVolume* v : m_volumes.volumes)
{
if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx))
v->hover = true;
}
}
}
void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt)
{
int object_idx_selected = m_layers_editing.last_object_id;
if (object_idx_selected == -1)
return;
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (evt != nullptr)
{
const Rect& rect = LayersEditing::get_bar_rect_screen(*this);
float b = rect.get_bottom();
m_layers_editing.last_z = m_layers_editing.object_max_z() * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
m_layers_editing.last_action =
evt->ShiftDown() ? (evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_SMOOTH : LAYER_HEIGHT_EDIT_ACTION_REDUCE) :
(evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_INCREASE : LAYER_HEIGHT_EDIT_ACTION_DECREASE);
}
m_layers_editing.adjust_layer_height_profile();
_refresh_if_shown_on_screen();
// Automatic action on mouse down with the same coordinate.
_start_timer();
}
Vec3d GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z)
{
if (m_canvas == nullptr)
return Vec3d(DBL_MAX, DBL_MAX, DBL_MAX);
const std::array<int, 4>& viewport = m_camera.get_viewport();
const Transform3d& modelview_matrix = m_camera.get_view_matrix();
const Transform3d& projection_matrix = m_camera.get_projection_matrix();
GLint y = viewport[3] - (GLint)mouse_pos(1);
GLfloat mouse_z;
if (z == nullptr)
glsafe(::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z));
else
mouse_z = *z;
GLdouble out_x, out_y, out_z;
::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, (GLdouble*)modelview_matrix.data(), (GLdouble*)projection_matrix.data(), (GLint*)viewport.data(), &out_x, &out_y, &out_z);
return Vec3d((double)out_x, (double)out_y, (double)out_z);
}
Vec3d GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos)
{
return mouse_ray(mouse_pos).intersect_plane(0.0);
}
void GLCanvas3D::_start_timer()
{
m_timer.Start(100, wxTIMER_CONTINUOUS);
}
void GLCanvas3D::_stop_timer()
{
m_timer.Stop();
}
void GLCanvas3D::_load_print_toolpaths()
{
const Print *print = this->fff_print();
if (print == nullptr)
return;
if (!print->is_step_done(psSkirt) || !print->is_step_done(psBrim))
return;
if (!print->has_skirt() && (print->config().brim_width.value == 0))
return;
const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish
// number of skirt layers
size_t total_layer_count = 0;
for (const PrintObject* print_object : print->objects())
{
total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
}
size_t skirt_height = print->has_infinite_skirt() ? total_layer_count : std::min<size_t>(print->config().skirt_height.value, total_layer_count);
if ((skirt_height == 0) && (print->config().brim_width.value > 0))
skirt_height = 1;
// get first skirt_height layers (maybe this should be moved to a PrintObject method?)
const PrintObject* object0 = print->objects().front();
std::vector<float> print_zs;
print_zs.reserve(skirt_height * 2);
for (size_t i = 0; i < std::min(skirt_height, object0->layers().size()); ++i)
{
print_zs.push_back(float(object0->layers()[i]->print_z));
}
//FIXME why there are support layers?
for (size_t i = 0; i < std::min(skirt_height, object0->support_layers().size()); ++i)
{
print_zs.push_back(float(object0->support_layers()[i]->print_z));
}
sort_remove_duplicates(print_zs);
if (print_zs.size() > skirt_height)
print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
m_volumes.volumes.emplace_back(new GLVolume(color));
GLVolume& volume = *m_volumes.volumes.back();
for (size_t i = 0; i < skirt_height; ++i) {
volume.print_zs.push_back(print_zs[i]);
volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
if (i == 0)
_3DScene::extrusionentity_to_verts(print->brim(), print_zs[i], Point(0, 0), volume);
_3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), volume);
}
volume.bounding_box = volume.indexed_vertex_array.bounding_box();
volume.indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors, const std::vector<double>& color_print_values)
{
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const Points *shifted_copies;
std::vector<const Layer*> layers;
bool has_perimeters;
bool has_infill;
bool has_support;
const std::vector<float>* tool_colors;
const std::vector<double>* color_print_values;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max() { return 131072; } // 3.15MB
// static const size_t alloc_size_max () { return 65536; } // 1.57MB
// static const size_t alloc_size_max () { return 32768; } // 786kB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int extruder, int feature) const
{
return this->color_by_color_print() ? 0 : this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(extruder - 1, 0)) : feature;
}
// For coloring by a color_print(M600), return a parsed color.
