PrusaSlicer-NonPlainar/src/slic3r/GUI/GLCanvas3D.cpp
Lukas Matena 40e4be6ede Fixed a crash in the FDM supports gizmo when the wipe tower was shown
The crash happened during showing/hiding of volumes, which historically assumed to always run in SLA mode and so did not expect to encounter the wipe tower.
2020-04-20 09:17:48 +02:00

7161 lines
284 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GLCanvas3D.hpp"
#include "admesh/stl.h"
#include "polypartition.h"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/GCode/PreviewData.hpp"
#include "libslic3r/GCode/ThumbnailData.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Technologies.hpp"
#include "libslic3r/Tesselate.hpp"
#include "slic3r/GUI/3DScene.hpp"
#include "slic3r/GUI/BackgroundSlicingProcess.hpp"
#include "slic3r/GUI/GLShader.hpp"
#include "slic3r/GUI/GUI.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
#include "slic3r/GUI/Tab.hpp"
#include "slic3r/GUI/GUI_Preview.hpp"
#if ENABLE_NON_STATIC_CANVAS_MANAGER
#include "slic3r/GUI/GLCanvas3DManager.hpp"
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#include "slic3r/GUI/3DBed.hpp"
#include "slic3r/GUI/Camera.hpp"
#include "GUI_App.hpp"
#include "GUI_ObjectList.hpp"
#include "GUI_ObjectManipulation.hpp"
#include "Mouse3DController.hpp"
#include "I18N.hpp"
#if ENABLE_RETINA_GL
#include "slic3r/Utils/RetinaHelper.hpp"
#endif
#include <GL/glew.h>
#include <wx/glcanvas.h>
#include <wx/bitmap.h>
#include <wx/dcmemory.h>
#include <wx/image.h>
#include <wx/settings.h>
#include <wx/tooltip.h>
#include <wx/debug.h>
#include <wx/fontutil.h>
// Print now includes tbb, and tbb includes Windows. This breaks compilation of wxWidgets if included before wx.
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "wxExtensions.hpp"
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <iostream>
#include <float.h>
#include <algorithm>
#include <cmath>
#include "DoubleSlider.hpp"
#if !ENABLE_CANVAS_TOOLTIP_USING_IMGUI
#if ENABLE_RENDER_STATISTICS
#include <chrono>
#endif // ENABLE_RENDER_STATISTICS
#endif // !ENABLE_CANVAS_TOOLTIP_USING_IMGUI
#include <imgui/imgui_internal.h>
static const float TRACKBALLSIZE = 0.8f;
static const float DEFAULT_BG_DARK_COLOR[3] = { 0.478f, 0.478f, 0.478f };
static const float DEFAULT_BG_LIGHT_COLOR[3] = { 0.753f, 0.753f, 0.753f };
static const float ERROR_BG_DARK_COLOR[3] = { 0.478f, 0.192f, 0.039f };
static const float ERROR_BG_LIGHT_COLOR[3] = { 0.753f, 0.192f, 0.039f };
//static const float AXES_COLOR[3][3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };
// Number of floats
static const size_t MAX_VERTEX_BUFFER_SIZE = 131072 * 6; // 3.15MB
// Reserve size in number of floats.
static const size_t VERTEX_BUFFER_RESERVE_SIZE = 131072 * 2; // 1.05MB
// Reserve size in number of floats, maximum sum of all preallocated buffers.
static const size_t VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX = 1024 * 1024 * 128 / 4; // 128MB
namespace Slic3r {
namespace GUI {
Size::Size()
: m_width(0)
, m_height(0)
{
}
Size::Size(int width, int height, float scale_factor)
: m_width(width)
, m_height(height)
, m_scale_factor(scale_factor)
{
}
int Size::get_width() const
{
return m_width;
}
void Size::set_width(int width)
{
m_width = width;
}
int Size::get_height() const
{
return m_height;
}
void Size::set_height(int height)
{
m_height = height;
}
int Size::get_scale_factor() const
{
return m_scale_factor;
}
void Size::set_scale_factor(int scale_factor)
{
m_scale_factor = scale_factor;
}
GLCanvas3D::LayersEditing::LayersEditing()
: m_enabled(false)
, m_z_texture_id(0)
, m_model_object(nullptr)
, m_object_max_z(0.f)
, m_slicing_parameters(nullptr)
, m_layer_height_profile_modified(false)
, m_adaptive_quality(0.5f)
, state(Unknown)
, band_width(2.0f)
, strength(0.005f)
, last_object_id(-1)
, last_z(0.0f)
, last_action(LAYER_HEIGHT_EDIT_ACTION_INCREASE)
{
}
GLCanvas3D::LayersEditing::~LayersEditing()
{
if (m_z_texture_id != 0)
{
glsafe(::glDeleteTextures(1, &m_z_texture_id));
m_z_texture_id = 0;
}
delete m_slicing_parameters;
}
const float GLCanvas3D::LayersEditing::THICKNESS_BAR_WIDTH = 70.0f;
bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (!m_shader.init(vertex_shader_filename, fragment_shader_filename))
return false;
glsafe(::glGenTextures(1, (GLuint*)&m_z_texture_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::LayersEditing::set_config(const DynamicPrintConfig* config)
{
m_config = config;
delete m_slicing_parameters;
m_slicing_parameters = nullptr;
m_layers_texture.valid = false;
}
void GLCanvas3D::LayersEditing::select_object(const Model &model, int object_id)
{
const ModelObject *model_object_new = (object_id >= 0) ? model.objects[object_id] : nullptr;
// Maximum height of an object changes when the object gets rotated or scaled.
// Changing maximum height of an object will invalidate the layer heigth editing profile.
// m_model_object->raw_bounding_box() is cached, therefore it is cheap even if this method is called frequently.
float new_max_z = (model_object_new == nullptr) ? 0.f : model_object_new->raw_bounding_box().size().z();
if (m_model_object != model_object_new || this->last_object_id != object_id || m_object_max_z != new_max_z ||
(model_object_new != nullptr && m_model_object->id() != model_object_new->id())) {
m_layer_height_profile.clear();
m_layer_height_profile_modified = false;
delete m_slicing_parameters;
m_slicing_parameters = nullptr;
m_layers_texture.valid = false;
this->last_object_id = object_id;
m_model_object = model_object_new;
m_object_max_z = new_max_z;
}
}
bool GLCanvas3D::LayersEditing::is_allowed() const
{
return m_shader.is_initialized() && m_shader.get_shader()->shader_program_id > 0 && m_z_texture_id > 0;
}
bool GLCanvas3D::LayersEditing::is_enabled() const
{
return m_enabled;
}
void GLCanvas3D::LayersEditing::set_enabled(bool enabled)
{
m_enabled = is_allowed() && enabled;
}
void GLCanvas3D::LayersEditing::render_overlay(const GLCanvas3D& canvas) const
{
if (!m_enabled)
return;
static const ImVec4 ORANGE(1.0f, 0.49f, 0.22f, 1.0f);
const Size& cnv_size = canvas.get_canvas_size();
float canvas_w = (float)cnv_size.get_width();
float canvas_h = (float)cnv_size.get_height();
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_pos(canvas_w - imgui.get_style_scaling() * THICKNESS_BAR_WIDTH, canvas_h, ImGuiCond_Always, 1.0f, 1.0f);
imgui.begin(_(L("Variable layer height")), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoCollapse);
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
imgui.text(_(L("Left mouse button:")));
ImGui::PopStyleColor();
ImGui::SameLine();
imgui.text(_(L("Add detail")));
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
imgui.text(_(L("Right mouse button:")));
ImGui::PopStyleColor();
ImGui::SameLine();
imgui.text(_(L("Remove detail")));
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
imgui.text(_(L("Shift + Left mouse button:")));
ImGui::PopStyleColor();
ImGui::SameLine();
imgui.text(_(L("Reset to base")));
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
imgui.text(_(L("Shift + Right mouse button:")));
ImGui::PopStyleColor();
ImGui::SameLine();
imgui.text(_(L("Smoothing")));
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
imgui.text(_(L("Mouse wheel:")));
ImGui::PopStyleColor();
ImGui::SameLine();
imgui.text(_(L("Increase/decrease edit area")));
ImGui::Separator();
if (imgui.button(_(L("Adaptive"))))
wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), Event<float>(EVT_GLCANVAS_ADAPTIVE_LAYER_HEIGHT_PROFILE, m_adaptive_quality));
ImGui::SameLine();
float text_align = ImGui::GetCursorPosX();
ImGui::AlignTextToFramePadding();
imgui.text(_(L("Quality / Speed")));
if (ImGui::IsItemHovered())
{
ImGui::BeginTooltip();
ImGui::TextUnformatted(_(L("Higher print quality versus higher print speed.")).ToUTF8());
ImGui::EndTooltip();
}
ImGui::SameLine();
float widget_align = ImGui::GetCursorPosX();
ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f);
m_adaptive_quality = clamp(0.0f, 1.f, m_adaptive_quality);
ImGui::SliderFloat("", &m_adaptive_quality, 0.0f, 1.f, "%.2f");
ImGui::Separator();
if (imgui.button(_(L("Smooth"))))
wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), HeightProfileSmoothEvent(EVT_GLCANVAS_SMOOTH_LAYER_HEIGHT_PROFILE, m_smooth_params));
ImGui::SameLine();
ImGui::SetCursorPosX(text_align);
ImGui::AlignTextToFramePadding();
imgui.text(_(L("Radius")));
ImGui::SameLine();
ImGui::SetCursorPosX(widget_align);
ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f);
int radius = (int)m_smooth_params.radius;
if (ImGui::SliderInt("##1", &radius, 1, 10))
m_smooth_params.radius = (unsigned int)radius;
ImGui::SetCursorPosX(text_align);
ImGui::AlignTextToFramePadding();
imgui.text(_(L("Keep min")));
ImGui::SameLine();
if (ImGui::GetCursorPosX() < widget_align) // because of line lenght after localization
ImGui::SetCursorPosX(widget_align);
ImGui::PushItemWidth(imgui.get_style_scaling() * 120.0f);
imgui.checkbox("##2", m_smooth_params.keep_min);
ImGui::Separator();
if (imgui.button(_(L("Reset"))))
wxPostEvent((wxEvtHandler*)canvas.get_wxglcanvas(), SimpleEvent(EVT_GLCANVAS_RESET_LAYER_HEIGHT_PROFILE));
imgui.end();
const Rect& bar_rect = get_bar_rect_viewport(canvas);
render_active_object_annotations(canvas, bar_rect);
render_profile(bar_rect);
}
float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas)
{
const Vec2d mouse_pos = canvas.get_local_mouse_position();
const Rect& rect = get_bar_rect_screen(canvas);
float x = (float)mouse_pos(0);
float y = (float)mouse_pos(1);
float t = rect.get_top();
float b = rect.get_bottom();
return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ?
// Inside the bar.
(b - y - 1.0f) / (b - t - 1.0f) :
// Outside the bar.
-1000.0f;
}
bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y)
{
const Rect& rect = get_bar_rect_screen(canvas);
return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom());
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - thickness_bar_width(canvas), 0.0f, w, h);
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float half_w = 0.5f * (float)cnv_size.get_width();
float half_h = 0.5f * (float)cnv_size.get_height();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)canvas.get_camera().get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
return Rect((half_w - thickness_bar_width(canvas)) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom);
}
bool GLCanvas3D::LayersEditing::is_initialized() const
{
return m_shader.is_initialized();
}
std::string GLCanvas3D::LayersEditing::get_tooltip(const GLCanvas3D& canvas) const
{
std::string ret;
if (m_enabled && (m_layer_height_profile.size() >= 4))
{
float z = get_cursor_z_relative(canvas);
if (z != -1000.0f)
{
z *= m_object_max_z;
float h = 0.0f;
for (size_t i = m_layer_height_profile.size() - 2; i >= 2; i -= 2)
{
float zi = m_layer_height_profile[i];
float zi_1 = m_layer_height_profile[i - 2];
if ((zi_1 <= z) && (z <= zi))
{
float dz = zi - zi_1;
h = (dz != 0.0f) ? lerp(m_layer_height_profile[i - 1], m_layer_height_profile[i + 1], (z - zi_1) / dz) : m_layer_height_profile[i + 1];
break;
}
}
if (h > 0.0f)
ret = std::to_string(h);
}
}
return ret;
}
void GLCanvas3D::LayersEditing::render_active_object_annotations(const GLCanvas3D& canvas, const Rect& bar_rect) const
{
m_shader.start_using();
m_shader.set_uniform("z_to_texture_row", float(m_layers_texture.cells - 1) / (float(m_layers_texture.width) * m_object_max_z));
m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)m_layers_texture.height);
m_shader.set_uniform("z_cursor", m_object_max_z * this->get_cursor_z_relative(canvas));
m_shader.set_uniform("z_cursor_band_width", band_width);
m_shader.set_uniform("object_max_z", m_object_max_z);
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
// Render the color bar
float l = bar_rect.get_left();
float r = bar_rect.get_right();
float t = bar_rect.get_top();
float b = bar_rect.get_bottom();
::glBegin(GL_QUADS);
::glNormal3f(0.0f, 0.0f, 1.0f);
::glTexCoord2f(0.0f, 0.0f); ::glVertex2f(l, b);
::glTexCoord2f(1.0f, 0.0f); ::glVertex2f(r, b);
::glTexCoord2f(1.0f, 1.0f); ::glVertex2f(r, t);
::glTexCoord2f(0.0f, 1.0f); ::glVertex2f(l, t);
glsafe(::glEnd());
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
m_shader.stop_using();
}
void GLCanvas3D::LayersEditing::render_profile(const Rect& bar_rect) const
{
//FIXME show some kind of legend.
if (!m_slicing_parameters)
return;
// Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
float scale_x = bar_rect.get_width() / (float)(1.12 * m_slicing_parameters->max_layer_height);
float scale_y = bar_rect.get_height() / m_object_max_z;
float x = bar_rect.get_left() + (float)m_slicing_parameters->layer_height * scale_x;
// Baseline
glsafe(::glColor3f(0.0f, 0.0f, 0.0f));
::glBegin(GL_LINE_STRIP);
::glVertex2f(x, bar_rect.get_bottom());
::glVertex2f(x, bar_rect.get_top());
glsafe(::glEnd());
// Curve
glsafe(::glColor3f(0.0f, 0.0f, 1.0f));
::glBegin(GL_LINE_STRIP);
for (unsigned int i = 0; i < m_layer_height_profile.size(); i += 2)
::glVertex2f(bar_rect.get_left() + (float)m_layer_height_profile[i + 1] * scale_x, bar_rect.get_bottom() + (float)m_layer_height_profile[i] * scale_y);
glsafe(::glEnd());
}
void GLCanvas3D::LayersEditing::render_volumes(const GLCanvas3D& canvas, const GLVolumeCollection &volumes) const
{
assert(this->is_allowed());
assert(this->last_object_id != -1);
GLint shader_id = m_shader.get_shader()->shader_program_id;
assert(shader_id > 0);
GLint current_program_id;
glsafe(::glGetIntegerv(GL_CURRENT_PROGRAM, &current_program_id));
if (shader_id > 0 && shader_id != current_program_id)
// The layer editing shader is not yet active. Activate it.
glsafe(::glUseProgram(shader_id));
else
// The layer editing shader was already active.
current_program_id = -1;
GLint z_to_texture_row_id = ::glGetUniformLocation(shader_id, "z_to_texture_row");
GLint z_texture_row_to_normalized_id = ::glGetUniformLocation(shader_id, "z_texture_row_to_normalized");
GLint z_cursor_id = ::glGetUniformLocation(shader_id, "z_cursor");
GLint z_cursor_band_width_id = ::glGetUniformLocation(shader_id, "z_cursor_band_width");
GLint world_matrix_id = ::glGetUniformLocation(shader_id, "volume_world_matrix");
GLint object_max_z_id = ::glGetUniformLocation(shader_id, "object_max_z");
glcheck();
if (z_to_texture_row_id != -1 && z_texture_row_to_normalized_id != -1 && z_cursor_id != -1 && z_cursor_band_width_id != -1 && world_matrix_id != -1)
{
const_cast<LayersEditing*>(this)->generate_layer_height_texture();
// Uniforms were resolved, go ahead using the layer editing shader.
glsafe(::glUniform1f(z_to_texture_row_id, GLfloat(m_layers_texture.cells - 1) / (GLfloat(m_layers_texture.width) * GLfloat(m_object_max_z))));
glsafe(::glUniform1f(z_texture_row_to_normalized_id, GLfloat(1.0f / m_layers_texture.height)));
glsafe(::glUniform1f(z_cursor_id, GLfloat(m_object_max_z) * GLfloat(this->get_cursor_z_relative(canvas))));
glsafe(::glUniform1f(z_cursor_band_width_id, GLfloat(this->band_width)));
// Initialize the layer height texture mapping.
GLsizei w = (GLsizei)m_layers_texture.width;
GLsizei h = (GLsizei)m_layers_texture.height;
GLsizei half_w = w / 2;
GLsizei half_h = h / 2;
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_z_texture_id));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data()));
glsafe(::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, m_layers_texture.data.data() + m_layers_texture.width * m_layers_texture.height * 4));
for (const GLVolume* glvolume : volumes.volumes) {
// Render the object using the layer editing shader and texture.
if (! glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier)
continue;
if (world_matrix_id != -1)
glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
if (object_max_z_id != -1)
glsafe(::glUniform1f(object_max_z_id, GLfloat(0)));
glvolume->render();
}
// Revert back to the previous shader.
glBindTexture(GL_TEXTURE_2D, 0);
if (current_program_id > 0)
glsafe(::glUseProgram(current_program_id));
}
else
{
// Something went wrong. Just render the object.
assert(false);
for (const GLVolume* glvolume : volumes.volumes) {
// Render the object using the layer editing shader and texture.
if (!glvolume->is_active || glvolume->composite_id.object_id != this->last_object_id || glvolume->is_modifier)
continue;
glsafe(::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)glvolume->world_matrix().cast<float>().data()));
glvolume->render();
}
}
}
void GLCanvas3D::LayersEditing::adjust_layer_height_profile()
{
this->update_slicing_parameters();
PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile);
Slic3r::adjust_layer_height_profile(*m_slicing_parameters, m_layer_height_profile, this->last_z, this->strength, this->band_width, this->last_action);
m_layer_height_profile_modified = true;
m_layers_texture.valid = false;
}
void GLCanvas3D::LayersEditing::reset_layer_height_profile(GLCanvas3D& canvas)
{
const_cast<ModelObject*>(m_model_object)->layer_height_profile.clear();
m_layer_height_profile.clear();
m_layers_texture.valid = false;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
void GLCanvas3D::LayersEditing::adaptive_layer_height_profile(GLCanvas3D& canvas, float quality_factor)
{
this->update_slicing_parameters();
m_layer_height_profile = layer_height_profile_adaptive(*m_slicing_parameters, *m_model_object, quality_factor);
const_cast<ModelObject*>(m_model_object)->layer_height_profile = m_layer_height_profile;
m_layers_texture.valid = false;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
void GLCanvas3D::LayersEditing::smooth_layer_height_profile(GLCanvas3D& canvas, const HeightProfileSmoothingParams& smoothing_params)
{
this->update_slicing_parameters();
m_layer_height_profile = smooth_height_profile(m_layer_height_profile, *m_slicing_parameters, smoothing_params);
const_cast<ModelObject*>(m_model_object)->layer_height_profile = m_layer_height_profile;
m_layers_texture.valid = false;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
void GLCanvas3D::LayersEditing::generate_layer_height_texture()
{
this->update_slicing_parameters();
// Always try to update the layer height profile.
bool update = ! m_layers_texture.valid;
if (PrintObject::update_layer_height_profile(*m_model_object, *m_slicing_parameters, m_layer_height_profile)) {
// Initialized to the default value.
m_layer_height_profile_modified = false;
update = true;
}
// Update if the layer height profile was changed, or when the texture is not valid.
if (! update && ! m_layers_texture.data.empty() && m_layers_texture.cells > 0)
// Texture is valid, don't update.
return;
if (m_layers_texture.data.empty()) {
m_layers_texture.width = 1024;
m_layers_texture.height = 1024;
m_layers_texture.levels = 2;
m_layers_texture.data.assign(m_layers_texture.width * m_layers_texture.height * 5, 0);
}
bool level_of_detail_2nd_level = true;
m_layers_texture.cells = Slic3r::generate_layer_height_texture(
*m_slicing_parameters,
Slic3r::generate_object_layers(*m_slicing_parameters, m_layer_height_profile),
m_layers_texture.data.data(), m_layers_texture.height, m_layers_texture.width, level_of_detail_2nd_level);
m_layers_texture.valid = true;
}
void GLCanvas3D::LayersEditing::accept_changes(GLCanvas3D& canvas)
{
if (last_object_id >= 0) {
if (m_layer_height_profile_modified) {
wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Manual edit")));
const_cast<ModelObject*>(m_model_object)->layer_height_profile = m_layer_height_profile;
canvas.post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
}
}
m_layer_height_profile_modified = false;
}
void GLCanvas3D::LayersEditing::update_slicing_parameters()
{
if (m_slicing_parameters == nullptr) {
m_slicing_parameters = new SlicingParameters();
*m_slicing_parameters = PrintObject::slicing_parameters(*m_config, *m_model_object, m_object_max_z);
}
}
float GLCanvas3D::LayersEditing::thickness_bar_width(const GLCanvas3D &canvas)
{
return
#if ENABLE_RETINA_GL
canvas.get_canvas_size().get_scale_factor()
#else
canvas.get_wxglcanvas()->GetContentScaleFactor()
#endif
* THICKNESS_BAR_WIDTH;
}
const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX);
const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX);
const int GLCanvas3D::Mouse::Drag::MoveThresholdPx = 5;
GLCanvas3D::Mouse::Drag::Drag()
: start_position_2D(Invalid_2D_Point)
, start_position_3D(Invalid_3D_Point)
, move_volume_idx(-1)
, move_requires_threshold(false)
, move_start_threshold_position_2D(Invalid_2D_Point)
{
}
GLCanvas3D::Mouse::Mouse()
: dragging(false)
, position(DBL_MAX, DBL_MAX)
, scene_position(DBL_MAX, DBL_MAX, DBL_MAX)
, ignore_left_up(false)
{
}
const unsigned char GLCanvas3D::WarningTexture::Background_Color[3] = { 120, 120, 120 };//{ 9, 91, 134 };
const unsigned char GLCanvas3D::WarningTexture::Opacity = 255;
GLCanvas3D::WarningTexture::WarningTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
void GLCanvas3D::WarningTexture::activate(WarningTexture::Warning warning, bool state, const GLCanvas3D& canvas)
{
auto it = std::find(m_warnings.begin(), m_warnings.end(), warning);
if (state) {
if (it != m_warnings.end()) // this warning is already set to be shown
return;
m_warnings.emplace_back(warning);
std::sort(m_warnings.begin(), m_warnings.end());
}
else {
if (it == m_warnings.end()) // deactivating something that is not active is an easy task
return;
m_warnings.erase(it);
if (m_warnings.empty()) { // nothing remains to be shown
reset();
m_msg_text = "";// save information for rescaling
return;
}
}
// Look at the end of our vector and generate proper texture.
std::string text;
bool red_colored = false;
switch (m_warnings.back()) {
case ObjectOutside : text = L("An object outside the print area was detected"); break;
case ToolpathOutside : text = L("A toolpath outside the print area was detected"); break;
case SlaSupportsOutside : text = L("SLA supports outside the print area were detected"); break;
case SomethingNotShown : text = L("Some objects are not visible"); break;
case ObjectClashed: {
text = L("An object outside the print area was detected\n"
"Resolve the current problem to continue slicing");
red_colored = true;
break;
}
}
generate(text, canvas, true, red_colored); // GUI::GLTexture::reset() is called at the beginning of generate(...)
// save information for rescaling
m_msg_text = text;
m_is_colored_red = red_colored;
}
#ifdef __WXMSW__
static bool is_font_cleartype(const wxFont &font)
{
// Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon.
wxString font_desc = font.GetNativeFontInfoDesc();
// Find the quality field.
wxString sep(";");
size_t startpos = 0;
for (size_t i = 0; i < 12; ++ i)
startpos = font_desc.find(sep, startpos + 1);
++ startpos;
size_t endpos = font_desc.find(sep, startpos);
int quality = wxAtoi(font_desc(startpos, endpos - startpos));
return quality == CLEARTYPE_QUALITY;
}
// ClearType produces renders, which are difficult to convert into an alpha blended OpenGL texture.
// Therefore it is better to disable it, though Vojtech found out, that the font returned with ClearType
// disabled is signifcantly thicker than the default ClearType font.
