PrusaSlicer-NonPlainar/resources/shaders/options_120_solid.fs

91 lines
3.2 KiB
GLSL

// version 120 is needed for gl_PointCoord
#version 120
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
uniform vec3 uniform_color;
uniform ivec4 viewport;
uniform float point_size;
uniform mat4 inv_proj_matrix;
varying vec3 eye_center;
// x = tainted, y = specular;
vec2 intensity;
float radius = 0.5 * point_size;
vec3 eye_position_from_fragment()
{
// Convert screen coordinates to normalized device coordinates (NDC)
vec4 ndc = vec4((gl_FragCoord.x / viewport.z - 0.5) * 2.0,
(gl_FragCoord.y / viewport.w - 0.5) * 2.0,
(gl_FragCoord.z - 0.5) * 2.0,
gl_FragCoord.w);
// Convert NDC throuch inverse clip coordinates to view coordinates
vec4 clip = inv_proj_matrix * ndc;
return clip.xyz;
}
vec3 eye_position_on_sphere(vec3 eye_fragment_position)
{
vec3 eye_dir = normalize(eye_fragment_position);
float a = dot(eye_dir, eye_dir);
float b = 2.0 * dot(-eye_center, eye_dir);
float c = dot(eye_center, eye_center) - radius * radius;
float discriminant = b * b - 4 * a * c;
float t = -(b + sqrt(discriminant)) / (2.0 * a);
return t * eye_dir;
}
vec4 on_sphere_color(vec3 eye_on_sphere_position)
{
vec3 eye_normal = normalize(eye_on_sphere_position - eye_center);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_on_sphere_position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
return vec4(intensity + uniform_color.rgb * intensity.x, 1.0);
// return vec4(vec3(intensity.y) + uniform_color.rgb * intensity.x, 1.0);
}
float fragment_depth(vec3 eye_pos)
{
vec4 clip_pos = gl_ProjectionMatrix * vec4(eye_pos, 1.0);
float ndc_depth = clip_pos.z / clip_pos.w;
return ((gl_DepthRange.far - gl_DepthRange.near) * ndc_depth + gl_DepthRange.near + gl_DepthRange.far) / 2.0;
}
void main()
{
vec2 pos = (gl_PointCoord - 0.5) * 2.0;
float radius = length(pos);
if (radius > 1.0)
discard;
vec3 eye_on_sphere_position = eye_position_on_sphere(eye_position_from_fragment());
gl_FragDepth = fragment_depth(eye_on_sphere_position);
gl_FragColor = on_sphere_color(eye_on_sphere_position);
}