bool color_by_color_print() const { return color_print_values!=nullptr; }
const float* color_print_by_layer_idx(const size_t layer_idx) const
{
auto it = std::lower_bound(color_print_values->begin(), color_print_values->end(), layers[layer_idx]->print_z + EPSILON);
return color_tool((it - color_print_values->begin()) % number_tools());
}
} ctxt;
ctxt.has_perimeters = print_object.is_step_done(posPerimeters);
ctxt.has_infill = print_object.is_step_done(posInfill);
ctxt.has_support = print_object.is_step_done(posSupportMaterial);
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
ctxt.color_print_values = color_print_values.empty() ? nullptr : &color_print_values;
ctxt.shifted_copies = &print_object.copies();
// order layers by print_z
{
size_t nlayers = 0;
if (ctxt.has_perimeters || ctxt.has_infill)
nlayers = print_object.layers().size();
if (ctxt.has_support)
nlayers += print_object.support_layers().size();
ctxt.layers.reserve(nlayers);
}
if (ctxt.has_perimeters || ctxt.has_infill)
for (const Layer *layer : print_object.layers())
ctxt.layers.push_back(layer);
if (ctxt.has_support)
for (const Layer *layer : print_object.support_layers())
ctxt.layers.push_back(layer);
std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
// Maximum size of an allocation block: 32MB / sizeof(float)
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = ctxt.color_by_color_print() ? size_t(1) : std::max(ctxt.layers.size() / 16, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
m_volumes.volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
GLVolumePtrs vols;
if (ctxt.color_by_color_print())
vols.emplace_back(new_volume(ctxt.color_print_by_layer_idx(range.begin())));
else if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
for (GLVolume *vol : vols)
vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const Layer *layer = ctxt.layers[idx_layer];
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
vol.print_zs.push_back(layer->print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const Point &copy : *ctxt.shifted_copies) {
for (const LayerRegion *layerm : layer->regions()) {
if (ctxt.has_perimeters)
_3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
*vols[ctxt.volume_idx(layerm->region()->config().perimeter_extruder.value, 0)]);
if (ctxt.has_infill) {
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (!fill->entities.empty())
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
is_solid_infill(fill->entities.front()->role()) ?
layerm->region()->config().solid_infill_extruder :
layerm->region()->config().infill_extruder,
1)]);
}
}
}
if (ctxt.has_support) {
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
_3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
(extrusion_entity->role() == erSupportMaterial) ?
support_layer->object()->config().support_material_extruder :
support_layer->object()->config().support_material_interface_extruder,
2)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end";
}
void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors)
{
const Print *print = this->fff_print();
if ((print == nullptr) || print->wipe_tower_data().tool_changes.empty())
return;
if (!print->is_step_done(psWipeTower))
return;
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const Print *print;
const std::vector<float> *tool_colors;
WipeTower::xy wipe_tower_pos;
float wipe_tower_angle;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max() { return 131072; } // 3.15MB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int tool, int feature) const
{
return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature;
}
const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
const auto &tool_changes = print->wipe_tower_data().tool_changes;
return priming.empty() ?