// This function modifies the font provided.
static void msw_disable_cleartype(wxFont &font)
{
// Native font description: on MSW, it is a version number plus the content of LOGFONT, separated by semicolon.
wxString font_desc = font.GetNativeFontInfoDesc();
// Find the quality field.
wxString sep(";");
size_t startpos_weight = 0;
for (size_t i = 0; i < 5; ++ i)
startpos_weight = font_desc.find(sep, startpos_weight + 1);
++ startpos_weight;
size_t endpos_weight = font_desc.find(sep, startpos_weight);
// Parse the weight field.
unsigned int weight = wxAtoi(font_desc(startpos_weight, endpos_weight - startpos_weight));
size_t startpos = endpos_weight;
for (size_t i = 0; i < 6; ++ i)
startpos = font_desc.find(sep, startpos + 1);
++ startpos;
size_t endpos = font_desc.find(sep, startpos);
int quality = wxAtoi(font_desc(startpos, endpos - startpos));
if (quality == CLEARTYPE_QUALITY) {
// Replace the weight with a smaller value to compensate the weight of non ClearType font.
wxString sweight = std::to_string(weight * 2 / 4);
size_t len_weight = endpos_weight - startpos_weight;
wxString squality = std::to_string(ANTIALIASED_QUALITY);
font_desc.replace(startpos_weight, len_weight, sweight);
font_desc.replace(startpos + sweight.size() - len_weight, endpos - startpos, squality);
font.SetNativeFontInfo(font_desc);
wxString font_desc2 = font.GetNativeFontInfoDesc();
}
wxString font_desc2 = font.GetNativeFontInfoDesc();
}
#endif /* __WXMSW__ */
bool GLCanvas3D::WarningTexture::generate(const std::string& msg_utf8, const GLCanvas3D& canvas, bool compress, bool red_colored/* = false*/)
{
reset();
if (msg_utf8.empty())
return false;
wxString msg = _(msg_utf8);
wxMemoryDC memDC;
#ifdef __WXMSW__
// set scaled application normal font as default font
wxFont font = wxGetApp().normal_font();
#else
// select default font
const float scale = canvas.get_canvas_size().get_scale_factor();
#if ENABLE_RETINA_GL
// For non-visible or non-created window getBackingScaleFactor function return 0.0 value.
// And using of the zero scale causes a crash, when we trying to draw text to the (0,0) rectangle
// https://github.com/prusa3d/PrusaSlicer/issues/3916
if (scale <= 0.0f)
return false;
#endif
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale);
#endif
font.MakeLarger();
font.MakeBold();
memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
memDC.GetMultiLineTextExtent(msg, &w, &h);
m_original_width = (int)w;
m_original_height = (int)h;
m_width = (int)next_highest_power_of_2((uint32_t)w);
m_height = (int)next_highest_power_of_2((uint32_t)h);
// generates bitmap
wxBitmap bitmap(m_width, m_height);
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(*wxBLACK));
memDC.Clear();
// draw message
memDC.SetTextForeground(*wxRED);
memDC.DrawLabel(msg, wxRect(0,0, m_original_width, m_original_height), wxALIGN_CENTER);
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
const unsigned char *src = image.GetData();
for (int h = 0; h < m_height; ++h)
{
unsigned char* dst = data.data() + 4 * h * m_width;
for (int w = 0; w < m_width; ++w)
{
*dst++ = 255;
if (red_colored) {
*dst++ = 72; // 204
*dst++ = 65; // 204
} else {
*dst++ = 255;
*dst++ = 255;
}
*dst++ = (unsigned char)std::min<int>(255, *src);
src += 3;
}
}
// sends buffer to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id));
if (compress && GLEW_EXT_texture_compression_s3tc)
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::WarningTexture::render(const GLCanvas3D& canvas) const
{
if (m_warnings.empty())
return;
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
const Size& cnv_size = canvas.get_canvas_size();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)canvas.get_camera().get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
float left = (-0.5f * (float)m_original_width) * inv_zoom;
float top = (-0.5f * (float)cnv_size.get_height() + (float)m_original_height + 2.0f) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
}
}
void GLCanvas3D::WarningTexture::msw_rescale(const GLCanvas3D& canvas)
{
if (m_msg_text.empty())
return;
generate(m_msg_text, canvas, true, m_is_colored_red);
}
const unsigned char GLCanvas3D::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 };
const unsigned char GLCanvas3D::LegendTexture::Default_Background_Color[3] = { (unsigned char)(DEFAULT_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(DEFAULT_BG_LIGHT_COLOR[2] * 255.0f) };
const unsigned char GLCanvas3D::LegendTexture::Error_Background_Color[3] = { (unsigned char)(ERROR_BG_LIGHT_COLOR[0] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[1] * 255.0f), (unsigned char)(ERROR_BG_LIGHT_COLOR[2] * 255.0f) };
const unsigned char GLCanvas3D::LegendTexture::Opacity = 255;
GLCanvas3D::LegendTexture::LegendTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
void GLCanvas3D::LegendTexture::fill_color_print_legend_items( const GLCanvas3D& canvas,
const std::vector<float>& colors_in,
std::vector<float>& colors,
std::vector<std::string>& cp_legend_items)
{
std::vector<CustomGCode::Item> custom_gcode_per_print_z = wxGetApp().plater()->model().custom_gcode_per_print_z.gcodes;
const int extruders_cnt = wxGetApp().extruders_edited_cnt();
if (extruders_cnt == 1)
{
if (custom_gcode_per_print_z.empty()) {
cp_legend_items.emplace_back(I18N::translate_utf8(L("Default print color")));
colors = colors_in;
return;
}
std::vector<std::pair<double, double>> cp_values;
cp_values.reserve(custom_gcode_per_print_z.size());
std::vector<double> print_zs = canvas.get_current_print_zs(true);
for (auto custom_code : custom_gcode_per_print_z)
{
if (custom_code.gcode != ColorChangeCode)
continue;
auto lower_b = std::lower_bound(print_zs.begin(), print_zs.end(), custom_code.print_z - Slic3r::DoubleSlider::epsilon());
if (lower_b == print_zs.end())
continue;
double current_z = *lower_b;
double previous_z = lower_b == print_zs.begin() ? 0.0 : *(--lower_b);
// to avoid duplicate values, check adding values
if (cp_values.empty() ||
!(cp_values.back().first == previous_z && cp_values.back().second == current_z))
cp_values.emplace_back(std::pair<double, double>(previous_z, current_z));
}
const auto items_cnt = (int)cp_values.size();
if (items_cnt == 0) // There is no one color change, but there is/are some pause print or custom Gcode
{
cp_legend_items.emplace_back(I18N::translate_utf8(L("Default print color")));
cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code")));
colors = colors_in;
return;
}
const int color_cnt = (int)colors_in.size() / 4;
colors.resize(colors_in.size(), 0.0);
::memcpy((void*)(colors.data()), (const void*)(colors_in.data() + (color_cnt - 1) * 4), 4 * sizeof(float));
cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code")));
size_t color_pos = 4;
for (int i = items_cnt; i >= 0; --i, color_pos+=4)
{
// update colors for color print item
::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + i * 4), 4 * sizeof(float));
// create label for color print item
std::string id_str = std::to_string(i + 1) + ": ";
if (i == 0) {
cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("up to %.2f mm"))) % cp_values[0].first).str());
break;
}
if (i == items_cnt) {
cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("above %.2f mm"))) % cp_values[i - 1].second).str());
continue;
}
cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("%.2f - %.2f mm"))) % cp_values[i - 1].second % cp_values[i].first).str());
}
}
else
{
// colors = colors_in;
const int color_cnt = (int)colors_in.size() / 4;
colors.resize(colors_in.size(), 0.0);
::memcpy((void*)(colors.data()), (const void*)(colors_in.data()), 4 * extruders_cnt * sizeof(float));
size_t color_pos = 4 * extruders_cnt;
size_t color_in_pos = 4 * (color_cnt - 1);
for (unsigned int i = 0; i < (unsigned int)extruders_cnt; ++i)
cp_legend_items.emplace_back((boost::format(I18N::translate_utf8(L("Extruder %d"))) % (i + 1)).str());
::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + color_in_pos), 4 * sizeof(float));
color_pos += 4;
color_in_pos -= 4;
cp_legend_items.emplace_back(I18N::translate_utf8(L("Pause print or custom G-code")));
int cnt = custom_gcode_per_print_z.size();
int color_change_idx = color_cnt - extruders_cnt;
for (int i = cnt-1; i >= 0; --i)
if (custom_gcode_per_print_z[i].gcode == ColorChangeCode) {
::memcpy((void*)(colors.data() + color_pos), (const void*)(colors_in.data() + color_in_pos), 4 * sizeof(float));
color_pos += 4;
color_in_pos -= 4;
// create label for color change item
std::string id_str = std::to_string(color_change_idx--) + ": ";
cp_legend_items.emplace_back(id_str + (boost::format(I18N::translate_utf8(L("Color change for Extruder %d at %.2f mm"))) % custom_gcode_per_print_z[i].extruder % custom_gcode_per_print_z[i].print_z).str());
}
}
}
bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors_in, const GLCanvas3D& canvas, bool compress)
{
reset();
// collects items to render
auto title = _(preview_data.get_legend_title());
std::vector<std::string> cp_legend_items;
std::vector<float> cp_colors;
if (preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint)
{
cp_legend_items.reserve(cp_colors.size());
fill_color_print_legend_items(canvas, tool_colors_in, cp_colors, cp_legend_items);
}
const std::vector<float>& tool_colors = preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint ? cp_colors : tool_colors_in;
const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors, cp_legend_items);
unsigned int items_count = (unsigned int)items.size();
if (items_count == 0)
// nothing to render, return
return false;
wxMemoryDC memDC;
wxMemoryDC mask_memDC;
// calculate scaling
const float scale_gl = canvas.get_canvas_size().get_scale_factor();
#if ENABLE_RETINA_GL
// For non-visible or non-created window getBackingScaleFactor function return 0.0 value.
// And using of the zero scale causes a crash, when we trying to draw text to the (0,0) rectangle
if (scale_gl <= 0.0f)
return false;
#endif
const float scale = scale_gl * wxGetApp().em_unit()*0.1; // get scale from em_unit() value, because of get_scale_factor() return 1
const int scaled_square = std::floor((float)Px_Square * scale);
const int scaled_title_offset = Px_Title_Offset * scale;
const int scaled_text_offset = Px_Text_Offset * scale;
const int scaled_square_contour = Px_Square_Contour * scale;
const int scaled_border = Px_Border * scale;
#ifdef __WXMSW__
// set scaled application normal font as default font
wxFont font = wxGetApp().normal_font();
// Disabling ClearType works, but the font returned is very different (much thicker) from the default.
// msw_disable_cleartype(font);
// bool cleartype = is_font_cleartype(font);
#else
// select default font
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT).Scale(scale_gl);
// bool cleartype = false;
#endif /* __WXMSW__ */
memDC.SetFont(font);
mask_memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(title, &w, &h);
int title_width = (int)w;
int title_height = (int)h;
int max_text_width = 0;
int max_text_height = 0;
for (const GCodePreviewData::LegendItem& item : items)
{
memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h);
max_text_width = std::max(max_text_width, (int)w);
max_text_height = std::max(max_text_height, (int)h);
}
m_original_width = std::max(2 * scaled_border + title_width, 2 * (scaled_border + scaled_square_contour) + scaled_square + scaled_text_offset + max_text_width);
m_original_height = 2 * (scaled_border + scaled_square_contour) + title_height + scaled_title_offset + items_count * scaled_square;
if (items_count > 1)
m_original_height += (items_count - 1) * scaled_square_contour;
m_width = (int)next_highest_power_of_2((uint32_t)m_original_width);
m_height = (int)next_highest_power_of_2((uint32_t)m_original_height);
// generates bitmap
wxBitmap bitmap(m_width, m_height);
wxBitmap mask(m_width, m_height);
memDC.SelectObject(bitmap);
mask_memDC.SelectObject(mask);
memDC.SetBackground(wxBrush(*wxBLACK));
mask_memDC.SetBackground(wxBrush(*wxBLACK));
memDC.Clear();
mask_memDC.Clear();
// draw title
memDC.SetTextForeground(*wxWHITE);
mask_memDC.SetTextForeground(*wxRED);
int title_x = scaled_border;
int title_y = scaled_border;
memDC.DrawText(title, title_x, title_y);
mask_memDC.DrawText(title, title_x, title_y);
// draw icons contours as background
int squares_contour_x = scaled_border;
int squares_contour_y = scaled_border + title_height + scaled_title_offset;
int squares_contour_width = scaled_square + 2 * scaled_square_contour;
int squares_contour_height = items_count * scaled_square + 2 * scaled_square_contour;
if (items_count > 1)
squares_contour_height += (items_count - 1) * scaled_square_contour;
wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]);
wxPen pen(color);
wxBrush brush(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height));
// draw items (colored icon + text)
int icon_x = squares_contour_x + scaled_square_contour;
int icon_x_inner = icon_x + 1;
int icon_y = squares_contour_y + scaled_square_contour;
int icon_y_step = scaled_square + scaled_square_contour;
int text_x = icon_x + scaled_square + scaled_text_offset;
int text_y_offset = (scaled_square - max_text_height) / 2;
int px_inner_square = scaled_square - 2;
for (const GCodePreviewData::LegendItem& item : items)
{
// draw darker icon perimeter
const std::vector<unsigned char>& item_color_bytes = item.color.as_bytes();
wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2]));
dark_hsv.value *= 0.75;
wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv);
color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x, icon_y, scaled_square, scaled_square));
// draw icon interior
color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square));
// draw text
mask_memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset);
// update y
icon_y += icon_y_step;
}
memDC.SelectObject(wxNullBitmap);
mask_memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
wxImage mask_image = mask.ConvertToImage();
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
const unsigned char *src_image = image.GetData();
const unsigned char *src_mask = mask_image.GetData();
for (int h = 0; h < m_height; ++h)
{
int hh = h * m_width;
unsigned char* px_ptr = data.data() + 4 * hh;
for (int w = 0; w < m_width; ++w)
{
if (w >= squares_contour_x && w < squares_contour_x + squares_contour_width &&
h >= squares_contour_y && h < squares_contour_y + squares_contour_height) {
// Color palette, use the color verbatim.
*px_ptr++ = *src_image++;
*px_ptr++ = *src_image++;
*px_ptr++ = *src_image++;
*px_ptr++ = 255;
} else {
// Text or background
unsigned char alpha = *src_mask;
// Compensate the white color for the 50% opacity reduction at the character edges.
//unsigned char color = (unsigned char)floor(alpha * 255.f / (128.f + 0.5f * alpha));
unsigned char color = alpha;
*px_ptr++ = color;
*px_ptr++ = color; // *src_mask ++;
*px_ptr++ = color; // *src_mask ++;
*px_ptr++ = 128 + (alpha / 2); // (alpha > 0) ? 255 : 128;
src_image += 3;
}
src_mask += 3;
}
}
// sends buffer to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id));
if (compress && GLEW_EXT_texture_compression_s3tc)
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
return true;
}
void GLCanvas3D::LegendTexture::render(const GLCanvas3D& canvas) const
{
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
const Size& cnv_size = canvas.get_canvas_size();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)canvas.get_camera().get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
float left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom;
float top = (0.5f * (float)cnv_size.get_height()) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
}
}
void GLCanvas3D::Labels::render(const std::vector<const ModelInstance*>& sorted_instances) const
{
if (!m_enabled || !is_shown())
return;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const Camera& camera = wxGetApp().plater()->get_camera();
#else
const Camera& camera = m_canvas.get_camera();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
const Model* model = m_canvas.get_model();
if (model == nullptr)
return;
Transform3d world_to_eye = camera.get_view_matrix();
Transform3d world_to_screen = camera.get_projection_matrix() * world_to_eye;
const std::array<int, 4>& viewport = camera.get_viewport();
struct Owner
{
int obj_idx;
int inst_idx;
size_t model_instance_id;
BoundingBoxf3 world_box;
double eye_center_z;
std::string title;
std::string label;
std::string print_order;
bool selected;
};
// collect owners world bounding boxes and data from volumes
std::vector<Owner> owners;
const GLVolumeCollection& volumes = m_canvas.get_volumes();
for (const GLVolume* volume : volumes.volumes) {
int obj_idx = volume->object_idx();
if (0 <= obj_idx && obj_idx < (int)model->objects.size()) {
int inst_idx = volume->instance_idx();
std::vector<Owner>::iterator it = std::find_if(owners.begin(), owners.end(), [obj_idx, inst_idx](const Owner& owner) {
return (owner.obj_idx == obj_idx) && (owner.inst_idx == inst_idx);
});
if (it != owners.end()) {
it->world_box.merge(volume->transformed_bounding_box());
it->selected &= volume->selected;
} else {
const ModelObject* model_object = model->objects[obj_idx];
Owner owner;
owner.obj_idx = obj_idx;
owner.inst_idx = inst_idx;
owner.model_instance_id = model_object->instances[inst_idx]->id().id;
owner.world_box = volume->transformed_bounding_box();
owner.title = "object" + std::to_string(obj_idx) + "_inst##" + std::to_string(inst_idx);
owner.label = model_object->name;
if (model_object->instances.size() > 1)
owner.label += " (" + std::to_string(inst_idx + 1) + ")";
owner.selected = volume->selected;
owners.emplace_back(owner);
}
}
}
// updates print order strings
if (sorted_instances.size() > 1) {
for (size_t i = 0; i < sorted_instances.size(); ++i) {
size_t id = sorted_instances[i]->id().id;
std::vector<Owner>::iterator it = std::find_if(owners.begin(), owners.end(), [id](const Owner& owner) {
return owner.model_instance_id == id;
});
if (it != owners.end())
it->print_order = std::string((_(L("Seq."))).ToUTF8()) + "#: " + std::to_string(i + 1);
}
}
// calculate eye bounding boxes center zs
for (Owner& owner : owners) {
owner.eye_center_z = (world_to_eye * owner.world_box.center())(2);
}
// sort owners by center eye zs and selection
std::sort(owners.begin(), owners.end(), [](const Owner& owner1, const Owner& owner2) {
if (!owner1.selected && owner2.selected)
return true;
else if (owner1.selected && !owner2.selected)
return false;
else
return (owner1.eye_center_z < owner2.eye_center_z);
});
ImGuiWrapper& imgui = *wxGetApp().imgui();
// render info windows
for (const Owner& owner : owners) {
Vec3d screen_box_center = world_to_screen * owner.world_box.center();
float x = 0.0f;
float y = 0.0f;
if (camera.get_type() == Camera::Perspective) {
x = (0.5f + 0.001f * 0.5f * (float)screen_box_center(0)) * viewport[2];
y = (0.5f - 0.001f * 0.5f * (float)screen_box_center(1)) * viewport[3];
} else {
x = (0.5f + 0.5f * (float)screen_box_center(0)) * viewport[2];
y = (0.5f - 0.5f * (float)screen_box_center(1)) * viewport[3];
}
if (x < 0.0f || viewport[2] < x || y < 0.0f || viewport[3] < y)
continue;
ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, owner.selected ? 3.0f : 1.5f);
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::PushStyleColor(ImGuiCol_Border, owner.selected ? ImVec4(0.757f, 0.404f, 0.216f, 1.0f) : ImVec4(0.75f, 0.75f, 0.75f, 1.0f));
imgui.set_next_window_pos(x, y, ImGuiCond_Always, 0.5f, 0.5f);
imgui.begin(owner.title, ImGuiWindowFlags_NoMouseInputs | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoMove);
ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());
float win_w = ImGui::GetWindowWidth();
float label_len = imgui.calc_text_size(owner.label).x;
ImGui::SetCursorPosX(0.5f * (win_w - label_len));
ImGui::AlignTextToFramePadding();
imgui.text(owner.label);
if (!owner.print_order.empty())
{
ImGui::Separator();
float po_len = imgui.calc_text_size(owner.print_order).x;
ImGui::SetCursorPosX(0.5f * (win_w - po_len));
ImGui::AlignTextToFramePadding();
imgui.text(owner.print_order);
}
// force re-render while the windows gets to its final size (it takes several frames)
if (ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x)
m_canvas.request_extra_frame();
imgui.end();
ImGui::PopStyleColor();
ImGui::PopStyleVar(2);
}
}
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
void GLCanvas3D::Tooltip::set_text(const std::string& text)
{
// If the mouse is inside an ImGUI dialog, then the tooltip is suppressed.
const std::string &new_text = m_in_imgui ? std::string() : text;
if (m_text != new_text)
{
if (m_text.empty())
m_start_time = std::chrono::steady_clock::now();
m_text = new_text;
}
}
void GLCanvas3D::Tooltip::render(const Vec2d& mouse_position, GLCanvas3D& canvas) const
{
static ImVec2 size(0.0f, 0.0f);
auto validate_position = [](const Vec2d& position, const GLCanvas3D& canvas, const ImVec2& wnd_size) {
Size cnv_size = canvas.get_canvas_size();
float x = std::clamp((float)position(0), 0.0f, (float)cnv_size.get_width() - wnd_size.x);
float y = std::clamp((float)position(1) + 16, 0.0f, (float)cnv_size.get_height() - wnd_size.y);
return Vec2f(x, y);
};
if (m_text.empty())
return;
// draw the tooltip as hidden until the delay is expired
// use a value of alpha slightly different from 0.0f because newer imgui does not calculate properly the window size if alpha == 0.0f
float alpha = (std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now() - m_start_time).count() < 500) ? 0.01f : 1.0f;
Vec2f position = validate_position(mouse_position, canvas, size);
ImGuiWrapper& imgui = *wxGetApp().imgui();
ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, alpha);
imgui.set_next_window_pos(position(0), position(1), ImGuiCond_Always, 0.0f, 0.0f);
imgui.begin(_(L("canvas_tooltip")), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoMouseInputs | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoDecoration | ImGuiWindowFlags_NoFocusOnAppearing);
ImGui::BringWindowToDisplayFront(ImGui::GetCurrentWindow());
ImGui::TextUnformatted(m_text.c_str());
// force re-render while the windows gets to its final size (it may take several frames) or while hidden
if (alpha < 1.0f || ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x)
canvas.request_extra_frame();
size = ImGui::GetWindowSize();
imgui.end();
ImGui::PopStyleVar(2);
}
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
#if ENABLE_SLOPE_RENDERING
void GLCanvas3D::Slope::render() const
{
if (is_shown())
{
const std::array<float, 2>& z_range = m_volumes.get_slope_z_range();
std::array<float, 2> angle_range = { Geometry::rad2deg(::acos(z_range[0])) - 90.0f, Geometry::rad2deg(::acos(z_range[1])) - 90.0f };
bool modified = false;
ImGuiWrapper& imgui = *wxGetApp().imgui();
const Size& cnv_size = m_canvas.get_canvas_size();
imgui.set_next_window_pos((float)cnv_size.get_width(), (float)cnv_size.get_height(), ImGuiCond_Always, 1.0f, 1.0f);
imgui.begin(_(L("Slope visualization")), nullptr, ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
imgui.text(_(L("Facets' normal angle range (degrees)")) + ":");
ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.75f, 0.75f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_FrameBgHovered, ImVec4(1.0f, 1.0f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_FrameBgActive, ImVec4(0.85f, 0.85f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_SliderGrab, ImVec4(0.25f, 0.25f, 0.0f, 1.0f));
if (ImGui::SliderFloat("##yellow", &angle_range[0], 0.0f, 90.0f, "%.1f"))
{
modified = true;
if (angle_range[1] < angle_range[0])
angle_range[1] = angle_range[0];
}
ImGui::PopStyleColor(4);
ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.75f, 0.0f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_FrameBgHovered, ImVec4(1.0f, 0.0f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_FrameBgActive, ImVec4(0.85f, 0.0f, 0.0f, 0.5f));
ImGui::PushStyleColor(ImGuiCol_SliderGrab, ImVec4(0.25f, 0.0f, 0.0f, 1.0f));
if (ImGui::SliderFloat("##red", &angle_range[1], 0.0f, 90.0f, "%.1f"))
{
modified = true;
if (angle_range[0] > angle_range[1])
angle_range[0] = angle_range[1];
}
ImGui::PopStyleColor(4);
ImGui::Separator();
if (imgui.button(_(L("Default"))))
m_volumes.set_default_slope_z_range();
// to let the dialog immediately showup without waiting for a mouse move
if (ImGui::GetWindowContentRegionWidth() + 2.0f * ImGui::GetStyle().WindowPadding.x != ImGui::CalcWindowExpectedSize(ImGui::GetCurrentWindow()).x)
m_canvas.request_extra_frame();
imgui.end();
if (modified)
m_volumes.set_slope_z_range({ -::cos(Geometry::deg2rad(90.0f - angle_range[0])), -::cos(Geometry::deg2rad(90.0f - angle_range[1])) });
}
}
#endif // ENABLE_SLOPE_RENDERING
wxDEFINE_EVENT(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_OBJECT_SELECT, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RIGHT_CLICK, RBtnEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_REMOVE_OBJECT, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_ARRANGE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_SELECT_ALL, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_QUESTION_MARK, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INCREASE_INSTANCES, Event<int>);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_MOVED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_ROTATED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_INSTANCE_SCALED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_FORCE_UPDATE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_MOVED, Vec3dEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_WIPETOWER_ROTATED, Vec3dEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, Event<bool>);
wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_GEOMETRY, Vec3dsEvent<2>);
wxDEFINE_EVENT(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_UPDATE_BED_SHAPE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_TAB, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RESETGIZMOS, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_MOVE_DOUBLE_SLIDER, wxKeyEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_EDIT_COLOR_CHANGE, wxKeyEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_UNDO, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_REDO, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RESET_LAYER_HEIGHT_PROFILE, SimpleEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_ADAPTIVE_LAYER_HEIGHT_PROFILE, Event<float>);
wxDEFINE_EVENT(EVT_GLCANVAS_SMOOTH_LAYER_HEIGHT_PROFILE, HeightProfileSmoothEvent);
wxDEFINE_EVENT(EVT_GLCANVAS_RELOAD_FROM_DISK, SimpleEvent);
const double GLCanvas3D::DefaultCameraZoomToBoxMarginFactor = 1.25;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas)
#else
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, Bed3D& bed, Camera& camera, GLToolbar& view_toolbar)
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
: m_canvas(canvas)
, m_context(nullptr)
#if ENABLE_RETINA_GL
, m_retina_helper(nullptr)
#endif
, m_in_render(false)
#if !ENABLE_NON_STATIC_CANVAS_MANAGER
, m_bed(bed)
, m_camera(camera)
, m_view_toolbar(view_toolbar)
#endif // !ENABLE_NON_STATIC_CANVAS_MANAGER
, m_main_toolbar(GLToolbar::Normal, "Top")
, m_undoredo_toolbar(GLToolbar::Normal, "Top")
, m_gizmos(*this)
, m_use_clipping_planes(false)
, m_sidebar_field("")
, m_extra_frame_requested(false)
, m_config(nullptr)
, m_process(nullptr)
, m_model(nullptr)
, m_dirty(true)
, m_initialized(false)
, m_apply_zoom_to_volumes_filter(false)
, m_legend_texture_enabled(false)
, m_picking_enabled(false)
, m_moving_enabled(false)
, m_dynamic_background_enabled(false)
, m_multisample_allowed(false)
, m_moving(false)
, m_tab_down(false)
, m_cursor_type(Standard)
, m_color_by("volume")
, m_reload_delayed(false)
#if ENABLE_RENDER_PICKING_PASS
, m_show_picking_texture(false)
#endif // ENABLE_RENDER_PICKING_PASS
, m_render_sla_auxiliaries(true)
, m_labels(*this)
#if ENABLE_SLOPE_RENDERING
, m_slope(*this, m_volumes)
#endif // ENABLE_SLOPE_RENDERING
{
if (m_canvas != nullptr) {
m_timer.SetOwner(m_canvas);
#if ENABLE_RETINA_GL
m_retina_helper.reset(new RetinaHelper(canvas));
#if !ENABLE_NON_STATIC_CANVAS_MANAGER
// set default view_toolbar icons size equal to GLGizmosManager::Default_Icons_Size
m_view_toolbar.set_icons_size(GLGizmosManager::Default_Icons_Size);
#endif // !ENABLE_NON_STATIC_CANVAS_MANAGER
#endif // ENABLE_RETINA_GL
}
m_selection.set_volumes(&m_volumes.volumes);
}
GLCanvas3D::~GLCanvas3D()
{
reset_volumes();
}
void GLCanvas3D::post_event(wxEvent &&event)
{
event.SetEventObject(m_canvas);
wxPostEvent(m_canvas, event);
}
bool GLCanvas3D::init()
{
if (m_initialized)
return true;
if ((m_canvas == nullptr) || (m_context == nullptr))
return false;
glsafe(::glClearColor(1.0f, 1.0f, 1.0f, 1.0f));
glsafe(::glClearDepth(1.0f));
glsafe(::glDepthFunc(GL_LESS));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
// Set antialiasing / multisampling
glsafe(::glDisable(GL_LINE_SMOOTH));
glsafe(::glDisable(GL_POLYGON_SMOOTH));
// ambient lighting
GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
glsafe(::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient));
glsafe(::glEnable(GL_LIGHT0));
glsafe(::glEnable(GL_LIGHT1));
// light from camera
GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam));
GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam));
// light from above
GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top));
GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top));
// Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
glsafe(::glShadeModel(GL_SMOOTH));
// A handy trick -- have surface material mirror the color.
glsafe(::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE));
glsafe(::glEnable(GL_COLOR_MATERIAL));
if (m_multisample_allowed)
glsafe(::glEnable(GL_MULTISAMPLE));
if (!m_shader.init("gouraud.vs", "gouraud.fs"))
{
std::cout << "Unable to initialize gouraud shader: please, check that the files gouraud.vs and gouraud.fs are available" << std::endl;
return false;
}
if (m_main_toolbar.is_enabled() && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs"))
{
std::cout << "Unable to initialize variable_layer_height shader: please, check that the files variable_layer_height.vs and variable_layer_height.fs are available" << std::endl;
return false;
}
// on linux the gl context is not valid until the canvas is not shown on screen
// we defer the geometry finalization of volumes until the first call to render()
m_volumes.finalize_geometry(true);
if (m_gizmos.is_enabled() && !m_gizmos.init())
std::cout << "Unable to initialize gizmos: please, check that all the required textures are available" << std::endl;
if (!_init_toolbars())
return false;
if (m_selection.is_enabled() && !m_selection.init())
return false;
m_initialized = true;
return true;
}
void GLCanvas3D::set_as_dirty()
{
m_dirty = true;
}
unsigned int GLCanvas3D::get_volumes_count() const
{
return (unsigned int)m_volumes.volumes.size();
}
void GLCanvas3D::reset_volumes()
{
if (!m_initialized)
return;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
if (m_volumes.empty())
return;
_set_current();
m_selection.clear();
m_volumes.clear();
m_dirty = true;
_set_warning_texture(WarningTexture::ObjectOutside, false);
#else
_set_current();
if (!m_volumes.empty())
{
m_selection.clear();
m_volumes.clear();
m_dirty = true;
}
_set_warning_texture(WarningTexture::ObjectOutside, false);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
int GLCanvas3D::check_volumes_outside_state() const
{
ModelInstance::EPrintVolumeState state;
m_volumes.check_outside_state(m_config, &state);
return (int)state;
}
void GLCanvas3D::toggle_sla_auxiliaries_visibility(bool visible, const ModelObject* mo, int instance_idx)
{
m_render_sla_auxiliaries = visible;
for (GLVolume* vol : m_volumes.volumes) {
if (vol->composite_id.object_id == 1000)
continue; // the wipe tower
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)
&& vol->composite_id.volume_id < 0)
vol->is_active = visible;
}
}
void GLCanvas3D::toggle_model_objects_visibility(bool visible, const ModelObject* mo, int instance_idx)
{
for (GLVolume* vol : m_volumes.volumes) {
if (vol->composite_id.object_id == 1000) { // wipe tower
vol->is_active = (visible && mo == nullptr);
}
else {
if ((mo == nullptr || m_model->objects[vol->composite_id.object_id] == mo)
&& (instance_idx == -1 || vol->composite_id.instance_id == instance_idx)) {
vol->is_active = visible;
vol->force_native_color = (instance_idx != -1);
}
}
}
if (visible && !mo)
toggle_sla_auxiliaries_visibility(true, mo, instance_idx);
if (!mo && !visible && !m_model->objects.empty() && (m_model->objects.size() > 1 || m_model->objects.front()->instances.size() > 1))
_set_warning_texture(WarningTexture::SomethingNotShown, true);
if (!mo && visible)
_set_warning_texture(WarningTexture::SomethingNotShown, false);
}
void GLCanvas3D::update_instance_printable_state_for_object(const size_t obj_idx)
{
ModelObject* model_object = m_model->objects[obj_idx];
for (int inst_idx = 0; inst_idx < (int)model_object->instances.size(); ++inst_idx)
{
ModelInstance* instance = model_object->instances[inst_idx];
for (GLVolume* volume : m_volumes.volumes)
{
if ((volume->object_idx() == (int)obj_idx) && (volume->instance_idx() == inst_idx))
volume->printable = instance->printable;
}
}
}
void GLCanvas3D::update_instance_printable_state_for_objects(std::vector<size_t>& object_idxs)
{
for (size_t obj_idx : object_idxs)
update_instance_printable_state_for_object(obj_idx);
}
void GLCanvas3D::set_config(const DynamicPrintConfig* config)
{
m_config = config;
m_layers_editing.set_config(config);
}
void GLCanvas3D::set_process(BackgroundSlicingProcess *process)
{
m_process = process;
}
void GLCanvas3D::set_model(Model* model)
{
m_model = model;
m_selection.set_model(m_model);
}
void GLCanvas3D::bed_shape_changed()
{
refresh_camera_scene_box();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().requires_zoom_to_bed = true;
#else
m_camera.requires_zoom_to_bed = true;
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty = true;
}
void GLCanvas3D::set_color_by(const std::string& value)
{
m_color_by = value;
}
#if ENABLE_NON_STATIC_CANVAS_MANAGER
void GLCanvas3D::refresh_camera_scene_box()
{
wxGetApp().plater()->get_camera().set_scene_box(scene_bounding_box());
}
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const
{
BoundingBoxf3 bb;
for (const GLVolume* volume : m_volumes.volumes)
{
if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes))
bb.merge(volume->transformed_bounding_box());
}
return bb;
}
BoundingBoxf3 GLCanvas3D::scene_bounding_box() const
{
BoundingBoxf3 bb = volumes_bounding_box();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(true));
#else
bb.merge(m_bed.get_bounding_box(true));
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
if (m_config != nullptr)
{
double h = m_config->opt_float("max_print_height");
bb.min(2) = std::min(bb.min(2), -h);
bb.max(2) = std::max(bb.max(2), h);
}
return bb;
}
bool GLCanvas3D::is_layers_editing_enabled() const
{
return m_layers_editing.is_enabled();
}
bool GLCanvas3D::is_layers_editing_allowed() const
{
return m_layers_editing.is_allowed();
}
void GLCanvas3D::reset_layer_height_profile()
{
wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Reset")));
m_layers_editing.reset_layer_height_profile(*this);
m_layers_editing.state = LayersEditing::Completed;
m_dirty = true;
}
void GLCanvas3D::adaptive_layer_height_profile(float quality_factor)
{
wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Adaptive")));
m_layers_editing.adaptive_layer_height_profile(*this, quality_factor);
m_layers_editing.state = LayersEditing::Completed;
m_dirty = true;
}
void GLCanvas3D::smooth_layer_height_profile(const HeightProfileSmoothingParams& smoothing_params)
{
wxGetApp().plater()->take_snapshot(_(L("Variable layer height - Smooth all")));
m_layers_editing.smooth_layer_height_profile(*this, smoothing_params);
m_layers_editing.state = LayersEditing::Completed;
m_dirty = true;
}
bool GLCanvas3D::is_reload_delayed() const
{
return m_reload_delayed;
}
void GLCanvas3D::enable_layers_editing(bool enable)
{
#if ENABLE_SLOPE_RENDERING
if (enable && m_slope.is_shown())
m_slope.show(false);
#endif // ENABLE_SLOPE_RENDERING
m_layers_editing.set_enabled(enable);
const Selection::IndicesList& idxs = m_selection.get_volume_idxs();
for (unsigned int idx : idxs)
{
GLVolume* v = m_volumes.volumes[idx];
if (v->is_modifier)
v->force_transparent = enable;
}
set_as_dirty();
}
void GLCanvas3D::enable_legend_texture(bool enable)
{
m_legend_texture_enabled = enable;
}
void GLCanvas3D::enable_picking(bool enable)
{
m_picking_enabled = enable;
m_selection.set_mode(Selection::Instance);
}
void GLCanvas3D::enable_moving(bool enable)
{
m_moving_enabled = enable;
}
void GLCanvas3D::enable_gizmos(bool enable)
{
m_gizmos.set_enabled(enable);
}
void GLCanvas3D::enable_selection(bool enable)
{
m_selection.set_enabled(enable);
}
void GLCanvas3D::enable_main_toolbar(bool enable)
{
m_main_toolbar.set_enabled(enable);
}
void GLCanvas3D::enable_undoredo_toolbar(bool enable)
{
m_undoredo_toolbar.set_enabled(enable);
}
void GLCanvas3D::enable_dynamic_background(bool enable)
{
m_dynamic_background_enabled = enable;
}
void GLCanvas3D::allow_multisample(bool allow)
{
m_multisample_allowed = allow;
}
void GLCanvas3D::zoom_to_bed()
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
_zoom_to_box(wxGetApp().plater()->get_bed().get_bounding_box(false));
#else
_zoom_to_box(m_bed.get_bounding_box(false));
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
void GLCanvas3D::zoom_to_volumes()
{
m_apply_zoom_to_volumes_filter = true;
_zoom_to_box(volumes_bounding_box());
m_apply_zoom_to_volumes_filter = false;
}
void GLCanvas3D::zoom_to_selection()
{
if (!m_selection.is_empty())
_zoom_to_box(m_selection.get_bounding_box());
}
void GLCanvas3D::select_view(const std::string& direction)
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().select_view(direction);
#else
m_camera.select_view(direction);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
if (m_canvas != nullptr)
m_canvas->Refresh();
}
void GLCanvas3D::update_volumes_colors_by_extruder()
{
if (m_config != nullptr)
m_volumes.update_colors_by_extruder(m_config);
}
void GLCanvas3D::render()
{
if (m_in_render)
{
// if called recursively, return
m_dirty = true;
return;
}
m_in_render = true;
Slic3r::ScopeGuard in_render_guard([this]() { m_in_render = false; });
(void)in_render_guard;
if (m_canvas == nullptr)
return;
// ensures this canvas is current and initialized
#if ENABLE_NON_STATIC_CANVAS_MANAGER
if (!_is_shown_on_screen() || !_set_current() || !wxGetApp().init_opengl())
return;
if (!is_initialized() && !init())
return;
#else
if (! _is_shown_on_screen() || !_set_current() || !_3DScene::init(m_canvas))
return;
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#if ENABLE_RENDER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
#endif // ENABLE_RENDER_STATISTICS
#if ENABLE_NON_STATIC_CANVAS_MANAGER
if (wxGetApp().plater()->get_bed().get_shape().empty())
#else
if (m_bed.get_shape().empty())
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
{
// this happens at startup when no data is still saved under <>\AppData\Roaming\Slic3rPE
post_event(SimpleEvent(EVT_GLCANVAS_UPDATE_BED_SHAPE));
return;
}
const Size& cnv_size = get_canvas_size();
// Probably due to different order of events on Linux/GTK2, when one switched from 3D scene
// to preview, this was called before canvas had its final size. It reported zero width
// and the viewport was set incorrectly, leading to tripping glAsserts further down
// the road (in apply_projection). That's why the minimum size is forced to 10.
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Camera& camera = wxGetApp().plater()->get_camera();
camera.apply_viewport(0, 0, std::max(10u, (unsigned int)cnv_size.get_width()), std::max(10u, (unsigned int)cnv_size.get_height()));
if (camera.requires_zoom_to_bed)
{
zoom_to_bed();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
camera.requires_zoom_to_bed = false;
}
camera.apply_view_matrix();
camera.apply_projection(_max_bounding_box(true, true));
#else
m_camera.apply_viewport(0, 0, std::max(10u, (unsigned int)cnv_size.get_width()), std::max(10u, (unsigned int)cnv_size.get_height()));
if (m_camera.requires_zoom_to_bed)
{
zoom_to_bed();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
m_camera.requires_zoom_to_bed = false;
}
m_camera.apply_view_matrix();
m_camera.apply_projection(_max_bounding_box(true, true));
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f };
glsafe(::glLightfv(GL_LIGHT1, GL_POSITION, position_cam));
GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f };
glsafe(::glLightfv(GL_LIGHT0, GL_POSITION, position_top));
wxGetApp().imgui()->new_frame();
if (m_picking_enabled)
{
if (m_rectangle_selection.is_dragging())
// picking pass using rectangle selection
_rectangular_selection_picking_pass();
else
// regular picking pass
_picking_pass();
}
#if ENABLE_RENDER_PICKING_PASS
if (!m_picking_enabled || !m_show_picking_texture)
{
#endif // ENABLE_RENDER_PICKING_PASS
// draw scene
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
_render_background();
_render_objects();
_render_sla_slices();
_render_selection();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
_render_bed(!camera.is_looking_downward(), true);
#else
_render_bed(!m_camera.is_looking_downward(), true);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#if ENABLE_RENDER_SELECTION_CENTER
_render_selection_center();
#endif // ENABLE_RENDER_SELECTION_CENTER
// we need to set the mouse's scene position here because the depth buffer
// could be invalidated by the following gizmo render methods
// this position is used later into on_mouse() to drag the objects
m_mouse.scene_position = _mouse_to_3d(m_mouse.position.cast<coord_t>());
_render_current_gizmo();
_render_selection_sidebar_hints();
#if ENABLE_RENDER_PICKING_PASS
}
#endif // ENABLE_RENDER_PICKING_PASS
#if ENABLE_SHOW_CAMERA_TARGET
_render_camera_target();
#endif // ENABLE_SHOW_CAMERA_TARGET
if (m_picking_enabled && m_rectangle_selection.is_dragging())
m_rectangle_selection.render(*this);
// draw overlays
_render_overlays();
#if ENABLE_RENDER_STATISTICS
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.begin(std::string("Render statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
imgui.text("Last frame: ");
ImGui::SameLine();
imgui.text(std::to_string(m_render_stats.last_frame));
ImGui::SameLine();
imgui.text(" ms");
ImGui::Separator();
imgui.text("Compressed textures: ");
ImGui::SameLine();
imgui.text(GLCanvas3DManager::are_compressed_textures_supported() ? "supported" : "not supported");
imgui.text("Max texture size: ");
ImGui::SameLine();
imgui.text(std::to_string(GLCanvas3DManager::get_gl_info().get_max_tex_size()));
imgui.end();
#endif // ENABLE_RENDER_STATISTICS
#if ENABLE_CAMERA_STATISTICS
m_camera.debug_render();
#endif // ENABLE_CAMERA_STATISTICS
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
std::string tooltip;
// Negative coordinate means out of the window, likely because the window was deactivated.
// In that case the tooltip should be hidden.
if (m_mouse.position.x() >= 0. && m_mouse.position.y() >= 0.)
{
if (tooltip.empty())
tooltip = m_layers_editing.get_tooltip(*this);
if (tooltip.empty())
tooltip = m_gizmos.get_tooltip();
if (tooltip.empty())
tooltip = m_main_toolbar.get_tooltip();
if (tooltip.empty())
tooltip = m_undoredo_toolbar.get_tooltip();
if (tooltip.empty())
#if ENABLE_NON_STATIC_CANVAS_MANAGER
tooltip = wxGetApp().plater()->get_view_toolbar().get_tooltip();
#else
tooltip = m_view_toolbar.get_tooltip();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
set_tooltip(tooltip);
m_tooltip.render(m_mouse.position, *this);
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
wxGetApp().plater()->get_mouse3d_controller().render_settings_dialog(*this);
wxGetApp().imgui()->render();
m_canvas->SwapBuffers();
#if ENABLE_RENDER_STATISTICS
auto end_time = std::chrono::high_resolution_clock::now();
m_render_stats.last_frame = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time).count();
#endif // ENABLE_RENDER_STATISTICS
#if !ENABLE_CANVAS_TOOLTIP_USING_IMGUI
std::string tooltip = "";
if (tooltip.empty())
tooltip = m_layers_editing.get_tooltip(*this);
if (tooltip.empty())
tooltip = m_gizmos.get_tooltip();
if (tooltip.empty())
tooltip = m_main_toolbar.get_tooltip();
if (tooltip.empty())
tooltip = m_undoredo_toolbar.get_tooltip();
if (tooltip.empty())
tooltip = m_view_toolbar.get_tooltip();
set_tooltip(tooltip);
#endif // !ENABLE_CANVAS_TOOLTIP_USING_IMGUI
}
void GLCanvas3D::render_thumbnail(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const
{
switch (GLCanvas3DManager::get_framebuffers_type())
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
case GLCanvas3DManager::EFramebufferType::Arb: { _render_thumbnail_framebuffer(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; }
case GLCanvas3DManager::EFramebufferType::Ext: { _render_thumbnail_framebuffer_ext(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; }
#else
case GLCanvas3DManager::FB_Arb: { _render_thumbnail_framebuffer(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; }
case GLCanvas3DManager::FB_Ext: { _render_thumbnail_framebuffer_ext(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; }
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
default: { _render_thumbnail_legacy(thumbnail_data, w, h, printable_only, parts_only, show_bed, transparent_background); break; }
}
}
void GLCanvas3D::select_all()
{
m_selection.add_all();
m_dirty = true;
}
void GLCanvas3D::deselect_all()
{
m_selection.remove_all();
wxGetApp().obj_manipul()->set_dirty();
m_gizmos.reset_all_states();
m_gizmos.update_data();
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
}
void GLCanvas3D::delete_selected()
{
m_selection.erase();
}
void GLCanvas3D::ensure_on_bed(unsigned int object_idx)
{
typedef std::map<std::pair<int, int>, double> InstancesToZMap;
InstancesToZMap instances_min_z;
for (GLVolume* volume : m_volumes.volumes)
{
if ((volume->object_idx() == (int)object_idx) && !volume->is_modifier)
{
double min_z = volume->transformed_convex_hull_bounding_box().min(2);
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it == instances_min_z.end())
it = instances_min_z.insert(InstancesToZMap::value_type(instance, DBL_MAX)).first;
it->second = std::min(it->second, min_z);
}
}
for (GLVolume* volume : m_volumes.volumes)
{
std::pair<int, int> instance = std::make_pair(volume->object_idx(), volume->instance_idx());
InstancesToZMap::iterator it = instances_min_z.find(instance);
if (it != instances_min_z.end())
volume->set_instance_offset(Z, volume->get_instance_offset(Z) - it->second);
}
}
std::vector<double> GLCanvas3D::get_current_print_zs(bool active_only) const
{
return m_volumes.get_current_print_zs(active_only);
}
void GLCanvas3D::set_toolpaths_range(double low, double high)
{
m_volumes.set_range(low, high);
}
std::vector<int> GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector<int> instance_idxs)
{
if (instance_idxs.empty())
{
for (unsigned int i = 0; i < model_object.instances.size(); ++i)
{
instance_idxs.emplace_back(i);
}
}
return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_initialized);
}
std::vector<int> GLCanvas3D::load_object(const Model& model, int obj_idx)
{
if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size()))
{
const ModelObject* model_object = model.objects[obj_idx];
if (model_object != nullptr)
return load_object(*model_object, obj_idx, std::vector<int>());
}
return std::vector<int>();
}
void GLCanvas3D::mirror_selection(Axis axis)
{
m_selection.mirror(axis);
do_mirror(L("Mirror Object"));
wxGetApp().obj_manipul()->set_dirty();
}
// Reload the 3D scene of
// 1) Model / ModelObjects / ModelInstances / ModelVolumes
// 2) Print bed
// 3) SLA support meshes for their respective ModelObjects / ModelInstances
// 4) Wipe tower preview
// 5) Out of bed collision status & message overlay (texture)
void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_refresh)
{
if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr))
return;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
if (!m_initialized)
return;
_set_current();
#else
if (m_initialized)
_set_current();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
struct ModelVolumeState {
ModelVolumeState(const GLVolume* volume) :
model_volume(nullptr), geometry_id(volume->geometry_id), volume_idx(-1) {}
ModelVolumeState(const ModelVolume* model_volume, const ObjectID& instance_id, const GLVolume::CompositeID& composite_id) :
model_volume(model_volume), geometry_id(std::make_pair(model_volume->id().id, instance_id.id)), composite_id(composite_id), volume_idx(-1) {}
ModelVolumeState(const ObjectID& volume_id, const ObjectID& instance_id) :
model_volume(nullptr), geometry_id(std::make_pair(volume_id.id, instance_id.id)), volume_idx(-1) {}
bool new_geometry() const { return this->volume_idx == size_t(-1); }
const ModelVolume* model_volume;
// ObjectID of ModelVolume + ObjectID of ModelInstance
// or timestamp of an SLAPrintObjectStep + ObjectID of ModelInstance
std::pair<size_t, size_t> geometry_id;
GLVolume::CompositeID composite_id;
// Volume index in the new GLVolume vector.
size_t volume_idx;
};
std::vector<ModelVolumeState> model_volume_state;
std::vector<ModelVolumeState> aux_volume_state;
struct GLVolumeState {
GLVolumeState() :
volume_idx(size_t(-1)) {}
GLVolumeState(const GLVolume* volume, unsigned int volume_idx) :
composite_id(volume->composite_id), volume_idx(volume_idx) {}
GLVolumeState(const GLVolume::CompositeID &composite_id) :
composite_id(composite_id), volume_idx(size_t(-1)) {}
GLVolume::CompositeID composite_id;
// Volume index in the old GLVolume vector.
size_t volume_idx;
};
// SLA steps to pull the preview meshes for.
typedef std::array<SLAPrintObjectStep, 3> SLASteps;
SLASteps sla_steps = { slaposDrillHoles, slaposSupportTree, slaposPad };
struct SLASupportState {
std::array<PrintStateBase::StateWithTimeStamp, std::tuple_size<SLASteps>::value> step;
};
// State of the sla_steps for all SLAPrintObjects.
std::vector<SLASupportState> sla_support_state;
std::vector<size_t> instance_ids_selected;
std::vector<size_t> map_glvolume_old_to_new(m_volumes.volumes.size(), size_t(-1));
std::vector<GLVolumeState> deleted_volumes;
std::vector<GLVolume*> glvolumes_new;
glvolumes_new.reserve(m_volumes.volumes.size());
auto model_volume_state_lower = [](const ModelVolumeState& m1, const ModelVolumeState& m2) { return m1.geometry_id < m2.geometry_id; };
m_reload_delayed = !m_canvas->IsShown() && !refresh_immediately && !force_full_scene_refresh;
PrinterTechnology printer_technology = m_process->current_printer_technology();
int volume_idx_wipe_tower_old = -1;
// Release invalidated volumes to conserve GPU memory in case of delayed refresh (see m_reload_delayed).