((idx == tool_changes.size()) ? final : tool_changes[idx]) :
((idx == 0) ? priming : (idx == tool_changes.size() + 1) ? final : tool_changes[idx - 1]);
}
std::vector<WipeTower::ToolChangeResult> priming;
std::vector<WipeTower::ToolChangeResult> final;
} ctxt;
ctxt.print = print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (print->wipe_tower_data().priming && print->config().single_extruder_multi_material_priming)
ctxt.priming.emplace_back(*print->wipe_tower_data().priming.get());
if (print->wipe_tower_data().final_purge)
ctxt.final.emplace_back(*print->wipe_tower_data().final_purge.get());
ctxt.wipe_tower_angle = ctxt.print->config().wipe_tower_rotation_angle.value/180.f * PI;
ctxt.wipe_tower_pos = WipeTower::xy(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t n_items = print->wipe_tower_data().tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
size_t grain_size = std::max(n_items / 128, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
m_volumes.volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(n_items);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, n_items, grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// Bounding box of this slab of a wipe tower.
GLVolumePtrs vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_support()) };
for (GLVolume *volume : vols)
volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
vol.print_zs.push_back(layer.front().print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const WipeTower::ToolChangeResult &extrusions : layer) {
for (size_t i = 1; i < extrusions.extrusions.size();) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
if (e.width == 0.) {
++i;
continue;
}
size_t j = i + 1;
if (ctxt.color_by_tool())
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j);
else
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j);
size_t n_lines = j - i;
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
lines.reserve(n_lines);
widths.reserve(n_lines);
heights.assign(n_lines, extrusions.layer_height);
WipeTower::Extrusion e_prev = extrusions.extrusions[i-1];
if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation
e_prev.pos.rotate(ctxt.wipe_tower_angle);
e_prev.pos.translate(ctxt.wipe_tower_pos);
}
for (; i < j; ++i) {
WipeTower::Extrusion e = extrusions.extrusions[i];
assert(e.width > 0.f);
if (!extrusions.priming) {
e.pos.rotate(ctxt.wipe_tower_angle);
e.pos.translate(ctxt.wipe_tower_pos);
}
lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
widths.emplace_back(e.width);
e_prev = e;
}
_3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end";
}
static inline int hex_digit_to_int(const char c)
{
return
(c >= '0' && c <= '9') ? int(c - '0') :
(c >= 'A' && c <= 'F') ? int(c - 'A') + 10 :
(c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1;
}
void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
// helper functions to select data in dependence of the extrusion view type
struct Helper
{
static float path_filter(GCodePreviewData::Extrusion::EViewType type, const ExtrusionPath& path)
{
switch (type)
{
case GCodePreviewData::Extrusion::FeatureType:
return (float)path.role();
case GCodePreviewData::Extrusion::Height:
return path.height;
case GCodePreviewData::Extrusion::Width:
return path.width;
case GCodePreviewData::Extrusion::Feedrate:
return path.feedrate;
case GCodePreviewData::Extrusion::VolumetricRate:
return path.feedrate * (float)path.mm3_per_mm;
case GCodePreviewData::Extrusion::Tool:
return (float)path.extruder_id;
case GCodePreviewData::Extrusion::ColorPrint:
return (float)path.cp_color_id;
default:
return 0.0f;
}
return 0.0f;
}
static GCodePreviewData::Color path_color(const GCodePreviewData& data, const std::vector<float>& tool_colors, float value)
{
switch (data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::FeatureType:
return data.get_extrusion_role_color((ExtrusionRole)(int)value);
case GCodePreviewData::Extrusion::Height:
return data.get_height_color(value);
case GCodePreviewData::Extrusion::Width:
return data.get_width_color(value);
case GCodePreviewData::Extrusion::Feedrate:
return data.get_feedrate_color(value);
case GCodePreviewData::Extrusion::VolumetricRate:
return data.get_volumetric_rate_color(value);
case GCodePreviewData::Extrusion::Tool:
{
GCodePreviewData::Color color;
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float));
return color;
}
case GCodePreviewData::Extrusion::ColorPrint:
{
const size_t color_cnt = tool_colors.size() / 4;
int val = int(value);
while (val >= color_cnt)
val -= color_cnt;
GCodePreviewData::Color color;