// First initialize model_volumes_new_sorted & model_instances_new_sorted.
for (int object_idx = 0; object_idx < (int)m_model->objects.size(); ++object_idx) {
const ModelObject* model_object = m_model->objects[object_idx];
for (int instance_idx = 0; instance_idx < (int)model_object->instances.size(); ++instance_idx) {
const ModelInstance* model_instance = model_object->instances[instance_idx];
for (int volume_idx = 0; volume_idx < (int)model_object->volumes.size(); ++volume_idx) {
const ModelVolume* model_volume = model_object->volumes[volume_idx];
model_volume_state.emplace_back(model_volume, model_instance->id(), GLVolume::CompositeID(object_idx, volume_idx, instance_idx));
}
}
}
if (printer_technology == ptSLA) {
const SLAPrint* sla_print = this->sla_print();
#ifndef NDEBUG
// Verify that the SLAPrint object is synchronized with m_model.
check_model_ids_equal(*m_model, sla_print->model());
#endif /* NDEBUG */
sla_support_state.reserve(sla_print->objects().size());
for (const SLAPrintObject* print_object : sla_print->objects()) {
SLASupportState state;
for (size_t istep = 0; istep < sla_steps.size(); ++istep) {
state.step[istep] = print_object->step_state_with_timestamp(sla_steps[istep]);
if (state.step[istep].state == PrintStateBase::DONE) {
if (!print_object->has_mesh(sla_steps[istep]))
// Consider the DONE step without a valid mesh as invalid for the purpose
// of mesh visualization.
state.step[istep].state = PrintStateBase::INVALID;
else if (sla_steps[istep] != slaposDrillHoles)
for (const ModelInstance* model_instance : print_object->model_object()->instances)
// Only the instances, which are currently printable, will have the SLA support structures kept.
// The instances outside the print bed will have the GLVolumes of their support structures released.
if (model_instance->is_printable())
aux_volume_state.emplace_back(state.step[istep].timestamp, model_instance->id());
}
}
sla_support_state.emplace_back(state);
}
}
std::sort(model_volume_state.begin(), model_volume_state.end(), model_volume_state_lower);
std::sort(aux_volume_state.begin(), aux_volume_state.end(), model_volume_state_lower);
// Release all ModelVolume based GLVolumes not found in the current Model. Find the GLVolume of a hollowed mesh.
for (size_t volume_id = 0; volume_id < m_volumes.volumes.size(); ++volume_id) {
GLVolume* volume = m_volumes.volumes[volume_id];
ModelVolumeState key(volume);
ModelVolumeState* mvs = nullptr;
if (volume->volume_idx() < 0) {
auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower);
if (it != aux_volume_state.end() && it->geometry_id == key.geometry_id)
// This can be an SLA support structure that should not be rendered (in case someone used undo
// to revert to before it was generated). We only reuse the volume if that's not the case.
if (m_model->objects[volume->composite_id.object_id]->sla_points_status != sla::PointsStatus::NoPoints)
mvs = &(*it);
}
else {
auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower);
if (it != model_volume_state.end() && it->geometry_id == key.geometry_id)
mvs = &(*it);
}
// Emplace instance ID of the volume. Both the aux volumes and model volumes share the same instance ID.
// The wipe tower has its own wipe_tower_instance_id().
if (m_selection.contains_volume(volume_id))
instance_ids_selected.emplace_back(volume->geometry_id.second);
if (mvs == nullptr || force_full_scene_refresh) {
// This GLVolume will be released.
if (volume->is_wipe_tower) {
// There is only one wipe tower.
assert(volume_idx_wipe_tower_old == -1);
volume_idx_wipe_tower_old = (int)volume_id;
}
if (!m_reload_delayed)
{
deleted_volumes.emplace_back(volume, volume_id);
delete volume;
}
}
else {
// This GLVolume will be reused.
volume->set_sla_shift_z(0.0);
map_glvolume_old_to_new[volume_id] = glvolumes_new.size();
mvs->volume_idx = glvolumes_new.size();
glvolumes_new.emplace_back(volume);
// Update color of the volume based on the current extruder.
if (mvs->model_volume != nullptr) {
int extruder_id = mvs->model_volume->extruder_id();
if (extruder_id != -1)
volume->extruder_id = extruder_id;
volume->is_modifier = !mvs->model_volume->is_model_part();
volume->set_color_from_model_volume(mvs->model_volume);
// updates volumes transformations
volume->set_instance_transformation(mvs->model_volume->get_object()->instances[mvs->composite_id.instance_id]->get_transformation());
volume->set_volume_transformation(mvs->model_volume->get_transformation());
}
}
}
sort_remove_duplicates(instance_ids_selected);
auto deleted_volumes_lower = [](const GLVolumeState &v1, const GLVolumeState &v2) { return v1.composite_id < v2.composite_id; };
std::sort(deleted_volumes.begin(), deleted_volumes.end(), deleted_volumes_lower);
if (m_reload_delayed)
return;
bool update_object_list = false;
if (m_volumes.volumes != glvolumes_new)
update_object_list = true;
m_volumes.volumes = std::move(glvolumes_new);
for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++ obj_idx) {
const ModelObject &model_object = *m_model->objects[obj_idx];
for (int volume_idx = 0; volume_idx < (int)model_object.volumes.size(); ++ volume_idx) {
const ModelVolume &model_volume = *model_object.volumes[volume_idx];
for (int instance_idx = 0; instance_idx < (int)model_object.instances.size(); ++ instance_idx) {
const ModelInstance &model_instance = *model_object.instances[instance_idx];
ModelVolumeState key(model_volume.id(), model_instance.id());
auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower);
assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id);
if (it->new_geometry()) {
// New volume.
auto it_old_volume = std::lower_bound(deleted_volumes.begin(), deleted_volumes.end(), GLVolumeState(it->composite_id), deleted_volumes_lower);
if (it_old_volume != deleted_volumes.end() && it_old_volume->composite_id == it->composite_id)
// If a volume changed its ObjectID, but it reuses a GLVolume's CompositeID, maintain its selection.
map_glvolume_old_to_new[it_old_volume->volume_idx] = m_volumes.volumes.size();
// Note the index of the loaded volume, so that we can reload the main model GLVolume with the hollowed mesh
// later in this function.
it->volume_idx = m_volumes.volumes.size();
m_volumes.load_object_volume(&model_object, obj_idx, volume_idx, instance_idx, m_color_by, m_initialized);
m_volumes.volumes.back()->geometry_id = key.geometry_id;
update_object_list = true;
} else {
// Recycling an old GLVolume.
GLVolume &existing_volume = *m_volumes.volumes[it->volume_idx];
assert(existing_volume.geometry_id == key.geometry_id);
// Update the Object/Volume/Instance indices into the current Model.
if (existing_volume.composite_id != it->composite_id) {
existing_volume.composite_id = it->composite_id;
update_object_list = true;
}
}
}
}
}
if (printer_technology == ptSLA) {
size_t idx = 0;
const SLAPrint *sla_print = this->sla_print();
std::vector<double> shift_zs(m_model->objects.size(), 0);
double relative_correction_z = sla_print->relative_correction().z();
if (relative_correction_z <= EPSILON)
relative_correction_z = 1.;
for (const SLAPrintObject *print_object : sla_print->objects()) {
SLASupportState &state = sla_support_state[idx ++];
const ModelObject *model_object = print_object->model_object();
// Find an index of the ModelObject
int object_idx;
// There may be new SLA volumes added to the scene for this print_object.
// Find the object index of this print_object in the Model::objects list.
auto it = std::find(sla_print->model().objects.begin(), sla_print->model().objects.end(), model_object);
assert(it != sla_print->model().objects.end());
object_idx = it - sla_print->model().objects.begin();
// Cache the Z offset to be applied to all volumes with this object_idx.
shift_zs[object_idx] = print_object->get_current_elevation() / relative_correction_z;
// Collect indices of this print_object's instances, for which the SLA support meshes are to be added to the scene.
// pairs of <instance_idx, print_instance_idx>
std::vector<std::pair<size_t, size_t>> instances[std::tuple_size<SLASteps>::value];
for (size_t print_instance_idx = 0; print_instance_idx < print_object->instances().size(); ++ print_instance_idx) {
const SLAPrintObject::Instance &instance = print_object->instances()[print_instance_idx];
// Find index of ModelInstance corresponding to this SLAPrintObject::Instance.
auto it = std::find_if(model_object->instances.begin(), model_object->instances.end(),
[&instance](const ModelInstance *mi) { return mi->id() == instance.instance_id; });
assert(it != model_object->instances.end());
int instance_idx = it - model_object->instances.begin();
for (size_t istep = 0; istep < sla_steps.size(); ++ istep)
if (sla_steps[istep] == slaposDrillHoles) {
// Hollowing is a special case, where the mesh from the backend is being loaded into the 1st volume of an instance,
// not into its own GLVolume.
// There shall always be such a GLVolume allocated.
ModelVolumeState key(model_object->volumes.front()->id(), instance.instance_id);
auto it = std::lower_bound(model_volume_state.begin(), model_volume_state.end(), key, model_volume_state_lower);
assert(it != model_volume_state.end() && it->geometry_id == key.geometry_id);
assert(!it->new_geometry());
GLVolume &volume = *m_volumes.volumes[it->volume_idx];
if (! volume.offsets.empty() && state.step[istep].timestamp != volume.offsets.front()) {
// The backend either produced a new hollowed mesh, or it invalidated the one that the front end has seen.
volume.indexed_vertex_array.release_geometry();
if (state.step[istep].state == PrintStateBase::DONE) {
TriangleMesh mesh = print_object->get_mesh(slaposDrillHoles);
assert(! mesh.empty());
mesh.transform(sla_print->sla_trafo(*m_model->objects[volume.object_idx()]).inverse());
volume.indexed_vertex_array.load_mesh(mesh);
} else {
// Reload the original volume.
volume.indexed_vertex_array.load_mesh(m_model->objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh());
}
volume.finalize_geometry(true);
}
//FIXME it is an ugly hack to write the timestamp into the "offsets" field to not have to add another member variable
// to the GLVolume. We should refactor GLVolume significantly, so that the GLVolume will not contain member variables
// of various concenrs (model vs. 3D print path).
volume.offsets = { state.step[istep].timestamp };
} else if (state.step[istep].state == PrintStateBase::DONE) {
// Check whether there is an existing auxiliary volume to be updated, or a new auxiliary volume to be created.
ModelVolumeState key(state.step[istep].timestamp, instance.instance_id.id);
auto it = std::lower_bound(aux_volume_state.begin(), aux_volume_state.end(), key, model_volume_state_lower);
assert(it != aux_volume_state.end() && it->geometry_id == key.geometry_id);
if (it->new_geometry()) {
// This can be an SLA support structure that should not be rendered (in case someone used undo
// to revert to before it was generated). If that's the case, we should not generate anything.
if (model_object->sla_points_status != sla::PointsStatus::NoPoints)
instances[istep].emplace_back(std::pair<size_t, size_t>(instance_idx, print_instance_idx));
else
shift_zs[object_idx] = 0.;
} else {
// Recycling an old GLVolume. Update the Object/Instance indices into the current Model.
m_volumes.volumes[it->volume_idx]->composite_id = GLVolume::CompositeID(object_idx, m_volumes.volumes[it->volume_idx]->volume_idx(), instance_idx);
m_volumes.volumes[it->volume_idx]->set_instance_transformation(model_object->instances[instance_idx]->get_transformation());
}
}
}
for (size_t istep = 0; istep < sla_steps.size(); ++istep)
if (!instances[istep].empty())
m_volumes.load_object_auxiliary(print_object, object_idx, instances[istep], sla_steps[istep], state.step[istep].timestamp, m_initialized);
}
// Shift-up all volumes of the object so that it has the right elevation with respect to the print bed
for (GLVolume* volume : m_volumes.volumes)
if (volume->object_idx() < (int)m_model->objects.size() && m_model->objects[volume->object_idx()]->instances[volume->instance_idx()]->is_printable())
volume->set_sla_shift_z(shift_zs[volume->object_idx()]);
}
if (printer_technology == ptFFF && m_config->has("nozzle_diameter"))
{
// Should the wipe tower be visualized ?
unsigned int extruders_count = (unsigned int)dynamic_cast<const ConfigOptionFloats*>(m_config->option("nozzle_diameter"))->values.size();
bool wt = dynamic_cast<const ConfigOptionBool*>(m_config->option("wipe_tower"))->value;
bool co = dynamic_cast<const ConfigOptionBool*>(m_config->option("complete_objects"))->value;
if ((extruders_count > 1) && wt && !co)
{
// Height of a print (Show at least a slab)
double height = std::max(m_model->bounding_box().max(2), 10.0);
float x = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_x"))->value;
float y = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_y"))->value;
float w = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_width"))->value;
float a = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_rotation_angle"))->value;
const Print *print = m_process->fff_print();
const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
double nozzle_diameter = print->config().nozzle_diameter.values[0];
float depth = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth;
float brim_width = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width;
int volume_idx_wipe_tower_new = m_volumes.load_wipe_tower_preview(
1000, x, y, w, depth, (float)height, a, !print->is_step_done(psWipeTower),
brim_width, m_initialized);
if (volume_idx_wipe_tower_old != -1)
map_glvolume_old_to_new[volume_idx_wipe_tower_old] = volume_idx_wipe_tower_new;
}
}
update_volumes_colors_by_extruder();
// Update selection indices based on the old/new GLVolumeCollection.
if (m_selection.get_mode() == Selection::Instance)
m_selection.instances_changed(instance_ids_selected);
else
m_selection.volumes_changed(map_glvolume_old_to_new);
m_gizmos.update_data();
m_gizmos.refresh_on_off_state();
// Update the toolbar
if (update_object_list)
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
// checks for geometry outside the print volume to render it accordingly
if (!m_volumes.empty())
{
ModelInstance::EPrintVolumeState state;
const bool contained_min_one = m_volumes.check_outside_state(m_config, &state);
_set_warning_texture(WarningTexture::ObjectClashed, state == ModelInstance::PVS_Partly_Outside);
_set_warning_texture(WarningTexture::ObjectOutside, state == ModelInstance::PVS_Fully_Outside);
post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS,
contained_min_one && !m_model->objects.empty() && state != ModelInstance::PVS_Partly_Outside));
}
else
{
_set_warning_texture(WarningTexture::ObjectOutside, false);
_set_warning_texture(WarningTexture::ObjectClashed, false);
post_event(Event<bool>(EVT_GLCANVAS_ENABLE_ACTION_BUTTONS, false));
}
refresh_camera_scene_box();
if (m_selection.is_empty())
{
// If no object is selected, deactivate the active gizmo, if any
// Otherwise it may be shown after cleaning the scene (if it was active while the objects were deleted)
m_gizmos.reset_all_states();
// If no object is selected, reset the objects manipulator on the sidebar
// to force a reset of its cache
auto manip = wxGetApp().obj_manipul();
if (manip != nullptr)
manip->set_dirty();
}
// and force this canvas to be redrawn.
m_dirty = true;
}
static void reserve_new_volume_finalize_old_volume(GLVolume& vol_new, GLVolume& vol_old, bool gl_initialized, size_t prealloc_size = VERTEX_BUFFER_RESERVE_SIZE)
{
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol_old.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol_old.indexed_vertex_array = vol_new.indexed_vertex_array;
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
// Reserving number of vertices (3x position + 3x color)
vol_new.indexed_vertex_array.reserve(prealloc_size / 6);
// Finalize the old geometry, possibly move data to the graphics card.
vol_old.finalize_geometry(gl_initialized);
}
static void load_gcode_retractions(const GCodePreviewData::Retraction& retractions, GLCanvas3D::GCodePreviewVolumeIndex::EType extrusion_type, GLVolumeCollection &volumes, GLCanvas3D::GCodePreviewVolumeIndex &volume_index, bool gl_initialized)
{
// nothing to render, return
if (retractions.positions.empty())
return;
volume_index.first_volumes.emplace_back(extrusion_type, 0, (unsigned int)volumes.volumes.size());
GLVolume *volume = volumes.new_nontoolpath_volume(retractions.color.rgba.data(), VERTEX_BUFFER_RESERVE_SIZE);
GCodePreviewData::Retraction::PositionsList copy(retractions.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2) { return p1.position(2) < p2.position(2); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.emplace_back(unscale<double>(position.position(2)));
volume->offsets.emplace_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.emplace_back(volume->indexed_vertex_array.triangle_indices.size());
_3DScene::point3_to_verts(position.position, position.width, position.height, *volume);
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
if (volume->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
GLVolume &vol = *volume;
volume = volumes.new_nontoolpath_volume(vol.color);
reserve_new_volume_finalize_old_volume(*volume, vol, gl_initialized);
}
}
volume->indexed_vertex_array.finalize_geometry(gl_initialized);
}
void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector<std::string>& str_tool_colors)
{
const Print *print = this->fff_print();
if ((m_canvas != nullptr) && (print != nullptr))
{
_set_current();
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
if (m_volumes.empty())
{
m_gcode_preview_volume_index.reset();
_load_gcode_extrusion_paths(preview_data, tool_colors);
_load_gcode_travel_paths(preview_data, tool_colors);
load_gcode_retractions(preview_data.retraction, GCodePreviewVolumeIndex::Retraction, m_volumes, m_gcode_preview_volume_index, m_initialized);
load_gcode_retractions(preview_data.unretraction, GCodePreviewVolumeIndex::Unretraction, m_volumes, m_gcode_preview_volume_index, m_initialized);
if (!m_volumes.empty())
{
// Remove empty volumes from both m_volumes, update m_gcode_preview_volume_index.
{
size_t idx_volume_src = 0;
size_t idx_volume_dst = 0;
size_t idx_volume_index_src = 0;
size_t idx_volume_index_dst = 0;
size_t idx_volume_of_this_type_last = (idx_volume_index_src + 1 == m_gcode_preview_volume_index.first_volumes.size()) ? m_volumes.volumes.size() : m_gcode_preview_volume_index.first_volumes[idx_volume_index_src + 1].id;
size_t idx_volume_of_this_type_first_new = 0;
for (;;) {
if (idx_volume_src == idx_volume_of_this_type_last) {
if (idx_volume_of_this_type_first_new < idx_volume_dst) {
// There are some volumes of this type left, therefore their entry in the index has to be maintained.
if (idx_volume_index_dst < idx_volume_index_src)
m_gcode_preview_volume_index.first_volumes[idx_volume_index_dst] = m_gcode_preview_volume_index.first_volumes[idx_volume_index_src];
m_gcode_preview_volume_index.first_volumes[idx_volume_index_dst].id = idx_volume_of_this_type_first_new;
++ idx_volume_index_dst;
}
if (idx_volume_of_this_type_last == m_volumes.volumes.size())
break;
++ idx_volume_index_src;
idx_volume_of_this_type_last = (idx_volume_index_src + 1 == m_gcode_preview_volume_index.first_volumes.size()) ? m_volumes.volumes.size() : m_gcode_preview_volume_index.first_volumes[idx_volume_index_src + 1].id;
idx_volume_of_this_type_first_new = idx_volume_dst;
if (idx_volume_src == idx_volume_of_this_type_last)
// Empty sequence of volumes for the current index item.
continue;
}
if (! m_volumes.volumes[idx_volume_src]->print_zs.empty())
m_volumes.volumes[idx_volume_dst ++] = m_volumes.volumes[idx_volume_src];
++ idx_volume_src;
}
m_volumes.volumes.erase(m_volumes.volumes.begin() + idx_volume_dst, m_volumes.volumes.end());
m_gcode_preview_volume_index.first_volumes.erase(m_gcode_preview_volume_index.first_volumes.begin() + idx_volume_index_dst, m_gcode_preview_volume_index.first_volumes.end());
}
_load_fff_shells();
}
_update_toolpath_volumes_outside_state();
}
_update_gcode_volumes_visibility(preview_data);
_show_warning_texture_if_needed(WarningTexture::ToolpathOutside);
if (m_volumes.empty())
reset_legend_texture();
else
_generate_legend_texture(preview_data, tool_colors);
}
}
void GLCanvas3D::load_sla_preview()
{
const SLAPrint* print = this->sla_print();
if ((m_canvas != nullptr) && (print != nullptr))
{
_set_current();
// Release OpenGL data before generating new data.
this->reset_volumes();
_load_sla_shells();
_update_sla_shells_outside_state();
_show_warning_texture_if_needed(WarningTexture::SlaSupportsOutside);
}
}
void GLCanvas3D::load_preview(const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values)
{
const Print *print = this->fff_print();
if (print == nullptr)
return;
_set_current();
// Release OpenGL data before generating new data.