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + val * 4), 4 * sizeof(float));
return color;
}
default:
return GCodePreviewData::Color::Dummy;
}
return GCodePreviewData::Color::Dummy;
}
};
// Helper structure for filters
struct Filter
{
float value;
ExtrusionRole role;
GLVolume* volume;
Filter(float value, ExtrusionRole role)
: value(value)
, role(role)
, volume(nullptr)
{
}
bool operator == (const Filter& other) const
{
if (value != other.value)
return false;
if (role != other.role)
return false;
return true;
}
};
typedef std::vector<Filter> FiltersList;
size_t initial_volumes_count = m_volumes.volumes.size();
// detects filters
FiltersList filters;
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
{
for (const ExtrusionPath& path : layer.paths)
{
ExtrusionRole role = path.role();
float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
if (std::find(filters.begin(), filters.end(), Filter(path_filter, role)) == filters.end())
filters.emplace_back(path_filter, role);
}
}
// nothing to render, return
if (filters.empty())
return;
// creates a new volume for each filter
for (Filter& filter : filters)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, (unsigned int)filter.role, (unsigned int)m_volumes.volumes.size());
GLVolume* volume = new GLVolume(Helper::path_color(preview_data, tool_colors, filter.value).rgba);
if (volume != nullptr)
{
filter.volume = volume;
volume->is_extrusion_path = true;
m_volumes.volumes.emplace_back(volume);
}
else
{
// an error occourred - restore to previous state and return
m_gcode_preview_volume_index.first_volumes.pop_back();
if (initial_volumes_count != m_volumes.volumes.size())
{
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
GLVolumePtrs::iterator end = m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it < end; ++it)
{
GLVolume* volume = *it;
delete volume;
}
m_volumes.volumes.erase(begin, end);
return;
}
}
}
// populates volumes
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
{
for (const ExtrusionPath& path : layer.paths)
{
float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
FiltersList::iterator filter = std::find(filters.begin(), filters.end(), Filter(path_filter, path.role()));
if (filter != filters.end())
{
filter->volume->print_zs.push_back(layer.z);
filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.quad_indices.size());
filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::extrusionentity_to_verts(path, layer.z, *filter->volume);
}
}
}
// finalize volumes and sends geometry to gpu
if (m_volumes.volumes.size() > initial_volumes_count)
{
for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i)
{
GLVolume* volume = m_volumes.volumes[i];
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
}
void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
size_t initial_volumes_count = m_volumes.volumes.size();
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count);
bool res = true;
switch (preview_data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::Feedrate:
{
res = _travel_paths_by_feedrate(preview_data);
break;
}
case GCodePreviewData::Extrusion::Tool:
{
res = _travel_paths_by_tool(preview_data, tool_colors);
break;
}
default:
{
res = _travel_paths_by_type(preview_data);
break;
}
}
if (!res)
{
// an error occourred - restore to previous state and return
if (initial_volumes_count != m_volumes.volumes.size())
{
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
GLVolumePtrs::iterator end = m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it < end; ++it)
{
GLVolume* volume = *it;
delete volume;
}
m_volumes.volumes.erase(begin, end);
}
return;
}
// finalize volumes and sends geometry to gpu
if (m_volumes.volumes.size() > initial_volumes_count)
{
for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i)
{
GLVolume* volume = m_volumes.volumes[i];
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
}
bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data)
{
// Helper structure for types
struct Type
{
GCodePreviewData::Travel::EType value;
GLVolume* volume;
explicit Type(GCodePreviewData::Travel::EType value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Type& other) const
{
return value == other.value;
}
};
typedef std::vector<Type> TypesList;
// colors travels by travel type
// detects types
TypesList types;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(types.begin(), types.end(), Type(polyline.type)) == types.end())
types.emplace_back(polyline.type);
}
// nothing to render, return
if (types.empty())
return true;
// creates a new volume for each type