this->reset_volumes();
_load_print_toolpaths();
_load_wipe_tower_toolpaths(str_tool_colors);
for (const PrintObject* object : print->objects())
_load_print_object_toolpaths(*object, str_tool_colors, color_print_values);
_update_toolpath_volumes_outside_state();
_show_warning_texture_if_needed(WarningTexture::ToolpathOutside);
if (color_print_values.empty())
reset_legend_texture();
else {
auto preview_data = GCodePreviewData();
preview_data.extrusion.view_type = GCodePreviewData::Extrusion::ColorPrint;
const std::vector<float> tool_colors = _parse_colors(str_tool_colors);
_generate_legend_texture(preview_data, tool_colors);
}
}
void GLCanvas3D::bind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this);
m_canvas->Bind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this);
m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
}
}
void GLCanvas3D::unbind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key, this);
m_canvas->Unbind(wxEVT_KEY_UP, &GLCanvas3D::on_key, this);
m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
}
}
void GLCanvas3D::on_size(wxSizeEvent& evt)
{
m_dirty = true;
}
void GLCanvas3D::on_idle(wxIdleEvent& evt)
{
if (!m_initialized)
return;
m_dirty |= m_main_toolbar.update_items_state();
m_dirty |= m_undoredo_toolbar.update_items_state();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty |= wxGetApp().plater()->get_view_toolbar().update_items_state();
bool mouse3d_controller_applied = wxGetApp().plater()->get_mouse3d_controller().apply(wxGetApp().plater()->get_camera());
#else
m_dirty |= m_view_toolbar.update_items_state();
bool mouse3d_controller_applied = wxGetApp().plater()->get_mouse3d_controller().apply(m_camera);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty |= mouse3d_controller_applied;
if (!m_dirty)
return;
_refresh_if_shown_on_screen();
if (m_extra_frame_requested || mouse3d_controller_applied)
{
m_dirty = true;
m_extra_frame_requested = false;
evt.RequestMore();
}
else
m_dirty = false;
}
void GLCanvas3D::on_char(wxKeyEvent& evt)
{
if (!m_initialized)
return;
// see include/wx/defs.h enum wxKeyCode
int keyCode = evt.GetKeyCode();
int ctrlMask = wxMOD_CONTROL;
auto imgui = wxGetApp().imgui();
if (imgui->update_key_data(evt)) {
render();
return;
}
if ((keyCode == WXK_ESCAPE) && _deactivate_undo_redo_toolbar_items())
return;
if (m_gizmos.on_char(evt))
return;
//#ifdef __APPLE__
// ctrlMask |= wxMOD_RAW_CONTROL;
//#endif /* __APPLE__ */
if ((evt.GetModifiers() & ctrlMask) != 0) {
switch (keyCode) {
#ifdef __APPLE__
case 'a':
case 'A':
#else /* __APPLE__ */
case WXK_CONTROL_A:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLCANVAS_SELECT_ALL));
break;
#ifdef __APPLE__
case 'c':
case 'C':
#else /* __APPLE__ */
case WXK_CONTROL_C:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLTOOLBAR_COPY));
break;
#ifdef __linux__
case WXK_CONTROL_M:
{
Mouse3DController& controller = wxGetApp().plater()->get_mouse3d_controller();
controller.show_settings_dialog(!controller.is_settings_dialog_shown());
m_dirty = true;
break;
}
#endif /* __linux__ */
#ifdef __APPLE__
case 'v':
case 'V':
#else /* __APPLE__ */
case WXK_CONTROL_V:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLTOOLBAR_PASTE));
break;
#ifdef __APPLE__
case 'y':
case 'Y':
#else /* __APPLE__ */
case WXK_CONTROL_Y:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLCANVAS_REDO));
break;
#ifdef __APPLE__
case 'z':
case 'Z':
#else /* __APPLE__ */
case WXK_CONTROL_Z:
#endif /* __APPLE__ */
post_event(SimpleEvent(EVT_GLCANVAS_UNDO));
break;
case WXK_BACK:
case WXK_DELETE:
post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); break;
default: evt.Skip();
}
} else if (evt.HasModifiers()) {
evt.Skip();
} else {
switch (keyCode)
{
case WXK_BACK:
case WXK_DELETE:
post_event(SimpleEvent(EVT_GLTOOLBAR_DELETE));
break;
case WXK_ESCAPE: { deselect_all(); break; }
case WXK_F5: { post_event(SimpleEvent(EVT_GLCANVAS_RELOAD_FROM_DISK)); break; }
case '0': { select_view("iso"); break; }
case '1': { select_view("top"); break; }
case '2': { select_view("bottom"); break; }
case '3': { select_view("front"); break; }
case '4': { select_view("rear"); break; }
case '5': { select_view("left"); break; }
case '6': { select_view("right"); break; }
case '+': {
if (dynamic_cast<Preview*>(m_canvas->GetParent()) != nullptr)
post_event(wxKeyEvent(EVT_GLCANVAS_EDIT_COLOR_CHANGE, evt));
else
post_event(Event<int>(EVT_GLCANVAS_INCREASE_INSTANCES, +1));
break; }
case '-': {
if (dynamic_cast<Preview*>(m_canvas->GetParent()) != nullptr)
post_event(wxKeyEvent(EVT_GLCANVAS_EDIT_COLOR_CHANGE, evt));
else
post_event(Event<int>(EVT_GLCANVAS_INCREASE_INSTANCES, -1));
break; }
case '?': { post_event(SimpleEvent(EVT_GLCANVAS_QUESTION_MARK)); break; }
case 'A':
case 'a': { post_event(SimpleEvent(EVT_GLCANVAS_ARRANGE)); break; }
case 'B':
case 'b': { zoom_to_bed(); break; }
#if ENABLE_SLOPE_RENDERING
case 'D':
case 'd': {
if (!is_layers_editing_enabled())
{
m_slope.show(!m_slope.is_shown());
m_dirty = true;
}
break;
}
#endif // ENABLE_SLOPE_RENDERING
case 'E':
case 'e': { m_labels.show(!m_labels.is_shown()); m_dirty = true; break; }
case 'I':
case 'i': { _update_camera_zoom(1.0); break; }
case 'K':
#if ENABLE_NON_STATIC_CANVAS_MANAGER
case 'k': { wxGetApp().plater()->get_camera().select_next_type(); m_dirty = true; break; }
#else
case 'k': { m_camera.select_next_type(); m_dirty = true; break; }
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
case 'O':
case 'o': { _update_camera_zoom(-1.0); break; }
#if ENABLE_RENDER_PICKING_PASS
case 'T':
case 't': {
m_show_picking_texture = !m_show_picking_texture;
m_dirty = true;
break;
}
#endif // ENABLE_RENDER_PICKING_PASS
case 'Z':
case 'z': { m_selection.is_empty() ? zoom_to_volumes() : zoom_to_selection(); break; }
default: { evt.Skip(); break; }
}
}
}
class TranslationProcessor
{
using UpAction = std::function<void(void)>;
using DownAction = std::function<void(const Vec3d&, bool, bool)>;
UpAction m_up_action{ nullptr };
DownAction m_down_action{ nullptr };
bool m_running{ false };
Vec3d m_direction{ Vec3d::UnitX() };
public:
TranslationProcessor(UpAction up_action, DownAction down_action)
: m_up_action(up_action), m_down_action(down_action)
{
}
void process(wxKeyEvent& evt)
{
const int keyCode = evt.GetKeyCode();
wxEventType type = evt.GetEventType();
if (type == wxEVT_KEY_UP) {
switch (keyCode)
{
case WXK_NUMPAD_LEFT: case WXK_LEFT:
case WXK_NUMPAD_RIGHT: case WXK_RIGHT:
case WXK_NUMPAD_UP: case WXK_UP:
case WXK_NUMPAD_DOWN: case WXK_DOWN:
{
m_running = false;
m_up_action();
break;
}
default: { break; }
}
}
else if (type == wxEVT_KEY_DOWN) {
bool apply = false;
switch (keyCode)
{
case WXK_SHIFT:
{
if (m_running)
apply = true;
break;
}
case WXK_NUMPAD_LEFT:
case WXK_LEFT:
{
m_direction = -Vec3d::UnitX();
apply = true;
break;
}
case WXK_NUMPAD_RIGHT:
case WXK_RIGHT:
{
m_direction = Vec3d::UnitX();
apply = true;
break;
}
case WXK_NUMPAD_UP:
case WXK_UP:
{
m_direction = Vec3d::UnitY();
apply = true;
break;
}
case WXK_NUMPAD_DOWN:
case WXK_DOWN:
{
m_direction = -Vec3d::UnitY();
apply = true;
break;
}
default: { break; }
}
if (apply) {
m_running = true;
m_down_action(m_direction, evt.ShiftDown(), evt.CmdDown());
}
}
}
};
void GLCanvas3D::on_key(wxKeyEvent& evt)
{
static TranslationProcessor translationProcessor(
[this]() {
do_move(L("Gizmo-Move"));
m_gizmos.update_data();
wxGetApp().obj_manipul()->set_dirty();
// Let the plater know that the dragging finished, so a delayed refresh
// of the scene with the background processing data should be performed.
post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED));
// updates camera target constraints
refresh_camera_scene_box();
m_dirty = true;
},
[this](const Vec3d& direction, bool slow, bool camera_space) {
m_selection.start_dragging();
double multiplier = slow ? 1.0 : 10.0;
Vec3d displacement;
if (camera_space)
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> inv_view_3x3 = wxGetApp().plater()->get_camera().get_view_matrix().inverse().matrix().block(0, 0, 3, 3);
#else
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> inv_view_3x3 = m_camera.get_view_matrix().inverse().matrix().block(0, 0, 3, 3);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
displacement = multiplier * (inv_view_3x3 * direction);
displacement(2) = 0.0;
}
else
displacement = multiplier * direction;
m_selection.translate(displacement);
m_dirty = true;
}
);
const int keyCode = evt.GetKeyCode();
auto imgui = wxGetApp().imgui();
if (imgui->update_key_data(evt)) {
render();
}
else
{
if (!m_gizmos.on_key(evt))
{
if (evt.GetEventType() == wxEVT_KEY_UP) {
if (m_tab_down && keyCode == WXK_TAB && !evt.HasAnyModifiers()) {
// Enable switching between 3D and Preview with Tab
// m_canvas->HandleAsNavigationKey(evt); // XXX: Doesn't work in some cases / on Linux
post_event(SimpleEvent(EVT_GLCANVAS_TAB));
}
else if (keyCode == WXK_SHIFT)
{
translationProcessor.process(evt);
if (m_picking_enabled && m_rectangle_selection.is_dragging())
{
_update_selection_from_hover();
m_rectangle_selection.stop_dragging();
m_mouse.ignore_left_up = true;
m_dirty = true;
}
// set_cursor(Standard);
}
else if (keyCode == WXK_ALT)
{
if (m_picking_enabled && m_rectangle_selection.is_dragging())
{
_update_selection_from_hover();
m_rectangle_selection.stop_dragging();
m_mouse.ignore_left_up = true;
m_dirty = true;
}
// set_cursor(Standard);
}
else if (keyCode == WXK_CONTROL)
m_dirty = true;
else if (m_gizmos.is_enabled() && !m_selection.is_empty()) {
translationProcessor.process(evt);
switch (keyCode)
{
case WXK_NUMPAD_PAGEUP: case WXK_PAGEUP:
case WXK_NUMPAD_PAGEDOWN: case WXK_PAGEDOWN:
{
do_rotate(L("Gizmo-Rotate"));
m_gizmos.update_data();
wxGetApp().obj_manipul()->set_dirty();
// Let the plater know that the dragging finished, so a delayed refresh
// of the scene with the background processing data should be performed.
post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED));
// updates camera target constraints
refresh_camera_scene_box();
m_dirty = true;
break;
}
default: { break; }
}
}
}
else if (evt.GetEventType() == wxEVT_KEY_DOWN) {
m_tab_down = keyCode == WXK_TAB && !evt.HasAnyModifiers();
if (keyCode == WXK_SHIFT)
{
translationProcessor.process(evt);
if (m_picking_enabled && (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports))
{
m_mouse.ignore_left_up = false;
// set_cursor(Cross);
}
}
else if (keyCode == WXK_ALT)
{
if (m_picking_enabled && (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports))
{
m_mouse.ignore_left_up = false;
// set_cursor(Cross);
}
}
else if (keyCode == WXK_CONTROL)
m_dirty = true;
else if (m_gizmos.is_enabled() && !m_selection.is_empty())
{
auto do_rotate = [this](double angle_z_rad) {
m_selection.start_dragging();
m_selection.rotate(Vec3d(0.0, 0.0, angle_z_rad), TransformationType(TransformationType::World_Relative_Joint));
m_dirty = true;
// wxGetApp().obj_manipul()->set_dirty();
};
translationProcessor.process(evt);
switch (keyCode)
{
case WXK_NUMPAD_PAGEUP: case WXK_PAGEUP: { do_rotate(0.25 * M_PI); break; }
case WXK_NUMPAD_PAGEDOWN: case WXK_PAGEDOWN: { do_rotate(-0.25 * M_PI); break; }
default: { break; }
}
}
else if (!m_gizmos.is_enabled())
{
// DoubleSlider navigation in Preview
if (keyCode == WXK_LEFT ||
keyCode == WXK_RIGHT ||
keyCode == WXK_UP ||
keyCode == WXK_DOWN)
{
if (dynamic_cast<Preview*>(m_canvas->GetParent()) != nullptr)
post_event(wxKeyEvent(EVT_GLCANVAS_MOVE_DOUBLE_SLIDER, evt));
}
}
}
}
}
if (keyCode != WXK_TAB
&& keyCode != WXK_LEFT
&& keyCode != WXK_UP
&& keyCode != WXK_RIGHT
&& keyCode != WXK_DOWN) {
evt.Skip(); // Needed to have EVT_CHAR generated as well
}
}
void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt)
{
#ifdef WIN32
// Try to filter out spurious mouse wheel events comming from 3D mouse.
if (wxGetApp().plater()->get_mouse3d_controller().process_mouse_wheel())
return;
#endif
if (!m_initialized)
return;
// Ignore the wheel events if the middle button is pressed.
if (evt.MiddleIsDown())
return;
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor();
evt.SetX(evt.GetX() * scale);
evt.SetY(evt.GetY() * scale);
#endif
#ifdef __WXMSW__
// For some reason the Idle event is not being generated after the mouse scroll event in case of scrolling with the two fingers on the touch pad,
// if the event is not allowed to be passed further.
// https://github.com/prusa3d/PrusaSlicer/issues/2750
evt.Skip();
#endif /* __WXMSW__ */
// Performs layers editing updates, if enabled
if (is_layers_editing_enabled())
{
int object_idx_selected = m_selection.get_object_idx();
if (object_idx_selected != -1)
{
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY()))
{
// Adjust the width of the selection.
m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f);
if (m_canvas != nullptr)
m_canvas->Refresh();
return;
}
}
}
// Inform gizmos about the event so they have the opportunity to react.
if (m_gizmos.on_mouse_wheel(evt))
return;
// Calculate the zoom delta and apply it to the current zoom factor
_update_camera_zoom((double)evt.GetWheelRotation() / (double)evt.GetWheelDelta());
}
void GLCanvas3D::on_timer(wxTimerEvent& evt)
{
if (m_layers_editing.state == LayersEditing::Editing)
_perform_layer_editing_action();
}
#ifndef NDEBUG
// #define SLIC3R_DEBUG_MOUSE_EVENTS
#endif
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
std::string format_mouse_event_debug_message(const wxMouseEvent &evt)
{
static int idx = 0;
char buf[2048];
std::string out;
sprintf(buf, "Mouse Event %d - ", idx ++);
out = buf;
if (evt.Entering())
out += "Entering ";
if (evt.Leaving())
out += "Leaving ";
if (evt.Dragging())
out += "Dragging ";
if (evt.Moving())
out += "Moving ";
if (evt.Magnify())
out += "Magnify ";
if (evt.LeftDown())
out += "LeftDown ";
if (evt.LeftUp())
out += "LeftUp ";
if (evt.LeftDClick())
out += "LeftDClick ";
if (evt.MiddleDown())
out += "MiddleDown ";
if (evt.MiddleUp())
out += "MiddleUp ";
if (evt.MiddleDClick())
out += "MiddleDClick ";
if (evt.RightDown())
out += "RightDown ";
if (evt.RightUp())
out += "RightUp ";
if (evt.RightDClick())
out += "RightDClick ";
sprintf(buf, "(%d, %d)", evt.GetX(), evt.GetY());
out += buf;
return out;
}
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
if (!m_initialized || !_set_current())
return;
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor();
evt.SetX(evt.GetX() * scale);
evt.SetY(evt.GetY() * scale);
#endif
Point pos(evt.GetX(), evt.GetY());
ImGuiWrapper* imgui = wxGetApp().imgui();
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
if (m_tooltip.is_in_imgui() && evt.LeftUp())
// ignore left up events coming from imgui windows and not processed by them
m_mouse.ignore_left_up = true;
m_tooltip.set_in_imgui(false);
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
if (imgui->update_mouse_data(evt)) {
m_mouse.position = evt.Leaving() ? Vec2d(-1.0, -1.0) : pos.cast<double>();
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
m_tooltip.set_in_imgui(true);
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
render();
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - Consumed by ImGUI\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
// do not return if dragging or tooltip not empty to allow for tooltip update
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
if (!m_mouse.dragging && m_tooltip.is_empty())
return;
#else
if (!m_mouse.dragging && m_canvas->GetToolTipText().empty())
return;
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
}
#ifdef __WXMSW__
bool on_enter_workaround = false;
if (! evt.Entering() && ! evt.Leaving() && m_mouse.position.x() == -1.0) {
// Workaround for SPE-832: There seems to be a mouse event sent to the window before evt.Entering()
m_mouse.position = pos.cast<double>();
render();
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - OnEnter workaround\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
on_enter_workaround = true;
} else
#endif /* __WXMSW__ */
{
#ifdef SLIC3R_DEBUG_MOUSE_EVENTS
printf((format_mouse_event_debug_message(evt) + " - other\n").c_str());
#endif /* SLIC3R_DEBUG_MOUSE_EVENTS */
}
if (m_main_toolbar.on_mouse(evt, *this))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
if (m_undoredo_toolbar.on_mouse(evt, *this))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
#if ENABLE_NON_STATIC_CANVAS_MANAGER
if (wxGetApp().plater()->get_view_toolbar().on_mouse(evt, *this))
#else
if (m_view_toolbar.on_mouse(evt, *this))
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
return;
}
if (m_gizmos.on_mouse(evt))
{
if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
mouse_up_cleanup();
m_mouse.set_start_position_3D_as_invalid();
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
m_mouse.position = pos.cast<double>();
#endif /// ENABLE_CANVAS_TOOLTIP_USING_IMGUI
return;
}
int selected_object_idx = m_selection.get_object_idx();
int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1;
m_layers_editing.select_object(*m_model, layer_editing_object_idx);
if (m_mouse.drag.move_requires_threshold && m_mouse.is_move_start_threshold_position_2D_defined() && m_mouse.is_move_threshold_met(pos))
{
m_mouse.drag.move_requires_threshold = false;
m_mouse.set_move_start_threshold_position_2D_as_invalid();
}
if (evt.ButtonDown() && wxWindow::FindFocus() != this->m_canvas)
// Grab keyboard focus on any mouse click event.
m_canvas->SetFocus();
if (evt.Entering())
{
//#if defined(__WXMSW__) || defined(__linux__)
// // On Windows and Linux needs focus in order to catch key events
// Set focus in order to remove it from sidebar fields
if (m_canvas != nullptr) {
// Only set focus, if the top level window of this canvas is active.
auto p = dynamic_cast<wxWindow*>(evt.GetEventObject());
while (p->GetParent())
p = p->GetParent();
auto *top_level_wnd = dynamic_cast<wxTopLevelWindow*>(p);
if (top_level_wnd && top_level_wnd->IsActive())
m_canvas->SetFocus();
m_mouse.position = pos.cast<double>();
// 1) forces a frame render to ensure that m_hover_volume_idxs is updated even when the user right clicks while
// the context menu is shown, ensuring it to disappear if the mouse is outside any volume and to
// change the volume hover state if any is under the mouse
// 2) when switching between 3d view and preview the size of the canvas changes if the side panels are visible,
// so forces a resize to avoid multiple renders with different sizes (seen as flickering)
_refresh_if_shown_on_screen();
}
m_mouse.set_start_position_2D_as_invalid();
//#endif
}
else if (evt.Leaving())
{
_deactivate_undo_redo_toolbar_items();
// to remove hover on objects when the mouse goes out of this canvas
m_mouse.position = Vec2d(-1.0, -1.0);
m_dirty = true;
}
else if (evt.LeftDown() || evt.RightDown() || evt.MiddleDown())
{
if (_deactivate_undo_redo_toolbar_items())
return;
// If user pressed left or right button we first check whether this happened
// on a volume or not.
m_layers_editing.state = LayersEditing::Unknown;
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1)))
{
// A volume is selected and the mouse is inside the layer thickness bar.
// Start editing the layer height.
m_layers_editing.state = LayersEditing::Editing;
_perform_layer_editing_action(&evt);
}
else if (evt.LeftDown() && (evt.ShiftDown() || evt.AltDown()) && m_picking_enabled)
{
if (m_gizmos.get_current_type() != GLGizmosManager::SlaSupports)
{
m_rectangle_selection.start_dragging(m_mouse.position, evt.ShiftDown() ? GLSelectionRectangle::Select : GLSelectionRectangle::Deselect);
m_dirty = true;
}
}
else
{
// Select volume in this 3D canvas.
// Don't deselect a volume if layer editing is enabled. We want the object to stay selected
// during the scene manipulation.
if (m_picking_enabled && (!m_hover_volume_idxs.empty() || !is_layers_editing_enabled()))
{
if (evt.LeftDown() && !m_hover_volume_idxs.empty())
{
int volume_idx = get_first_hover_volume_idx();
bool already_selected = m_selection.contains_volume(volume_idx);
bool ctrl_down = evt.CmdDown();
Selection::IndicesList curr_idxs = m_selection.get_volume_idxs();
if (already_selected && ctrl_down)
m_selection.remove(volume_idx);
else
{
m_selection.add(volume_idx, !ctrl_down, true);
m_mouse.drag.move_requires_threshold = !already_selected;
if (already_selected)
m_mouse.set_move_start_threshold_position_2D_as_invalid();
else
m_mouse.drag.move_start_threshold_position_2D = pos;
}
// propagate event through callback
if (curr_idxs != m_selection.get_volume_idxs())
{
if (m_selection.is_empty())
m_gizmos.reset_all_states();
else
m_gizmos.refresh_on_off_state();
m_gizmos.update_data();
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
m_dirty = true;
}
}
}
if (!m_hover_volume_idxs.empty())
{
if (evt.LeftDown() && m_moving_enabled && (m_mouse.drag.move_volume_idx == -1))
{
// Only accept the initial position, if it is inside the volume bounding box.
int volume_idx = get_first_hover_volume_idx();
BoundingBoxf3 volume_bbox = m_volumes.volumes[volume_idx]->transformed_bounding_box();
volume_bbox.offset(1.0);
if (volume_bbox.contains(m_mouse.scene_position))
{
m_volumes.volumes[volume_idx]->hover = GLVolume::HS_None;
// The dragging operation is initiated.
m_mouse.drag.move_volume_idx = volume_idx;
m_selection.start_dragging();
m_mouse.drag.start_position_3D = m_mouse.scene_position;
m_moving = true;
}
}
}
}
}
else if (evt.Dragging() && evt.LeftIsDown() && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1))
{
if (!m_mouse.drag.move_requires_threshold)
{
m_mouse.dragging = true;
Vec3d cur_pos = m_mouse.drag.start_position_3D;
// we do not want to translate objects if the user just clicked on an object while pressing shift to remove it from the selection and then drag
if (m_selection.contains_volume(get_first_hover_volume_idx()))
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const Camera& camera = wxGetApp().plater()->get_camera();
if (std::abs(camera.get_dir_forward()(2)) < EPSILON)
#else
if (std::abs(m_camera.get_dir_forward()(2)) < EPSILON)
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
{
// side view -> move selected volumes orthogonally to camera view direction
Linef3 ray = mouse_ray(pos);
Vec3d dir = ray.unit_vector();
// finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position
// use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form
// in our case plane normal and ray direction are the same (orthogonal view)
// when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal
Vec3d inters = ray.a + (m_mouse.drag.start_position_3D - ray.a).dot(dir) / dir.squaredNorm() * dir;
// vector from the starting position to the found intersection
Vec3d inters_vec = inters - m_mouse.drag.start_position_3D;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Vec3d camera_right = camera.get_dir_right();
Vec3d camera_up = camera.get_dir_up();
#else
Vec3d camera_right = m_camera.get_dir_right();
Vec3d camera_up = m_camera.get_dir_up();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
// finds projection of the vector along the camera axes
double projection_x = inters_vec.dot(camera_right);
double projection_z = inters_vec.dot(camera_up);
// apply offset
cur_pos = m_mouse.drag.start_position_3D + projection_x * camera_right + projection_z * camera_up;
}
else
{
// Generic view
// Get new position at the same Z of the initial click point.
float z0 = 0.0f;
float z1 = 1.0f;
cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2));
}
}
m_selection.translate(cur_pos - m_mouse.drag.start_position_3D);
wxGetApp().obj_manipul()->set_dirty();
m_dirty = true;
}
}
else if (evt.Dragging() && evt.LeftIsDown() && m_picking_enabled && m_rectangle_selection.is_dragging())
{
m_rectangle_selection.dragging(pos.cast<double>());
m_dirty = true;
}
else if (evt.Dragging())
{
m_mouse.dragging = true;
if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1))
{
if (m_layers_editing.state == LayersEditing::Editing)
{
_perform_layer_editing_action(&evt);
m_mouse.position = pos.cast<double>();
}
}
// do not process the dragging if the left mouse was set down in another canvas
else if (evt.LeftIsDown())
{
// if dragging over blank area with left button, rotate
if (m_hover_volume_idxs.empty() && m_mouse.is_start_position_3D_defined())
{
const Vec3d rot = (Vec3d(pos.x(), pos.y(), 0.) - m_mouse.drag.start_position_3D) * (PI * TRACKBALLSIZE / 180.);
if (wxGetApp().app_config->get("use_free_camera") == "1")
// Virtual track ball (similar to the 3DConnexion mouse).
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().rotate_local_around_target(Vec3d(rot.y(), rot.x(), 0.));
#else
m_camera.rotate_local_around_target(Vec3d(rot.y(), rot.x(), 0.));
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
else
{
// Forces camera right vector to be parallel to XY plane in case it has been misaligned using the 3D mouse free rotation.
// It is cheaper to call this function right away instead of testing wxGetApp().plater()->get_mouse3d_controller().connected(),
// which checks an atomics (flushes CPU caches).
// See GH issue #3816.
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Camera& camera = wxGetApp().plater()->get_camera();
camera.recover_from_free_camera();
camera.rotate_on_sphere(rot.x(), rot.y(), wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA);
#else
m_camera.recover_from_free_camera();
m_camera.rotate_on_sphere(rot.x(), rot.y(), wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
m_dirty = true;
}
m_mouse.drag.start_position_3D = Vec3d((double)pos(0), (double)pos(1), 0.0);
}
else if (evt.MiddleIsDown() || evt.RightIsDown())
{
// If dragging over blank area with right button, pan.
if (m_mouse.is_start_position_2D_defined())
{
// get point in model space at Z = 0
float z = 0.0f;
const Vec3d& cur_pos = _mouse_to_3d(pos, &z);
Vec3d orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z);
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Camera& camera = wxGetApp().plater()->get_camera();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
if (wxGetApp().app_config->get("use_free_camera") != "1")
// Forces camera right vector to be parallel to XY plane in case it has been misaligned using the 3D mouse free rotation.