for (Type& type : types)
{
GLVolume* volume = new GLVolume(preview_data.travel.type_colors[type.value].rgba);
if (volume == nullptr)
return false;
else
{
type.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type));
if (type != types.end())
{
type->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size());
type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *type->volume);
}
}
return true;
}
bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data)
{
// Helper structure for feedrate
struct Feedrate
{
float value;
GLVolume* volume;
explicit Feedrate(float value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Feedrate& other) const
{
return value == other.value;
}
};
typedef std::vector<Feedrate> FeedratesList;
// colors travels by feedrate
// detects feedrates
FeedratesList feedrates;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)) == feedrates.end())
feedrates.emplace_back(polyline.feedrate);
}
// nothing to render, return
if (feedrates.empty())
return true;
// creates a new volume for each feedrate
for (Feedrate& feedrate : feedrates)
{
GLVolume* volume = new GLVolume(preview_data.get_feedrate_color(feedrate.value).rgba);
if (volume == nullptr)
return false;
else
{
feedrate.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate));
if (feedrate != feedrates.end())
{
feedrate->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size());
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *feedrate->volume);
}
}
return true;
}
bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
// Helper structure for tool
struct Tool
{
unsigned int value;
GLVolume* volume;
explicit Tool(unsigned int value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Tool& other) const
{
return value == other.value;
}
};
typedef std::vector<Tool> ToolsList;
// colors travels by tool
// detects tools
ToolsList tools;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)) == tools.end())
tools.emplace_back(polyline.extruder_id);
}
// nothing to render, return
if (tools.empty())
return true;
// creates a new volume for each tool
for (Tool& tool : tools)
{
GLVolume* volume = new GLVolume(tool_colors.data() + tool.value * 4);
if (volume == nullptr)
return false;
else
{
tool.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id));
if (tool != tools.end())
{
tool->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size());
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *tool->volume);
}
}
return true;
}
void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Retraction, 0, (unsigned int)m_volumes.volumes.size());
// nothing to render, return
if (preview_data.retraction.positions.empty())
return;
GLVolume* volume = new GLVolume(preview_data.retraction.color.rgba);
if (volume != nullptr)
{
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale<double>(position.position(2)));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
_3DScene::point3_to_verts(position.position, position.width, position.height, *volume);
}
// finalize volumes and sends geometry to gpu
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Unretraction, 0, (unsigned int)m_volumes.volumes.size());
// nothing to render, return
if (preview_data.unretraction.positions.empty())
return;
GLVolume* volume = new GLVolume(preview_data.unretraction.color.rgba);
if (volume != nullptr)
{
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale<double>(position.position(2)));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
_3DScene::point3_to_verts(position.position, position.width, position.height, *volume);
}
// finalize volumes and sends geometry to gpu
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
void GLCanvas3D::_load_shells_fff()
{
size_t initial_volumes_count = m_volumes.volumes.size();
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count);
const Print *print = this->fff_print();
if (print->objects().empty())
// nothing to render, return
return;
// adds objects' volumes
int object_id = 0;
for (const PrintObject* obj : print->objects())
{
const ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i)
{
instance_ids[i] = i;
}
m_volumes.load_object(model_obj, object_id, instance_ids, "object", m_use_VBOs && m_initialized);
++object_id;
}
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
// adds wipe tower's volume
double max_z = print->objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print->config();
unsigned int extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
float depth = print->get_wipe_tower_depth();
// Calculate wipe tower brim spacing.