// It is cheaper to call this function right away instead of testing wxGetApp().plater()->get_mouse3d_controller().connected(),
// which checks an atomics (flushes CPU caches).
// See GH issue #3816.
#if ENABLE_NON_STATIC_CANVAS_MANAGER
camera.recover_from_free_camera();
camera.set_target(camera.get_target() + orig - cur_pos);
#else
m_camera.recover_from_free_camera();
m_camera.set_target(m_camera.get_target() + orig - cur_pos);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty = true;
}
m_mouse.drag.start_position_2D = pos;
}
}
else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
{
if (m_layers_editing.state != LayersEditing::Unknown)
{
m_layers_editing.state = LayersEditing::Unknown;
_stop_timer();
m_layers_editing.accept_changes(*this);
}
else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging)
{
do_move(L("Move Object"));
wxGetApp().obj_manipul()->set_dirty();
// Let the plater know that the dragging finished, so a delayed refresh
// of the scene with the background processing data should be performed.
post_event(SimpleEvent(EVT_GLCANVAS_MOUSE_DRAGGING_FINISHED));
}
else if (evt.LeftUp() && m_picking_enabled && m_rectangle_selection.is_dragging())
{
if (evt.ShiftDown() || evt.AltDown())
_update_selection_from_hover();
m_rectangle_selection.stop_dragging();
}
else if (evt.LeftUp() && !m_mouse.ignore_left_up && !m_mouse.dragging && m_hover_volume_idxs.empty() && !is_layers_editing_enabled())
{
// deselect and propagate event through callback
if (!evt.ShiftDown() && m_picking_enabled)
deselect_all();
}
else if (evt.RightUp())
{
m_mouse.position = pos.cast<double>();
// forces a frame render to ensure that m_hover_volume_idxs is updated even when the user right clicks while
// the context menu is already shown
render();
if (!m_hover_volume_idxs.empty())
{
// if right clicking on volume, propagate event through callback (shows context menu)
int volume_idx = get_first_hover_volume_idx();
if (!m_volumes.volumes[volume_idx]->is_wipe_tower // no context menu for the wipe tower
&& m_gizmos.get_current_type() != GLGizmosManager::SlaSupports) // disable context menu when the gizmo is open
{
// forces the selection of the volume
/* m_selection.add(volume_idx); // #et_FIXME_if_needed
* To avoid extra "Add-Selection" snapshots,
* call add() with check_for_already_contained=true
* */
m_selection.add(volume_idx, true, true);
m_gizmos.refresh_on_off_state();
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
m_gizmos.update_data();
wxGetApp().obj_manipul()->set_dirty();
// forces a frame render to update the view before the context menu is shown
render();
}
}
Vec2d logical_pos = pos.cast<double>();
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
logical_pos = logical_pos.cwiseQuotient(Vec2d(factor, factor));
#endif // ENABLE_RETINA_GL
if (!m_mouse.dragging)
// do not post the event if the user is panning the scene
post_event(RBtnEvent(EVT_GLCANVAS_RIGHT_CLICK, { logical_pos, m_hover_volume_idxs.empty() }));
}
mouse_up_cleanup();
}
else if (evt.Moving())
{
m_mouse.position = pos.cast<double>();
// updates gizmos overlay
if (m_selection.is_empty())
m_gizmos.reset_all_states();
// Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over.
if (m_picking_enabled)
m_dirty = true;
}
else
evt.Skip();
#ifdef __WXMSW__
if (on_enter_workaround)
m_mouse.position = Vec2d(-1., -1.);
#endif /* __WXMSW__ */
}
void GLCanvas3D::on_paint(wxPaintEvent& evt)
{
if (m_initialized)
m_dirty = true;
else
// Call render directly, so it gets initialized immediately, not from On Idle handler.
this->render();
}
Size GLCanvas3D::get_canvas_size() const
{
int w = 0;
int h = 0;
if (m_canvas != nullptr)
m_canvas->GetSize(&w, &h);
#if ENABLE_RETINA_GL
const float factor = m_retina_helper->get_scale_factor();
w *= factor;
h *= factor;
#else
const float factor = 1.0f;
#endif
return Size(w, h, factor);
}
Vec2d GLCanvas3D::get_local_mouse_position() const
{
if (m_canvas == nullptr)
return Vec2d::Zero();
wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition());
const double factor =
#if ENABLE_RETINA_GL
m_retina_helper->get_scale_factor();
#else
1.0;
#endif
return Vec2d(factor * mouse_pos.x, factor * mouse_pos.y);
}
void GLCanvas3D::reset_legend_texture()
{
if (m_legend_texture.get_id() != 0)
{
_set_current();
m_legend_texture.reset();
}
}
void GLCanvas3D::set_tooltip(const std::string& tooltip) const
{
if (m_canvas != nullptr)
{
#if ENABLE_CANVAS_TOOLTIP_USING_IMGUI
m_tooltip.set_text(tooltip);
#else
wxString txt = wxString::FromUTF8(tooltip.data());
if (m_canvas->GetToolTipText() != txt)
m_canvas->SetToolTip(txt);
// wxToolTip* t = m_canvas->GetToolTip();
// if (t != nullptr)
// {
// if (tooltip.empty())
// m_canvas->UnsetToolTip();
// else
// t->SetTip(wxString::FromUTF8(tooltip.data()));
// }
// else if (!tooltip.empty()) // Avoid "empty" tooltips => unset of the empty tooltip leads to application crash under OSX
// m_canvas->SetToolTip(wxString::FromUTF8(tooltip.data()));
#endif // ENABLE_CANVAS_TOOLTIP_USING_IMGUI
}
}
void GLCanvas3D::do_move(const std::string& snapshot_type)
{
if (m_model == nullptr)
return;
if (!snapshot_type.empty())
wxGetApp().plater()->take_snapshot(_(snapshot_type));
std::set<std::pair<int, int>> done; // keeps track of modified instances
bool object_moved = false;
Vec3d wipe_tower_origin = Vec3d::Zero();
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
std::pair<int, int> done_id(object_idx, instance_idx);
if ((0 <= object_idx) && (object_idx < (int)m_model->objects.size()))
{
done.insert(done_id);
// Move instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
else if (selection_mode == Selection::Volume)
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
object_moved = true;
model_object->invalidate_bounding_box();
}
}
else if (object_idx == 1000)
// Move a wipe tower proxy.
wipe_tower_origin = v->get_volume_offset();
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (object_moved)
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_MOVED));
if (wipe_tower_origin != Vec3d::Zero())
post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_MOVED, std::move(wipe_tower_origin)));
m_dirty = true;
}
void GLCanvas3D::do_rotate(const std::string& snapshot_type)
{
if (m_model == nullptr)
return;
if (!snapshot_type.empty())
wxGetApp().plater()->take_snapshot(_(snapshot_type));
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if (object_idx == 1000) { // the wipe tower
Vec3d offset = v->get_volume_offset();
post_event(Vec3dEvent(EVT_GLCANVAS_WIPETOWER_ROTATED, Vec3d(offset(0), offset(1), v->get_volume_rotation()(2))));
}
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Rotate instances/volumes.
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
{
model_object->instances[instance_idx]->set_rotation(v->get_instance_rotation());
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
}
else if (selection_mode == Selection::Volume)
{
model_object->volumes[volume_idx]->set_rotation(v->get_volume_rotation());
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
}
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (!done.empty())
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED));
m_dirty = true;
}
void GLCanvas3D::do_scale(const std::string& snapshot_type)
{
if (m_model == nullptr)
return;
if (!snapshot_type.empty())
wxGetApp().plater()->take_snapshot(_(snapshot_type));
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Rotate instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
{
model_object->instances[instance_idx]->set_scaling_factor(v->get_instance_scaling_factor());
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
}
else if (selection_mode == Selection::Volume)
{
model_object->instances[instance_idx]->set_offset(v->get_instance_offset());
model_object->volumes[volume_idx]->set_scaling_factor(v->get_volume_scaling_factor());
model_object->volumes[volume_idx]->set_offset(v->get_volume_offset());
}
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
if (!done.empty())
post_event(SimpleEvent(EVT_GLCANVAS_INSTANCE_ROTATED));
m_dirty = true;
}
void GLCanvas3D::do_flatten(const Vec3d& normal, const std::string& snapshot_type)
{
if (!snapshot_type.empty())
wxGetApp().plater()->take_snapshot(_(snapshot_type));
m_selection.flattening_rotate(normal);
do_rotate(""); // avoid taking another snapshot
}
void GLCanvas3D::do_mirror(const std::string& snapshot_type)
{
if (m_model == nullptr)
return;
if (!snapshot_type.empty())
wxGetApp().plater()->take_snapshot(_(snapshot_type));
std::set<std::pair<int, int>> done; // keeps track of modified instances
Selection::EMode selection_mode = m_selection.get_mode();
for (const GLVolume* v : m_volumes.volumes)
{
int object_idx = v->object_idx();
if ((object_idx < 0) || ((int)m_model->objects.size() <= object_idx))
continue;
int instance_idx = v->instance_idx();
int volume_idx = v->volume_idx();
done.insert(std::pair<int, int>(object_idx, instance_idx));
// Mirror instances/volumes
ModelObject* model_object = m_model->objects[object_idx];
if (model_object != nullptr)
{
if (selection_mode == Selection::Instance)
model_object->instances[instance_idx]->set_mirror(v->get_instance_mirror());
else if (selection_mode == Selection::Volume)
model_object->volumes[volume_idx]->set_mirror(v->get_volume_mirror());
model_object->invalidate_bounding_box();
}
}
// Fixes sinking/flying instances
for (const std::pair<int, int>& i : done)
{
ModelObject* m = m_model->objects[i.first];
Vec3d shift(0.0, 0.0, -m->get_instance_min_z(i.second));
m_selection.translate(i.first, i.second, shift);
m->translate_instance(i.second, shift);
}
post_event(SimpleEvent(EVT_GLCANVAS_SCHEDULE_BACKGROUND_PROCESS));
m_dirty = true;
}
void GLCanvas3D::update_gizmos_on_off_state()
{
set_as_dirty();
m_gizmos.update_data();
m_gizmos.refresh_on_off_state();
}
void GLCanvas3D::handle_sidebar_focus_event(const std::string& opt_key, bool focus_on)
{
m_sidebar_field = focus_on ? opt_key : "";
if (!m_sidebar_field.empty())
m_gizmos.reset_all_states();
m_dirty = true;
}
void GLCanvas3D::handle_layers_data_focus_event(const t_layer_height_range range, const EditorType type)
{
std::string field = "layer_" + std::to_string(type) + "_" + std::to_string(range.first) + "_" + std::to_string(range.second);
handle_sidebar_focus_event(field, true);
}
void GLCanvas3D::update_ui_from_settings()
{
m_dirty = true;
#if ENABLE_RETINA_GL
const float orig_scaling = m_retina_helper->get_scale_factor();
const bool use_retina = wxGetApp().app_config->get("use_retina_opengl") == "1";
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Use Retina OpenGL: " << use_retina;
m_retina_helper->set_use_retina(use_retina);
const float new_scaling = m_retina_helper->get_scale_factor();
if (new_scaling != orig_scaling) {
BOOST_LOG_TRIVIAL(debug) << "GLCanvas3D: Scaling factor: " << new_scaling;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
Camera& camera = wxGetApp().plater()->get_camera();
camera.set_zoom(camera.get_zoom() * new_scaling / orig_scaling);
#else
m_camera.set_zoom(m_camera.get_zoom() * new_scaling / orig_scaling);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
_refresh_if_shown_on_screen();
}
#endif
}
GLCanvas3D::WipeTowerInfo GLCanvas3D::get_wipe_tower_info() const
{
WipeTowerInfo wti;
for (const GLVolume* vol : m_volumes.volumes) {
if (vol->is_wipe_tower) {
wti.m_pos = Vec2d(m_config->opt_float("wipe_tower_x"),
m_config->opt_float("wipe_tower_y"));
wti.m_rotation = (M_PI/180.) * m_config->opt_float("wipe_tower_rotation_angle");
const BoundingBoxf3& bb = vol->bounding_box();
wti.m_bb_size = Vec2d(bb.size().x(), bb.size().y());
break;
}
}
return wti;
}
Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos)
{
float z0 = 0.0f;
float z1 = 1.0f;
return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1));
}
double GLCanvas3D::get_size_proportional_to_max_bed_size(double factor) const
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
return factor * wxGetApp().plater()->get_bed().get_bounding_box(false).max_size();
#else
return factor * m_bed.get_bounding_box(false).max_size();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
void GLCanvas3D::set_cursor(ECursorType type)
{
if ((m_canvas != nullptr) && (m_cursor_type != type))
{
switch (type)
{
case Standard: { m_canvas->SetCursor(*wxSTANDARD_CURSOR); break; }
case Cross: { m_canvas->SetCursor(*wxCROSS_CURSOR); break; }
}
m_cursor_type = type;
}
}
void GLCanvas3D::msw_rescale()
{
m_warning_texture.msw_rescale(*this);
}
bool GLCanvas3D::has_toolpaths_to_export() const
{
return m_volumes.has_toolpaths_to_export();
}
void GLCanvas3D::export_toolpaths_to_obj(const char* filename) const
{
m_volumes.export_toolpaths_to_obj(filename);
}
void GLCanvas3D::mouse_up_cleanup()
{
m_moving = false;
m_mouse.drag.move_volume_idx = -1;
m_mouse.set_start_position_3D_as_invalid();
m_mouse.set_start_position_2D_as_invalid();
m_mouse.dragging = false;
m_mouse.ignore_left_up = false;
m_dirty = true;
if (m_canvas->HasCapture())
m_canvas->ReleaseMouse();
}
bool GLCanvas3D::_is_shown_on_screen() const
{
return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false;
}
// Getter for the const char*[]
static bool string_getter(const bool is_undo, int idx, const char** out_text)
{
return wxGetApp().plater()->undo_redo_string_getter(is_undo, idx, out_text);
}
bool GLCanvas3D::_render_undo_redo_stack(const bool is_undo, float pos_x) const
{
bool action_taken = false;
ImGuiWrapper* imgui = wxGetApp().imgui();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const float x = pos_x * (float)wxGetApp().plater()->get_camera().get_zoom() + 0.5f * (float)get_canvas_size().get_width();
#else
const float x = pos_x * (float)get_camera().get_zoom() + 0.5f * (float)get_canvas_size().get_width();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
imgui->set_next_window_pos(x, m_undoredo_toolbar.get_height(), ImGuiCond_Always, 0.5f, 0.0f);
std::string title = is_undo ? L("Undo History") : L("Redo History");
imgui->begin(_(title), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
int hovered = m_imgui_undo_redo_hovered_pos;
int selected = -1;
float em = static_cast<float>(wxGetApp().em_unit());
#if ENABLE_RETINA_GL
em *= m_retina_helper->get_scale_factor();
#endif
if (imgui->undo_redo_list(ImVec2(18 * em, 26 * em), is_undo, &string_getter, hovered, selected))
m_imgui_undo_redo_hovered_pos = hovered;
else
m_imgui_undo_redo_hovered_pos = -1;
if (selected >= 0)
{
is_undo ? wxGetApp().plater()->undo_to(selected) : wxGetApp().plater()->redo_to(selected);
action_taken = true;
}
imgui->text(wxString::Format(is_undo ? _L_PLURAL("Undo %1$d Action", "Undo %1$d Actions", hovered + 1) : _L_PLURAL("Redo %1$d Action", "Redo %1$d Actions", hovered + 1), hovered + 1));
imgui->end();
return action_taken;
}
#define ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT 0
#if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
static void debug_output_thumbnail(const ThumbnailData& thumbnail_data)
{
// debug export of generated image
wxImage image(thumbnail_data.width, thumbnail_data.height);
image.InitAlpha();
for (unsigned int r = 0; r < thumbnail_data.height; ++r)
{
unsigned int rr = (thumbnail_data.height - 1 - r) * thumbnail_data.width;
for (unsigned int c = 0; c < thumbnail_data.width; ++c)
{
unsigned char* px = (unsigned char*)thumbnail_data.pixels.data() + 4 * (rr + c);
image.SetRGB((int)c, (int)r, px[0], px[1], px[2]);
image.SetAlpha((int)c, (int)r, px[3]);
}
}
image.SaveFile("C:/prusa/test/test.png", wxBITMAP_TYPE_PNG);
}
#endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
void GLCanvas3D::_render_thumbnail_internal(ThumbnailData& thumbnail_data, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const
{
auto is_visible = [](const GLVolume& v) -> bool
{
bool ret = v.printable;
ret &= (!v.shader_outside_printer_detection_enabled || !v.is_outside);
return ret;
};
static const GLfloat orange[] = { 0.923f, 0.504f, 0.264f, 1.0f };
static const GLfloat gray[] = { 0.64f, 0.64f, 0.64f, 1.0f };
GLVolumePtrs visible_volumes;
for (GLVolume* vol : m_volumes.volumes)
{
if (!vol->is_modifier && !vol->is_wipe_tower && (!parts_only || (vol->composite_id.volume_id >= 0)))
{
if (!printable_only || is_visible(*vol))
visible_volumes.emplace_back(vol);
}
}
if (visible_volumes.empty())
return;
BoundingBoxf3 box;
for (const GLVolume* vol : visible_volumes)
{
box.merge(vol->transformed_bounding_box());
}
Camera camera;
camera.set_type(Camera::Ortho);
camera.set_scene_box(scene_bounding_box());
camera.apply_viewport(0, 0, thumbnail_data.width, thumbnail_data.height);
camera.zoom_to_volumes(visible_volumes);
camera.apply_view_matrix();
double near_z = -1.0;
double far_z = -1.0;
if (show_bed)
{
// extends the near and far z of the frustrum to avoid the bed being clipped
// box in eye space
#if ENABLE_NON_STATIC_CANVAS_MANAGER
BoundingBoxf3 t_bed_box = wxGetApp().plater()->get_bed().get_bounding_box(true).transformed(camera.get_view_matrix());
#else
BoundingBoxf3 t_bed_box = m_bed.get_bounding_box(true).transformed(camera.get_view_matrix());
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
near_z = -t_bed_box.max(2);
far_z = -t_bed_box.min(2);
}
camera.apply_projection(box, near_z, far_z);
if (transparent_background)
glsafe(::glClearColor(0.0f, 0.0f, 0.0f, 0.0f));
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
glsafe(::glEnable(GL_DEPTH_TEST));
m_shader.start_using();
GLint shader_id = m_shader.get_shader_program_id();
GLint color_id = ::glGetUniformLocation(shader_id, "uniform_color");
GLint print_box_detection_id = ::glGetUniformLocation(shader_id, "print_box.volume_detection");
glcheck();
if (print_box_detection_id != -1)
glsafe(::glUniform1i(print_box_detection_id, 0));
for (const GLVolume* vol : visible_volumes)
{
if (color_id >= 0)
glsafe(::glUniform4fv(color_id, 1, (vol->printable && !vol->is_outside) ? orange : gray));
else
glsafe(::glColor4fv((vol->printable && !vol->is_outside) ? orange : gray));
vol->render();
}
m_shader.stop_using();
glsafe(::glDisable(GL_DEPTH_TEST));
if (show_bed)
_render_bed(!camera.is_looking_downward(), false);
if (transparent_background)
glsafe(::glClearColor(1.0f, 1.0f, 1.0f, 1.0f));
}
void GLCanvas3D::_render_thumbnail_framebuffer(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const
{
thumbnail_data.set(w, h);
if (!thumbnail_data.is_valid())
return;
bool multisample = m_multisample_allowed;
if (multisample)
glsafe(::glEnable(GL_MULTISAMPLE));
GLint max_samples;
glsafe(::glGetIntegerv(GL_MAX_SAMPLES, &max_samples));
GLsizei num_samples = max_samples / 2;
GLuint render_fbo;
glsafe(::glGenFramebuffers(1, &render_fbo));
glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, render_fbo));
GLuint render_tex = 0;
GLuint render_tex_buffer = 0;
if (multisample)
{
// use renderbuffer instead of texture to avoid the need to use glTexImage2DMultisample which is available only since OpenGL 3.2
glsafe(::glGenRenderbuffers(1, &render_tex_buffer));
glsafe(::glBindRenderbuffer(GL_RENDERBUFFER, render_tex_buffer));
glsafe(::glRenderbufferStorageMultisample(GL_RENDERBUFFER, num_samples, GL_RGBA8, w, h));
glsafe(::glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, render_tex_buffer));
}
else
{
glsafe(::glGenTextures(1, &render_tex));
glsafe(::glBindTexture(GL_TEXTURE_2D, render_tex));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, render_tex, 0));
}
GLuint render_depth;
glsafe(::glGenRenderbuffers(1, &render_depth));
glsafe(::glBindRenderbuffer(GL_RENDERBUFFER, render_depth));
if (multisample)
glsafe(::glRenderbufferStorageMultisample(GL_RENDERBUFFER, num_samples, GL_DEPTH_COMPONENT24, w, h));
else
glsafe(::glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, w, h));
glsafe(::glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, render_depth));
GLenum drawBufs[] = { GL_COLOR_ATTACHMENT0 };
glsafe(::glDrawBuffers(1, drawBufs));
if (::glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE)
{
_render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background);
if (multisample)
{
GLuint resolve_fbo;
glsafe(::glGenFramebuffers(1, &resolve_fbo));
glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, resolve_fbo));
GLuint resolve_tex;
glsafe(::glGenTextures(1, &resolve_tex));
glsafe(::glBindTexture(GL_TEXTURE_2D, resolve_tex));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, resolve_tex, 0));
glsafe(::glDrawBuffers(1, drawBufs));
if (::glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE)
{
glsafe(::glBindFramebuffer(GL_READ_FRAMEBUFFER, render_fbo));
glsafe(::glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo));
glsafe(::glBlitFramebuffer(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR));
glsafe(::glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_fbo));
glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data()));
}
glsafe(::glDeleteTextures(1, &resolve_tex));
glsafe(::glDeleteFramebuffers(1, &resolve_fbo));
}
else
glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data()));
#if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
debug_output_thumbnail(thumbnail_data);
#endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
}
glsafe(::glBindFramebuffer(GL_FRAMEBUFFER, 0));
glsafe(::glDeleteRenderbuffers(1, &render_depth));
if (render_tex_buffer != 0)
glsafe(::glDeleteRenderbuffers(1, &render_tex_buffer));
if (render_tex != 0)
glsafe(::glDeleteTextures(1, &render_tex));
glsafe(::glDeleteFramebuffers(1, &render_fbo));
if (multisample)
glsafe(::glDisable(GL_MULTISAMPLE));
}
void GLCanvas3D::_render_thumbnail_framebuffer_ext(ThumbnailData & thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const
{
thumbnail_data.set(w, h);
if (!thumbnail_data.is_valid())
return;
bool multisample = m_multisample_allowed;
if (multisample)
glsafe(::glEnable(GL_MULTISAMPLE));
GLint max_samples;
glsafe(::glGetIntegerv(GL_MAX_SAMPLES_EXT, &max_samples));
GLsizei num_samples = max_samples / 2;
GLuint render_fbo;
glsafe(::glGenFramebuffersEXT(1, &render_fbo));
glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, render_fbo));
GLuint render_tex = 0;
GLuint render_tex_buffer = 0;
if (multisample)
{
// use renderbuffer instead of texture to avoid the need to use glTexImage2DMultisample which is available only since OpenGL 3.2
glsafe(::glGenRenderbuffersEXT(1, &render_tex_buffer));
glsafe(::glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, render_tex_buffer));
glsafe(::glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, num_samples, GL_RGBA8, w, h));
glsafe(::glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, render_tex_buffer));
}
else
{
glsafe(::glGenTextures(1, &render_tex));
glsafe(::glBindTexture(GL_TEXTURE_2D, render_tex));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, render_tex, 0));
}
GLuint render_depth;
glsafe(::glGenRenderbuffersEXT(1, &render_depth));
glsafe(::glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, render_depth));
if (multisample)
glsafe(::glRenderbufferStorageMultisampleEXT(GL_RENDERBUFFER_EXT, num_samples, GL_DEPTH_COMPONENT24, w, h));
else
glsafe(::glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT, w, h));
glsafe(::glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, render_depth));
GLenum drawBufs[] = { GL_COLOR_ATTACHMENT0 };
glsafe(::glDrawBuffers(1, drawBufs));
if (::glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT)
{
_render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background);
if (multisample)
{
GLuint resolve_fbo;
glsafe(::glGenFramebuffersEXT(1, &resolve_fbo));
glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, resolve_fbo));
GLuint resolve_tex;
glsafe(::glGenTextures(1, &resolve_tex));
glsafe(::glBindTexture(GL_TEXTURE_2D, resolve_tex));
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, resolve_tex, 0));
glsafe(::glDrawBuffers(1, drawBufs));
if (::glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT)
{
glsafe(::glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, render_fbo));
glsafe(::glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, resolve_fbo));
glsafe(::glBlitFramebufferEXT(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, GL_LINEAR));
glsafe(::glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, resolve_fbo));
glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data()));
}
glsafe(::glDeleteTextures(1, &resolve_tex));
glsafe(::glDeleteFramebuffersEXT(1, &resolve_fbo));
}
else
glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data()));
#if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
debug_output_thumbnail(thumbnail_data);
#endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
}
glsafe(::glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0));
glsafe(::glDeleteRenderbuffersEXT(1, &render_depth));
if (render_tex_buffer != 0)
glsafe(::glDeleteRenderbuffersEXT(1, &render_tex_buffer));
if (render_tex != 0)
glsafe(::glDeleteTextures(1, &render_tex));
glsafe(::glDeleteFramebuffersEXT(1, &render_fbo));
if (multisample)