const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
float brim_spacing = print->config().nozzle_diameter.values[0] * 1.25f - first_layer_height * (1. - M_PI_4);
if (!print->is_step_done(psWipeTower))
depth = (900.f/config.wipe_tower_width) * (float)(extruders_count - 1) ;
m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
m_use_VBOs && m_initialized, !print->is_step_done(psWipeTower), brim_spacing * 4.5f);
}
}
}
void GLCanvas3D::_load_shells_sla()
{
//FIXME use reload_scene
#if 1
const SLAPrint* print = this->sla_print();
if (print->objects().empty())
// nothing to render, return
return;
auto add_volume = [this](const SLAPrintObject &object, const SLAPrintObject::Instance& instance,
const TriangleMesh &mesh, const float color[4], bool outside_printer_detection_enabled) {
m_volumes.volumes.emplace_back(new GLVolume(color));
GLVolume& v = *m_volumes.volumes.back();
v.indexed_vertex_array.load_mesh(mesh, m_use_VBOs);
v.shader_outside_printer_detection_enabled = outside_printer_detection_enabled;
v.composite_id.volume_id = -1;
v.set_instance_offset(unscale(instance.shift(0), instance.shift(1), 0));
v.set_instance_rotation(Vec3d(0.0, 0.0, (double)instance.rotation));
v.set_instance_mirror(X, object.is_left_handed() ? -1. : 1.);
};
// adds objects' volumes
for (const SLAPrintObject* obj : print->objects())
if (obj->is_step_done(slaposSliceSupports)) {
unsigned int initial_volumes_count = (unsigned int)m_volumes.volumes.size();
for (const SLAPrintObject::Instance& instance : obj->instances()) {
add_volume(*obj, instance, obj->transformed_mesh(), GLVolume::MODEL_COLOR[0], true);
// Set the extruder_id and volume_id to achieve the same color as in the 3D scene when
// through the update_volumes_colors_by_extruder() call.
m_volumes.volumes.back()->extruder_id = obj->model_object()->volumes.front()->extruder_id();
m_volumes.volumes.back()->composite_id.volume_id = 0;
if (obj->is_step_done(slaposSupportTree) && obj->has_mesh(slaposSupportTree))
add_volume(*obj, instance, obj->support_mesh(), GLVolume::SLA_SUPPORT_COLOR, true);
if (obj->is_step_done(slaposBasePool) && obj->has_mesh(slaposBasePool))
add_volume(*obj, instance, obj->pad_mesh(), GLVolume::SLA_PAD_COLOR, true);
}
double shift_z = obj->get_current_elevation();
for (unsigned int i = initial_volumes_count; i < m_volumes.volumes.size(); ++ i) {
GLVolume& v = *m_volumes.volumes[i];
// finalize volumes and sends geometry to gpu
v.bounding_box = v.indexed_vertex_array.bounding_box();
v.indexed_vertex_array.finalize_geometry(m_use_VBOs);
// apply shift z
v.set_sla_shift_z(shift_z);
}
}
update_volumes_colors_by_extruder();
#else
this->reload_scene(true, true);
#endif
}
void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data)
{
unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size();
for (unsigned int i = 0; i < size; ++i)
{
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id;
GLVolumePtrs::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it != end; ++it)
{
GLVolume* volume = *it;
switch (m_gcode_preview_volume_index.first_volumes[i].type)
{
case GCodePreviewVolumeIndex::Extrusion:
{
if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom)
volume->zoom_to_volumes = false;
volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag);
break;
}
case GCodePreviewVolumeIndex::Travel:
{
volume->is_active = preview_data.travel.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Retraction:
{
volume->is_active = preview_data.retraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Unretraction:
{
volume->is_active = preview_data.unretraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Shell:
{
volume->is_active = preview_data.shell.is_visible;
volume->color[3] = 0.25f;
volume->zoom_to_volumes = false;
break;
}
default:
{
volume->is_active = false;
volume->zoom_to_volumes = false;
break;
}
}
}
}
}
void GLCanvas3D::_update_toolpath_volumes_outside_state()
{
// tolerance to avoid false detection at bed edges
static const double tolerance_x = 0.05;