glsafe(::glDisable(GL_MULTISAMPLE));
}
void GLCanvas3D::_render_thumbnail_legacy(ThumbnailData& thumbnail_data, unsigned int w, unsigned int h, bool printable_only, bool parts_only, bool show_bed, bool transparent_background) const
{
// check that thumbnail size does not exceed the default framebuffer size
const Size& cnv_size = get_canvas_size();
unsigned int cnv_w = (unsigned int)cnv_size.get_width();
unsigned int cnv_h = (unsigned int)cnv_size.get_height();
if ((w > cnv_w) || (h > cnv_h))
{
float ratio = std::min((float)cnv_w / (float)w, (float)cnv_h / (float)h);
w = (unsigned int)(ratio * (float)w);
h = (unsigned int)(ratio * (float)h);
}
thumbnail_data.set(w, h);
if (!thumbnail_data.is_valid())
return;
_render_thumbnail_internal(thumbnail_data, printable_only, parts_only, show_bed, transparent_background);
glsafe(::glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)thumbnail_data.pixels.data()));
#if ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
debug_output_thumbnail(thumbnail_data);
#endif // ENABLE_THUMBNAIL_GENERATOR_DEBUG_OUTPUT
// restore the default framebuffer size to avoid flickering on the 3D scene
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().apply_viewport(0, 0, cnv_size.get_width(), cnv_size.get_height());
#else
m_camera.apply_viewport(0, 0, cnv_size.get_width(), cnv_size.get_height());
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
bool GLCanvas3D::_init_toolbars()
{
if (!_init_main_toolbar())
return false;
if (!_init_undoredo_toolbar())
return false;
if (!_init_view_toolbar())
return false;
return true;
}
bool GLCanvas3D::_init_main_toolbar()
{
if (!m_main_toolbar.is_enabled())
return true;
BackgroundTexture::Metadata background_data;
background_data.filename = "toolbar_background.png";
background_data.left = 16;
background_data.top = 16;
background_data.right = 16;
background_data.bottom = 16;
if (!m_main_toolbar.init(background_data))
{
// unable to init the toolbar texture, disable it
m_main_toolbar.set_enabled(false);
return true;
}
// m_main_toolbar.set_layout_type(GLToolbar::Layout::Vertical);
m_main_toolbar.set_layout_type(GLToolbar::Layout::Horizontal);
m_main_toolbar.set_horizontal_orientation(GLToolbar::Layout::HO_Right);
m_main_toolbar.set_vertical_orientation(GLToolbar::Layout::VO_Top);
m_main_toolbar.set_border(5.0f);
m_main_toolbar.set_separator_size(5);
m_main_toolbar.set_gap_size(2);
GLToolbarItem::Data item;
item.name = "add";
item.icon_filename = "add.svg";
item.tooltip = _utf8(L("Add...")) + " [" + GUI::shortkey_ctrl_prefix() + "I]";
item.sprite_id = 0;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ADD)); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "delete";
item.icon_filename = "remove.svg";
item.tooltip = _utf8(L("Delete")) + " [Del]";
item.sprite_id = 1;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE)); };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_delete(); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "deleteall";
item.icon_filename = "delete_all.svg";
item.tooltip = _utf8(L("Delete all")) + " [" + GUI::shortkey_ctrl_prefix() + "Del]";
item.sprite_id = 2;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_DELETE_ALL)); };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_delete_all(); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "arrange";
item.icon_filename = "arrange.svg";
item.tooltip = _utf8(L("Arrange")) + " [A]\n" + _utf8(L("Arrange selection")) + " [Shift+A]";
item.sprite_id = 3;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_ARRANGE)); };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_arrange(); };
if (!m_main_toolbar.add_item(item))
return false;
if (!m_main_toolbar.add_separator())
return false;
item.name = "copy";
item.icon_filename = "copy.svg";
item.tooltip = _utf8(L("Copy")) + " [" + GUI::shortkey_ctrl_prefix() + "C]";
item.sprite_id = 4;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_COPY)); };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_copy_to_clipboard(); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "paste";
item.icon_filename = "paste.svg";
item.tooltip = _utf8(L("Paste")) + " [" + GUI::shortkey_ctrl_prefix() + "V]";
item.sprite_id = 5;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_PASTE)); };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_paste_from_clipboard(); };
if (!m_main_toolbar.add_item(item))
return false;
if (!m_main_toolbar.add_separator())
return false;
item.name = "more";
item.icon_filename = "instance_add.svg";
item.tooltip = _utf8(L("Add instance")) + " [+]";
item.sprite_id = 6;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_MORE)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_increase_instances(); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "fewer";
item.icon_filename = "instance_remove.svg";
item.tooltip = _utf8(L("Remove instance")) + " [-]";
item.sprite_id = 7;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_FEWER)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_decrease_instances(); };
if (!m_main_toolbar.add_item(item))
return false;
if (!m_main_toolbar.add_separator())
return false;
item.name = "splitobjects";
item.icon_filename = "split_objects.svg";
item.tooltip = _utf8(L("Split to objects"));
item.sprite_id = 8;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_OBJECTS)); };
item.visibility_callback = GLToolbarItem::Default_Visibility_Callback;
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_split_to_objects(); };
if (!m_main_toolbar.add_item(item))
return false;
item.name = "splitvolumes";
item.icon_filename = "split_parts.svg";
item.tooltip = _utf8(L("Split to parts"));
item.sprite_id = 9;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_SPLIT_VOLUMES)); };
item.visibility_callback = []()->bool { return wxGetApp().get_mode() != comSimple; };
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_split_to_volumes(); };
if (!m_main_toolbar.add_item(item))
return false;
if (!m_main_toolbar.add_separator())
return false;
item.name = "layersediting";
item.icon_filename = "layers_white.svg";
item.tooltip = _utf8(L("Variable layer height"));
item.sprite_id = 10;
item.left.toggable = true;
item.left.action_callback = [this]() { if (m_canvas != nullptr) wxPostEvent(m_canvas, SimpleEvent(EVT_GLTOOLBAR_LAYERSEDITING)); };
item.visibility_callback = [this]()->bool
{
bool res = m_process->current_printer_technology() == ptFFF;
// turns off if changing printer technology
if (!res && m_main_toolbar.is_item_visible("layersediting") && m_main_toolbar.is_item_pressed("layersediting"))
force_main_toolbar_left_action(get_main_toolbar_item_id("layersediting"));
return res;
};
item.enabling_callback = []()->bool { return wxGetApp().plater()->can_layers_editing(); };
if (!m_main_toolbar.add_item(item))
return false;
return true;
}
bool GLCanvas3D::_init_undoredo_toolbar()
{
if (!m_undoredo_toolbar.is_enabled())
return true;
BackgroundTexture::Metadata background_data;
background_data.filename = "toolbar_background.png";
background_data.left = 16;
background_data.top = 16;
background_data.right = 16;
background_data.bottom = 16;
if (!m_undoredo_toolbar.init(background_data))
{
// unable to init the toolbar texture, disable it
m_undoredo_toolbar.set_enabled(false);
return true;
}
// m_undoredo_toolbar.set_layout_type(GLToolbar::Layout::Vertical);
m_undoredo_toolbar.set_layout_type(GLToolbar::Layout::Horizontal);
m_undoredo_toolbar.set_horizontal_orientation(GLToolbar::Layout::HO_Left);
m_undoredo_toolbar.set_vertical_orientation(GLToolbar::Layout::VO_Top);
m_undoredo_toolbar.set_border(5.0f);
m_undoredo_toolbar.set_separator_size(5);
m_undoredo_toolbar.set_gap_size(2);
GLToolbarItem::Data item;
item.name = "undo";
item.icon_filename = "undo_toolbar.svg";
item.tooltip = _utf8(L("Undo")) + " [" + GUI::shortkey_ctrl_prefix() + "Z]\n" + _utf8(L("Click right mouse button to open/close History"));
item.sprite_id = 0;
item.left.action_callback = [this]() { post_event(SimpleEvent(EVT_GLCANVAS_UNDO)); };
item.right.toggable = true;
item.right.action_callback = [this]() { m_imgui_undo_redo_hovered_pos = -1; };
item.right.render_callback = [this](float left, float right, float, float) {
if (m_canvas != nullptr)
{
if (_render_undo_redo_stack(true, 0.5f * (left + right)))
_deactivate_undo_redo_toolbar_items();
}
};
item.enabling_callback = [this]()->bool {
bool can_undo = wxGetApp().plater()->can_undo();
int id = m_undoredo_toolbar.get_item_id("undo");
std::string curr_additional_tooltip;
m_undoredo_toolbar.get_additional_tooltip(id, curr_additional_tooltip);
std::string new_additional_tooltip = "";
if (can_undo) {
std::string action;
wxGetApp().plater()->undo_redo_topmost_string_getter(true, action);
new_additional_tooltip = (boost::format(_utf8(L("Next Undo action: %1%"))) % action).str();
}
if (new_additional_tooltip != curr_additional_tooltip)
{
m_undoredo_toolbar.set_additional_tooltip(id, new_additional_tooltip);
set_tooltip("");
}
return can_undo;
};
if (!m_undoredo_toolbar.add_item(item))
return false;
item.name = "redo";
item.icon_filename = "redo_toolbar.svg";
item.tooltip = _utf8(L("Redo")) + " [" + GUI::shortkey_ctrl_prefix() + "Y]\n" + _utf8(L("Click right mouse button to open/close History"));
item.sprite_id = 1;
item.left.action_callback = [this]() { post_event(SimpleEvent(EVT_GLCANVAS_REDO)); };
item.right.action_callback = [this]() { m_imgui_undo_redo_hovered_pos = -1; };
item.right.render_callback = [this](float left, float right, float, float) {
if (m_canvas != nullptr)
{
if (_render_undo_redo_stack(false, 0.5f * (left + right)))
_deactivate_undo_redo_toolbar_items();
}
};
item.enabling_callback = [this]()->bool {
bool can_redo = wxGetApp().plater()->can_redo();
int id = m_undoredo_toolbar.get_item_id("redo");
std::string curr_additional_tooltip;
m_undoredo_toolbar.get_additional_tooltip(id, curr_additional_tooltip);
std::string new_additional_tooltip = "";
if (can_redo) {
std::string action;
wxGetApp().plater()->undo_redo_topmost_string_getter(false, action);
new_additional_tooltip = (boost::format(_utf8(L("Next Redo action: %1%"))) % action).str();
}
if (new_additional_tooltip != curr_additional_tooltip)
{
m_undoredo_toolbar.set_additional_tooltip(id, new_additional_tooltip);
set_tooltip("");
}
return can_redo;
};
if (!m_undoredo_toolbar.add_item(item))
return false;
return true;
}
bool GLCanvas3D::_init_view_toolbar()
{
return wxGetApp().plater()->init_view_toolbar();
}
bool GLCanvas3D::_set_current()
{
return m_context != nullptr && m_canvas->SetCurrent(*m_context);
}
void GLCanvas3D::_resize(unsigned int w, unsigned int h)
{
if ((m_canvas == nullptr) && (m_context == nullptr))
return;
auto *imgui = wxGetApp().imgui();
imgui->set_display_size((float)w, (float)h);
const float font_size = 1.5f * wxGetApp().em_unit();
#if ENABLE_RETINA_GL
imgui->set_scaling(font_size, 1.0f, m_retina_helper->get_scale_factor());
#else
imgui->set_scaling(font_size, m_canvas->GetContentScaleFactor(), 1.0f);
#endif
// ensures that this canvas is current
_set_current();
}
BoundingBoxf3 GLCanvas3D::_max_bounding_box(bool include_gizmos, bool include_bed_model) const
{
BoundingBoxf3 bb = volumes_bounding_box();
// The following is a workaround for gizmos not being taken in account when calculating the tight camera frustrum
// A better solution would ask the gizmo manager for the bounding box of the current active gizmo, if any
if (include_gizmos && m_gizmos.is_running())
{
BoundingBoxf3 sel_bb = m_selection.get_bounding_box();
Vec3d sel_bb_center = sel_bb.center();
Vec3d extend_by = sel_bb.max_size() * Vec3d::Ones();
bb.merge(BoundingBoxf3(sel_bb_center - extend_by, sel_bb_center + extend_by));
}
#if ENABLE_NON_STATIC_CANVAS_MANAGER
bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(include_bed_model));
#else
bb.merge(m_bed.get_bounding_box(include_bed_model));
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
return bb;
}
void GLCanvas3D::_zoom_to_box(const BoundingBoxf3& box, double margin_factor)
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().zoom_to_box(box, margin_factor);
#else
m_camera.zoom_to_box(box, margin_factor);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty = true;
}
void GLCanvas3D::_update_camera_zoom(double zoom)
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_camera().update_zoom(zoom);
#else
m_camera.update_zoom(zoom);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_dirty = true;
}
void GLCanvas3D::_refresh_if_shown_on_screen()
{
if (_is_shown_on_screen())
{
const Size& cnv_size = get_canvas_size();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
// Because of performance problems on macOS, where PaintEvents are not delivered
// frequently enough, we call render() here directly when we can.
render();
}
}
void GLCanvas3D::_picking_pass() const
{
if (m_picking_enabled && !m_mouse.dragging && (m_mouse.position != Vec2d(DBL_MAX, DBL_MAX)))
{
m_hover_volume_idxs.clear();
// Render the object for picking.
// FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing.
// Better to use software ray - casting on a bounding - box hierarchy.
if (m_multisample_allowed)
// This flag is often ignored by NVIDIA drivers if rendering into a screen buffer.
glsafe(::glDisable(GL_MULTISAMPLE));
glsafe(::glDisable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
m_camera_clipping_plane = m_gizmos.get_clipping_plane();
if (m_camera_clipping_plane.is_active()) {
::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)m_camera_clipping_plane.get_data());
::glEnable(GL_CLIP_PLANE0);
}
_render_volumes_for_picking();
if (m_camera_clipping_plane.is_active())
::glDisable(GL_CLIP_PLANE0);
m_gizmos.render_current_gizmo_for_picking_pass();
if (m_multisample_allowed)
glsafe(::glEnable(GL_MULTISAMPLE));
int volume_id = -1;
GLubyte color[4] = { 0, 0, 0, 0 };
const Size& cnv_size = get_canvas_size();
bool inside = (0 <= m_mouse.position(0)) && (m_mouse.position(0) < cnv_size.get_width()) && (0 <= m_mouse.position(1)) && (m_mouse.position(1) < cnv_size.get_height());
if (inside)
{
glsafe(::glReadPixels(m_mouse.position(0), cnv_size.get_height() - m_mouse.position(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color));
if (picking_checksum_alpha_channel(color[0], color[1], color[2]) == color[3])
// Only non-interpolated colors are valid, those have their lowest three bits zeroed.
volume_id = color[0] + (color[1] << 8) + (color[2] << 16);
}
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size()))
{
m_hover_volume_idxs.emplace_back(volume_id);
m_gizmos.set_hover_id(-1);
}
else
m_gizmos.set_hover_id(inside && (unsigned int)volume_id <= GLGizmoBase::BASE_ID ? ((int)GLGizmoBase::BASE_ID - volume_id) : -1);
_update_volumes_hover_state();
}
}
void GLCanvas3D::_rectangular_selection_picking_pass() const
{
m_gizmos.set_hover_id(-1);
std::set<int> idxs;
if (m_picking_enabled)
{
if (m_multisample_allowed)
// This flag is often ignored by NVIDIA drivers if rendering into a screen buffer.
glsafe(::glDisable(GL_MULTISAMPLE));
glsafe(::glDisable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
_render_volumes_for_picking();
if (m_multisample_allowed)
glsafe(::glEnable(GL_MULTISAMPLE));
int width = std::max((int)m_rectangle_selection.get_width(), 1);
int height = std::max((int)m_rectangle_selection.get_height(), 1);
int px_count = width * height;
int left = (int)m_rectangle_selection.get_left();
int top = get_canvas_size().get_height() - (int)m_rectangle_selection.get_top();
if ((left >= 0) && (top >= 0))
{
#define USE_PARALLEL 1
#if USE_PARALLEL
struct Pixel
{
std::array<GLubyte, 4> data;
// Only non-interpolated colors are valid, those have their lowest three bits zeroed.
bool valid() const { return picking_checksum_alpha_channel(data[0], data[1], data[2]) == data[3]; }
int id() const { return data[0] + (data[1] << 8) + (data[2] << 16); }
};
std::vector<Pixel> frame(px_count);
glsafe(::glReadPixels(left, top, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (void*)frame.data()));
tbb::spin_mutex mutex;
tbb::parallel_for(tbb::blocked_range<size_t>(0, frame.size(), (size_t)width),
[this, &frame, &idxs, &mutex](const tbb::blocked_range<size_t>& range) {
for (size_t i = range.begin(); i < range.end(); ++i)
if (frame[i].valid()) {
int volume_id = frame[i].id();
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size())) {
mutex.lock();
idxs.insert(volume_id);
mutex.unlock();
}
}
});
#else
std::vector<GLubyte> frame(4 * px_count);
glsafe(::glReadPixels(left, top, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (void*)frame.data()));
for (int i = 0; i < px_count; ++i)
{
int px_id = 4 * i;
int volume_id = frame[px_id] + (frame[px_id + 1] << 8) + (frame[px_id + 2] << 16);
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size()))
idxs.insert(volume_id);
}
#endif // USE_PARALLEL
}
}
m_hover_volume_idxs.assign(idxs.begin(), idxs.end());
_update_volumes_hover_state();
}
void GLCanvas3D::_render_background() const
{
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
glsafe(::glMatrixMode(GL_PROJECTION));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
// Draws a bottom to top gradient over the complete screen.
glsafe(::glDisable(GL_DEPTH_TEST));
::glBegin(GL_QUADS);
if (m_dynamic_background_enabled && _is_any_volume_outside())
::glColor3fv(ERROR_BG_DARK_COLOR);
else
::glColor3fv(DEFAULT_BG_DARK_COLOR);
::glVertex2f(-1.0f, -1.0f);
::glVertex2f(1.0f, -1.0f);
if (m_dynamic_background_enabled && _is_any_volume_outside())
::glColor3fv(ERROR_BG_LIGHT_COLOR);
else
::glColor3fv(DEFAULT_BG_LIGHT_COLOR);
::glVertex2f(1.0f, 1.0f);
::glVertex2f(-1.0f, 1.0f);
glsafe(::glEnd());
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glPopMatrix());
glsafe(::glMatrixMode(GL_MODELVIEW));
glsafe(::glPopMatrix());
}
void GLCanvas3D::_render_bed(float theta, bool show_axes) const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif // ENABLE_RETINA_GL
#if ENABLE_NON_STATIC_CANVAS_MANAGER
wxGetApp().plater()->get_bed().render(const_cast<GLCanvas3D&>(*this), theta, scale_factor, show_axes);
#else
m_bed.render(const_cast<GLCanvas3D&>(*this), theta, scale_factor, show_axes);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
void GLCanvas3D::_render_objects() const
{
if (m_volumes.empty())
return;
glsafe(::glEnable(GL_DEPTH_TEST));
m_camera_clipping_plane = m_gizmos.get_clipping_plane();
if (m_picking_enabled)
{
// Update the layer editing selection to the first object selected, update the current object maximum Z.
const_cast<LayersEditing&>(m_layers_editing).select_object(*m_model, this->is_layers_editing_enabled() ? m_selection.get_object_idx() : -1);
if (m_config != nullptr)
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const BoundingBoxf3& bed_bb = wxGetApp().plater()->get_bed().get_bounding_box(false);
#else
const BoundingBoxf3& bed_bb = m_bed.get_bounding_box(false);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height"));
m_volumes.check_outside_state(m_config, nullptr);
}
}
if (m_use_clipping_planes)
m_volumes.set_z_range(-m_clipping_planes[0].get_data()[3], m_clipping_planes[1].get_data()[3]);
else
m_volumes.set_z_range(-FLT_MAX, FLT_MAX);
m_volumes.set_clipping_plane(m_camera_clipping_plane.get_data());
m_shader.start_using();
if (m_picking_enabled && !m_gizmos.is_dragging() && m_layers_editing.is_enabled() && (m_layers_editing.last_object_id != -1) && (m_layers_editing.object_max_z() > 0.0f)) {
int object_id = m_layers_editing.last_object_id;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
m_volumes.render(GLVolumeCollection::Opaque, false, wxGetApp().plater()->get_camera().get_view_matrix(), [object_id](const GLVolume& volume) {
// Which volume to paint without the layer height profile shader?
return volume.is_active && (volume.is_modifier || volume.composite_id.object_id != object_id);
});
#else
m_volumes.render(GLVolumeCollection::Opaque, false, m_camera.get_view_matrix(), [object_id](const GLVolume& volume) {
// Which volume to paint without the layer height profile shader?
return volume.is_active && (volume.is_modifier || volume.composite_id.object_id != object_id);
});
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
// Let LayersEditing handle rendering of the active object using the layer height profile shader.
m_layers_editing.render_volumes(*this, this->m_volumes);
} else {
// do not cull backfaces to show broken geometry, if any
#if ENABLE_NON_STATIC_CANVAS_MANAGER
m_volumes.render(GLVolumeCollection::Opaque, m_picking_enabled, wxGetApp().plater()->get_camera().get_view_matrix(), [this](const GLVolume& volume) {
return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0);
});
#else
m_volumes.render(GLVolumeCollection::Opaque, m_picking_enabled, m_camera.get_view_matrix(), [this](const GLVolume& volume) {
return (m_render_sla_auxiliaries || volume.composite_id.volume_id >= 0);
});
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
#if ENABLE_NON_STATIC_CANVAS_MANAGER
m_volumes.render(GLVolumeCollection::Transparent, false, wxGetApp().plater()->get_camera().get_view_matrix());
#else
m_volumes.render(GLVolumeCollection::Transparent, false, m_camera.get_view_matrix());
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
m_shader.stop_using();
m_camera_clipping_plane = ClippingPlane::ClipsNothing();
}
void GLCanvas3D::_render_selection() const
{
float scale_factor = 1.0;
#if ENABLE_RETINA_GL
scale_factor = m_retina_helper->get_scale_factor();
#endif
if (!m_gizmos.is_running())
m_selection.render(scale_factor);
}
#if ENABLE_RENDER_SELECTION_CENTER
void GLCanvas3D::_render_selection_center() const
{
m_selection.render_center(m_gizmos.is_dragging());
}
#endif // ENABLE_RENDER_SELECTION_CENTER
void GLCanvas3D::_render_overlays() const
{
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
// ensure that the textures are renderered inside the frustrum
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const Camera& camera = wxGetApp().plater()->get_camera();
glsafe(::glTranslated(0.0, 0.0, -(camera.get_near_z() + 0.005)));
// ensure that the overlay fits the frustrum near z plane
double gui_scale = camera.get_gui_scale();
#else
glsafe(::glTranslated(0.0, 0.0, -(m_camera.get_near_z() + 0.005)));
// ensure that the overlay fits the frustrum near z plane
double gui_scale = m_camera.get_gui_scale();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
glsafe(::glScaled(gui_scale, gui_scale, 1.0));
_render_gizmos_overlay();
_render_warning_texture();
_render_legend_texture();
// main toolbar and undoredo toolbar need to be both updated before rendering because both their sizes are needed
// to correctly place them
#if ENABLE_RETINA_GL
const float scale = m_retina_helper->get_scale_factor() * wxGetApp().toolbar_icon_scale(true);
m_main_toolbar.set_scale(scale);
m_undoredo_toolbar.set_scale(scale);
#else
const float size = int(GLToolbar::Default_Icons_Size * wxGetApp().toolbar_icon_scale(true));
m_main_toolbar.set_icons_size(size);
m_undoredo_toolbar.set_icons_size(size);
#endif // ENABLE_RETINA_GL
_render_main_toolbar();
_render_undoredo_toolbar();
_render_view_toolbar();
if ((m_layers_editing.last_object_id >= 0) && (m_layers_editing.object_max_z() > 0.0f))
m_layers_editing.render_overlay(*this);
const ConfigOptionBool* opt = dynamic_cast<const ConfigOptionBool*>(m_config->option("complete_objects"));
bool sequential_print = opt != nullptr && opt->value;
std::vector<const ModelInstance*> sorted_instances;
if (sequential_print) {
for (ModelObject* model_object : m_model->objects)
for (ModelInstance* model_instance : model_object->instances) {
sorted_instances.emplace_back(model_instance);
}
}
m_labels.render(sorted_instances);
#if ENABLE_SLOPE_RENDERING
m_slope.render();
#endif // ENABLE_SLOPE_RENDERING
glsafe(::glPopMatrix());
}
void GLCanvas3D::_render_warning_texture() const
{
m_warning_texture.render(*this);
}
void GLCanvas3D::_render_legend_texture() const
{
if (!m_legend_texture_enabled)
return;
m_legend_texture.render(*this);
}
void GLCanvas3D::_render_volumes_for_picking() const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
// do not cull backfaces to show broken geometry, if any
glsafe(::glDisable(GL_CULL_FACE));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnableClientState(GL_NORMAL_ARRAY));
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const Transform3d& view_matrix = wxGetApp().plater()->get_camera().get_view_matrix();
#else
const Transform3d& view_matrix = m_camera.get_view_matrix();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
for (size_t type = 0; type < 2; ++ type) {
GLVolumeWithIdAndZList to_render = volumes_to_render(m_volumes.volumes, (type == 0) ? GLVolumeCollection::Opaque : GLVolumeCollection::Transparent, view_matrix);
for (const GLVolumeWithIdAndZ& volume : to_render)
if (!volume.first->disabled && ((volume.first->composite_id.volume_id >= 0) || m_render_sla_auxiliaries)) {
// Object picking mode. Render the object with a color encoding the object index.