static const double tolerance_y = 0.05;
BoundingBoxf3 print_volume;
if (m_config != nullptr)
{
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(m_config->option("bed_shape"));
if (opt != nullptr)
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
print_volume = BoundingBoxf3(Vec3d(unscale<double>(bed_box_2D.min(0)) - tolerance_x, unscale<double>(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)) + tolerance_x, unscale<double>(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min(2) = -1e10;
}
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_outside = ((print_volume.radius() > 0.0) && volume->is_extrusion_path) ? !print_volume.contains(volume->bounding_box) : false;
}
}
void GLCanvas3D::_show_warning_texture_if_needed()
{
_set_current();
_set_warning_texture(WarningTexture::ToolpathOutside, _is_any_volume_outside());
}
std::vector<float> GLCanvas3D::_parse_colors(const std::vector<std::string>& colors)
{
static const float INV_255 = 1.0f / 255.0f;
std::vector<float> output(colors.size() * 4, 1.0f);
for (size_t i = 0; i < colors.size(); ++i)
{
const std::string& color = colors[i];
const char* c = color.data() + 1;
if ((color.size() == 7) && (color.front() == '#'))
{
for (size_t j = 0; j < 3; ++j)
{
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if ((digit1 == -1) || (digit2 == -1))
break;
output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255;
}
}
}
return output;
}
void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
m_legend_texture.generate(preview_data, tool_colors, *this);
}
void GLCanvas3D::_set_warning_texture(WarningTexture::Warning warning, bool state)
{
m_warning_texture.activate(warning, state, *this);
}
bool GLCanvas3D::_is_any_volume_outside() const
{
for (const GLVolume* volume : m_volumes.volumes)
{
if ((volume != nullptr) && volume->is_outside)
return true;
}
return false;
}
#if !ENABLE_SVG_ICONS
void GLCanvas3D::_resize_toolbars() const
{
Size cnv_size = get_canvas_size();
float zoom = get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
#if ENABLE_RETINA_GL
m_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#else
m_toolbar.set_icons_scale(m_canvas->GetContentScaleFactor());
#endif /* __WXMSW__ */
GLToolbar::Layout::EOrientation orientation = m_toolbar.get_layout_orientation();
switch (m_toolbar.get_layout_type())
{
default:
case GLToolbar::Layout::Horizontal:
{
// centers the toolbar on the top edge of the 3d scene
float top, left;
if (orientation == GLToolbar::Layout::Top)
{
top = 0.5f * (float)cnv_size.get_height() * inv_zoom;
left = -0.5f * m_toolbar.get_width() * inv_zoom;
}
else
{
top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom;
left = -0.5f * m_toolbar.get_width() * inv_zoom;
}
m_toolbar.set_position(top, left);
break;
}
case GLToolbar::Layout::Vertical:
{
// centers the toolbar on the right edge of the 3d scene
float top, left;
if (orientation == GLToolbar::Layout::Left)
{
top = 0.5f * m_toolbar.get_height() * inv_zoom;
left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom;
}
else
{
top = 0.5f * m_toolbar.get_height() * inv_zoom;
left = (0.5f * (float)cnv_size.get_width() - m_toolbar.get_width()) * inv_zoom;
}
m_toolbar.set_position(top, left);
break;
}
}
if (m_view_toolbar != nullptr)
{
#if ENABLE_RETINA_GL
m_view_toolbar.set_icons_scale(m_retina_helper->get_scale_factor());
#else
m_view_toolbar.set_icons_scale(m_canvas->GetContentScaleFactor());
#endif /* __WXMSW__ */
// places the toolbar on the bottom-left corner of the 3d scene
float top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom;
float left = -0.5f * (float)cnv_size.get_width() * inv_zoom;
m_view_toolbar.set_position(top, left);
}
}
#endif // !ENABLE_SVG_ICONS
const Print* GLCanvas3D::fff_print() const
{
return (m_process == nullptr) ? nullptr : m_process->fff_print();
}
const SLAPrint* GLCanvas3D::sla_print() const
{
return (m_process == nullptr) ? nullptr : m_process->sla_print();
}
} // namespace GUI
} // namespace Slic3r