unsigned int id = volume.second.first;
unsigned int r = (id & (0x000000FF << 0)) << 0;
unsigned int g = (id & (0x000000FF << 8)) >> 8;
unsigned int b = (id & (0x000000FF << 16)) >> 16;
unsigned int a = picking_checksum_alpha_channel(r, g, b);
glsafe(::glColor4f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255, (GLfloat)a * INV_255));
volume.first->render();
}
}
glsafe(::glDisableClientState(GL_NORMAL_ARRAY));
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glEnable(GL_CULL_FACE));
}
void GLCanvas3D::_render_current_gizmo() const
{
m_gizmos.render_current_gizmo();
}
void GLCanvas3D::_render_gizmos_overlay() const
{
#if ENABLE_RETINA_GL
// m_gizmos.set_overlay_scale(m_retina_helper->get_scale_factor());
const float scale = m_retina_helper->get_scale_factor()*wxGetApp().toolbar_icon_scale();
m_gizmos.set_overlay_scale(scale); //! #ys_FIXME_experiment
#else
// m_gizmos.set_overlay_scale(m_canvas->GetContentScaleFactor());
// m_gizmos.set_overlay_scale(wxGetApp().em_unit()*0.1f);
const float size = int(GLGizmosManager::Default_Icons_Size*wxGetApp().toolbar_icon_scale());
m_gizmos.set_overlay_icon_size(size); //! #ys_FIXME_experiment
#endif /* __WXMSW__ */
m_gizmos.render_overlay();
}
void GLCanvas3D::_render_main_toolbar() const
{
if (!m_main_toolbar.is_enabled())
return;
Size cnv_size = get_canvas_size();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)m_camera.get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
float top = 0.5f * (float)cnv_size.get_height() * inv_zoom;
float left = -0.5f * (m_main_toolbar.get_width() + m_undoredo_toolbar.get_width()) * inv_zoom;
m_main_toolbar.set_position(top, left);
m_main_toolbar.render(*this);
}
void GLCanvas3D::_render_undoredo_toolbar() const
{
if (!m_undoredo_toolbar.is_enabled())
return;
Size cnv_size = get_canvas_size();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)m_camera.get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
float top = 0.5f * (float)cnv_size.get_height() * inv_zoom;
float left = (m_main_toolbar.get_width() - 0.5f * (m_main_toolbar.get_width() + m_undoredo_toolbar.get_width())) * inv_zoom;
m_undoredo_toolbar.set_position(top, left);
m_undoredo_toolbar.render(*this);
}
void GLCanvas3D::_render_view_toolbar() const
{
#if ENABLE_NON_STATIC_CANVAS_MANAGER
GLToolbar& view_toolbar = wxGetApp().plater()->get_view_toolbar();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#if ENABLE_RETINA_GL
// m_view_toolbar.set_scale(m_retina_helper->get_scale_factor());
const float scale = m_retina_helper->get_scale_factor() * wxGetApp().toolbar_icon_scale();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
view_toolbar.set_scale(scale); //! #ys_FIXME_experiment
#else
m_view_toolbar.set_scale(scale); //! #ys_FIXME_experiment
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#else
// m_view_toolbar.set_scale(m_canvas->GetContentScaleFactor());
// m_view_toolbar.set_scale(wxGetApp().em_unit()*0.1f);
const float size = int(GLGizmosManager::Default_Icons_Size * wxGetApp().toolbar_icon_scale());
#if ENABLE_NON_STATIC_CANVAS_MANAGER
view_toolbar.set_icons_size(size); //! #ys_FIXME_experiment
#else
m_view_toolbar.set_icons_size(size); //! #ys_FIXME_experiment
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
#endif // ENABLE_RETINA_GL
Size cnv_size = get_canvas_size();
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float inv_zoom = (float)wxGetApp().plater()->get_camera().get_inv_zoom();
#else
float inv_zoom = (float)m_camera.get_inv_zoom();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
// places the toolbar on the bottom-left corner of the 3d scene
#if ENABLE_NON_STATIC_CANVAS_MANAGER
float top = (-0.5f * (float)cnv_size.get_height() + view_toolbar.get_height()) * inv_zoom;
#else
float top = (-0.5f * (float)cnv_size.get_height() + m_view_toolbar.get_height()) * inv_zoom;
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
float left = -0.5f * (float)cnv_size.get_width() * inv_zoom;
#if ENABLE_NON_STATIC_CANVAS_MANAGER
view_toolbar.set_position(top, left);
view_toolbar.render(*this);
#else
m_view_toolbar.set_position(top, left);
m_view_toolbar.render(*this);
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
}
#if ENABLE_SHOW_CAMERA_TARGET
void GLCanvas3D::_render_camera_target() const
{
double half_length = 5.0;
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glLineWidth(2.0f));
::glBegin(GL_LINES);
const Vec3d& target = m_camera.get_target();
// draw line for x axis
::glColor3f(1.0f, 0.0f, 0.0f);
::glVertex3d(target(0) - half_length, target(1), target(2));
::glVertex3d(target(0) + half_length, target(1), target(2));
// draw line for y axis
::glColor3f(0.0f, 1.0f, 0.0f);
::glVertex3d(target(0), target(1) - half_length, target(2));
::glVertex3d(target(0), target(1) + half_length, target(2));
// draw line for z axis
::glColor3f(0.0f, 0.0f, 1.0f);
::glVertex3d(target(0), target(1), target(2) - half_length);
::glVertex3d(target(0), target(1), target(2) + half_length);
glsafe(::glEnd());
}
#endif // ENABLE_SHOW_CAMERA_TARGET
void GLCanvas3D::_render_sla_slices() const
{
if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
return;
const SLAPrint* print = this->sla_print();
const PrintObjects& print_objects = print->objects();
if (print_objects.empty())
// nothing to render, return
return;
double clip_min_z = -m_clipping_planes[0].get_data()[3];
double clip_max_z = m_clipping_planes[1].get_data()[3];
for (unsigned int i = 0; i < (unsigned int)print_objects.size(); ++i)
{
const SLAPrintObject* obj = print_objects[i];
if (!obj->is_step_done(slaposSliceSupports))
continue;
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_bottom = m_sla_caps[0].triangles.find(i);
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_top = m_sla_caps[1].triangles.find(i);
{
if (it_caps_bottom == m_sla_caps[0].triangles.end())
it_caps_bottom = m_sla_caps[0].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[0].matches(clip_min_z)) {
m_sla_caps[0].z = clip_min_z;
it_caps_bottom->second.object.clear();
it_caps_bottom->second.supports.clear();
}
if (it_caps_top == m_sla_caps[1].triangles.end())
it_caps_top = m_sla_caps[1].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[1].matches(clip_max_z)) {
m_sla_caps[1].z = clip_max_z;
it_caps_top->second.object.clear();
it_caps_top->second.supports.clear();
}
}
Pointf3s &bottom_obj_triangles = it_caps_bottom->second.object;
Pointf3s &bottom_sup_triangles = it_caps_bottom->second.supports;
Pointf3s &top_obj_triangles = it_caps_top->second.object;
Pointf3s &top_sup_triangles = it_caps_top->second.supports;
if ((bottom_obj_triangles.empty() || bottom_sup_triangles.empty() || top_obj_triangles.empty() || top_sup_triangles.empty()) &&
!obj->get_slice_index().empty())
{
double layer_height = print->default_object_config().layer_height.value;
double initial_layer_height = print->material_config().initial_layer_height.value;
bool left_handed = obj->is_left_handed();
coord_t key_zero = obj->get_slice_index().front().print_level();
// Slice at the center of the slab starting at clip_min_z will be rendered for the lower plane.
coord_t key_low = coord_t((clip_min_z - initial_layer_height + layer_height) / SCALING_FACTOR) + key_zero;
// Slice at the center of the slab ending at clip_max_z will be rendered for the upper plane.
coord_t key_high = coord_t((clip_max_z - initial_layer_height) / SCALING_FACTOR) + key_zero;
const SliceRecord& slice_low = obj->closest_slice_to_print_level(key_low, coord_t(SCALED_EPSILON));
const SliceRecord& slice_high = obj->closest_slice_to_print_level(key_high, coord_t(SCALED_EPSILON));
// Offset to avoid OpenGL Z fighting between the object's horizontal surfaces and the triangluated surfaces of the cuts.
double plane_shift_z = 0.002;
if (slice_low.is_valid()) {
const ExPolygons& obj_bottom = slice_low.get_slice(soModel);
const ExPolygons& sup_bottom = slice_low.get_slice(soSupport);
// calculate model bottom cap
if (bottom_obj_triangles.empty() && !obj_bottom.empty())
bottom_obj_triangles = triangulate_expolygons_3d(obj_bottom, clip_min_z - plane_shift_z, ! left_handed);
// calculate support bottom cap
if (bottom_sup_triangles.empty() && !sup_bottom.empty())
bottom_sup_triangles = triangulate_expolygons_3d(sup_bottom, clip_min_z - plane_shift_z, ! left_handed);
}
if (slice_high.is_valid()) {
const ExPolygons& obj_top = slice_high.get_slice(soModel);
const ExPolygons& sup_top = slice_high.get_slice(soSupport);
// calculate model top cap
if (top_obj_triangles.empty() && !obj_top.empty())
top_obj_triangles = triangulate_expolygons_3d(obj_top, clip_max_z + plane_shift_z, left_handed);
// calculate support top cap
if (top_sup_triangles.empty() && !sup_top.empty())
top_sup_triangles = triangulate_expolygons_3d(sup_top, clip_max_z + plane_shift_z, left_handed);
}
}
if (!bottom_obj_triangles.empty() || !top_obj_triangles.empty() || !bottom_sup_triangles.empty() || !top_sup_triangles.empty())
{
for (const SLAPrintObject::Instance& inst : obj->instances())
{
glsafe(::glPushMatrix());
glsafe(::glTranslated(unscale<double>(inst.shift.x()), unscale<double>(inst.shift.y()), 0));
glsafe(::glRotatef(Geometry::rad2deg(inst.rotation), 0.0, 0.0, 1.0));
if (obj->is_left_handed())
// The polygons are mirrored by X.
glsafe(::glScalef(-1.0, 1.0, 1.0));
glsafe(::glEnableClientState(GL_VERTEX_ARRAY));
glsafe(::glColor3f(1.0f, 0.37f, 0.0f));
if (!bottom_obj_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_obj_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_obj_triangles.size()));
}
if (! top_obj_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_obj_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_obj_triangles.size()));
}
glsafe(::glColor3f(1.0f, 0.0f, 0.37f));
if (! bottom_sup_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)bottom_sup_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, bottom_sup_triangles.size()));
}
if (! top_sup_triangles.empty()) {
glsafe(::glVertexPointer(3, GL_DOUBLE, 0, (GLdouble*)top_sup_triangles.front().data()));
glsafe(::glDrawArrays(GL_TRIANGLES, 0, top_sup_triangles.size()));
}
glsafe(::glDisableClientState(GL_VERTEX_ARRAY));
glsafe(::glPopMatrix());
}
}
}
}
void GLCanvas3D::_render_selection_sidebar_hints() const
{
m_selection.render_sidebar_hints(m_sidebar_field, m_shader);
}
void GLCanvas3D::_update_volumes_hover_state() const
{
for (GLVolume* v : m_volumes.volumes)
{
v->hover = GLVolume::HS_None;
}
if (m_hover_volume_idxs.empty())
return;
bool ctrl_pressed = wxGetKeyState(WXK_CONTROL); // additive select/deselect
bool shift_pressed = wxGetKeyState(WXK_SHIFT); // select by rectangle
bool alt_pressed = wxGetKeyState(WXK_ALT); // deselect by rectangle
if (alt_pressed && (shift_pressed || ctrl_pressed))
{
// illegal combinations of keys
m_hover_volume_idxs.clear();
return;
}
bool selection_modifiers_only = m_selection.is_empty() || m_selection.is_any_modifier();
bool hover_modifiers_only = true;
for (int i : m_hover_volume_idxs)
{
if (!m_volumes.volumes[i]->is_modifier)
{
hover_modifiers_only = false;
break;
}
}
std::set<std::pair<int, int>> hover_instances;
for (int i : m_hover_volume_idxs)
{
const GLVolume& v = *m_volumes.volumes[i];
hover_instances.insert(std::make_pair(v.object_idx(), v.instance_idx()));
}
bool hover_from_single_instance = hover_instances.size() == 1;
if (hover_modifiers_only && !hover_from_single_instance)
{
// do not allow to select volumes from different instances
m_hover_volume_idxs.clear();
return;
}
for (int i : m_hover_volume_idxs)
{
GLVolume& volume = *m_volumes.volumes[i];
if (volume.hover != GLVolume::HS_None)
continue;
bool deselect = volume.selected && ((ctrl_pressed && !shift_pressed) || alt_pressed);
// (volume->is_modifier && !selection_modifiers_only && !is_ctrl_pressed) -> allows hovering on selected modifiers belonging to selection of type Instance
bool select = (!volume.selected || (volume.is_modifier && !selection_modifiers_only && !ctrl_pressed)) && !alt_pressed;
if (select || deselect)
{
bool as_volume =
volume.is_modifier && hover_from_single_instance && !ctrl_pressed &&
(
(!deselect) ||
(deselect && !m_selection.is_single_full_instance() && (volume.object_idx() == m_selection.get_object_idx()) && (volume.instance_idx() == m_selection.get_instance_idx()))
);
if (as_volume)
{
if (deselect)
volume.hover = GLVolume::HS_Deselect;
else
volume.hover = GLVolume::HS_Select;
}
else
{
int object_idx = volume.object_idx();
int instance_idx = volume.instance_idx();
for (GLVolume* v : m_volumes.volumes)
{
if ((v->object_idx() == object_idx) && (v->instance_idx() == instance_idx))
{
if (deselect)
v->hover = GLVolume::HS_Deselect;
else
v->hover = GLVolume::HS_Select;
}
}
}
}
}
}
void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt)
{
int object_idx_selected = m_layers_editing.last_object_id;
if (object_idx_selected == -1)
return;
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (evt != nullptr)
{
const Rect& rect = LayersEditing::get_bar_rect_screen(*this);
float b = rect.get_bottom();
m_layers_editing.last_z = m_layers_editing.object_max_z() * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
m_layers_editing.last_action =
evt->ShiftDown() ? (evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_SMOOTH : LAYER_HEIGHT_EDIT_ACTION_REDUCE) :
(evt->RightIsDown() ? LAYER_HEIGHT_EDIT_ACTION_INCREASE : LAYER_HEIGHT_EDIT_ACTION_DECREASE);
}
m_layers_editing.adjust_layer_height_profile();
_refresh_if_shown_on_screen();
// Automatic action on mouse down with the same coordinate.
_start_timer();
}
Vec3d GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z)
{
if (m_canvas == nullptr)
return Vec3d(DBL_MAX, DBL_MAX, DBL_MAX);
#if ENABLE_NON_STATIC_CANVAS_MANAGER
const Camera& camera = wxGetApp().plater()->get_camera();
const std::array<int, 4>& viewport = camera.get_viewport();
const Transform3d& modelview_matrix = camera.get_view_matrix();
const Transform3d& projection_matrix = camera.get_projection_matrix();
#else
const std::array<int, 4>& viewport = m_camera.get_viewport();
const Transform3d& modelview_matrix = m_camera.get_view_matrix();
const Transform3d& projection_matrix = m_camera.get_projection_matrix();
#endif // ENABLE_NON_STATIC_CANVAS_MANAGER
GLint y = viewport[3] - (GLint)mouse_pos(1);
GLfloat mouse_z;
if (z == nullptr)
glsafe(::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z));
else
mouse_z = *z;
GLdouble out_x, out_y, out_z;
::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, (GLdouble*)modelview_matrix.data(), (GLdouble*)projection_matrix.data(), (GLint*)viewport.data(), &out_x, &out_y, &out_z);
return Vec3d((double)out_x, (double)out_y, (double)out_z);
}
Vec3d GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos)
{
return mouse_ray(mouse_pos).intersect_plane(0.0);
}
void GLCanvas3D::_start_timer()
{
m_timer.Start(100, wxTIMER_CONTINUOUS);
}
void GLCanvas3D::_stop_timer()
{
m_timer.Stop();
}
void GLCanvas3D::_load_print_toolpaths()
{
const Print *print = this->fff_print();
if (print == nullptr)
return;
if (!print->is_step_done(psSkirt) || !print->is_step_done(psBrim))
return;
if (!print->has_skirt() && (print->config().brim_width.value == 0))
return;
const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish
// number of skirt layers
size_t total_layer_count = 0;
for (const PrintObject* print_object : print->objects())
{
total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
}
size_t skirt_height = print->has_infinite_skirt() ? total_layer_count : std::min<size_t>(print->config().skirt_height.value, total_layer_count);
if ((skirt_height == 0) && (print->config().brim_width.value > 0))
skirt_height = 1;
// Get first skirt_height layers.
//FIXME This code is fishy. It may not work for multiple objects with different layering due to variable layer height feature.
// This is not critical as this is just an initial preview.
const PrintObject* highest_object = *std::max_element(print->objects().begin(), print->objects().end(), [](auto l, auto r){ return l->layers().size() < r->layers().size(); });
std::vector<float> print_zs;
print_zs.reserve(skirt_height * 2);
for (size_t i = 0; i < std::min(skirt_height, highest_object->layers().size()); ++ i)
print_zs.emplace_back(float(highest_object->layers()[i]->print_z));
// Only add skirt for the raft layers.
for (size_t i = 0; i < std::min(skirt_height, std::min(highest_object->slicing_parameters().raft_layers(), highest_object->support_layers().size())); ++ i)
print_zs.emplace_back(float(highest_object->support_layers()[i]->print_z));
sort_remove_duplicates(print_zs);
skirt_height = std::min(skirt_height, print_zs.size());
print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
GLVolume *volume = m_volumes.new_toolpath_volume(color, VERTEX_BUFFER_RESERVE_SIZE);
for (size_t i = 0; i < skirt_height; ++ i) {
volume->print_zs.emplace_back(print_zs[i]);
volume->offsets.emplace_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.emplace_back(volume->indexed_vertex_array.triangle_indices.size());
if (i == 0)
_3DScene::extrusionentity_to_verts(print->brim(), print_zs[i], Point(0, 0), *volume);
_3DScene::extrusionentity_to_verts(print->skirt(), print_zs[i], Point(0, 0), *volume);
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
if (volume->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
GLVolume &vol = *volume;
volume = m_volumes.new_toolpath_volume(vol.color);
reserve_new_volume_finalize_old_volume(*volume, vol, m_initialized);
}
}
volume->indexed_vertex_array.finalize_geometry(m_initialized);
}
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values)
{
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const PrintInstances *shifted_copies;
std::vector<const Layer*> layers;
bool has_perimeters;
bool has_infill;
bool has_support;
const std::vector<float>* tool_colors;
bool is_single_material_print;
int extruders_cnt;
const std::vector<CustomGCode::Item>* color_print_values;
static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
static const float* color_pause_or_custom_code() { static float color[4] = { 0.5f, 0.5f, 0.5f, 1.f }; return color; } // gray
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
// For coloring by a color_print(M600), return a parsed color.
bool color_by_color_print() const { return color_print_values!=nullptr; }
const size_t color_print_color_idx_by_layer_idx(const size_t layer_idx) const {
const CustomGCode::Item value{layers[layer_idx]->print_z + EPSILON, "", 0, ""};
auto it = std::lower_bound(color_print_values->begin(), color_print_values->end(), value);
return (it - color_print_values->begin()) % number_tools();
}
const size_t color_print_color_idx_by_layer_idx_and_extruder(const size_t layer_idx, const int extruder) const
{
const coordf_t print_z = layers[layer_idx]->print_z;
auto it = std::find_if(color_print_values->begin(), color_print_values->end(),
[print_z](const CustomGCode::Item& code)
{ return fabs(code.print_z - print_z) < EPSILON; });
if (it != color_print_values->end())
{
const std::string& code = it->gcode;
// pause print or custom Gcode
if (code == PausePrintCode ||
(code != ColorChangeCode && code != ToolChangeCode))
return number_tools()-1; // last color item is a gray color for pause print or custom G-code
// change tool (extruder)
if (code == ToolChangeCode)
return get_color_idx_for_tool_change(it, extruder);
// change color for current extruder
if (code == ColorChangeCode) {
int color_idx = get_color_idx_for_color_change(it, extruder);
if (color_idx >= 0)
return color_idx;
}
}
const CustomGCode::Item value{print_z + EPSILON, "", 0, ""};
it = std::lower_bound(color_print_values->begin(), color_print_values->end(), value);
while (it != color_print_values->begin())
{
--it;
// change color for current extruder
if (it->gcode == ColorChangeCode) {
int color_idx = get_color_idx_for_color_change(it, extruder);
if (color_idx >= 0)
return color_idx;
}
// change tool (extruder)
if (it->gcode == ToolChangeCode)
return get_color_idx_for_tool_change(it, extruder);
}
return std::min<int>(extruders_cnt - 1, std::max<int>(extruder - 1, 0));;
}
private:
int get_m600_color_idx(std::vector<CustomGCode::Item>::const_iterator it) const
{
int shift = 0;
while (it != color_print_values->begin()) {
--it;
if (it->gcode == ColorChangeCode)
shift++;
}
return extruders_cnt + shift;
}
int get_color_idx_for_tool_change(std::vector<CustomGCode::Item>::const_iterator it, const int extruder) const
{
const int current_extruder = it->extruder == 0 ? extruder : it->extruder;
if (number_tools() == extruders_cnt + 1) // there is no one "M600"
return std::min<int>(extruders_cnt - 1, std::max<int>(current_extruder - 1, 0));
auto it_n = it;
while (it_n != color_print_values->begin()) {
--it_n;
if (it_n->gcode == ColorChangeCode && it_n->extruder == current_extruder)
return get_m600_color_idx(it_n);
}
return std::min<int>(extruders_cnt - 1, std::max<int>(current_extruder - 1, 0));
}
int get_color_idx_for_color_change(std::vector<CustomGCode::Item>::const_iterator it, const int extruder) const
{
if (extruders_cnt == 1)
return get_m600_color_idx(it);
auto it_n = it;
bool is_tool_change = false;
while (it_n != color_print_values->begin()) {
--it_n;
if (it_n->gcode == ToolChangeCode) {
is_tool_change = true;
if (it_n->extruder == it->extruder || (it_n->extruder == 0 && it->extruder == extruder))
return get_m600_color_idx(it);
break;
}
}
if (!is_tool_change && it->extruder == extruder)
return get_m600_color_idx(it);
return -1;
}
} ctxt;
ctxt.has_perimeters = print_object.is_step_done(posPerimeters);
ctxt.has_infill = print_object.is_step_done(posInfill);
ctxt.has_support = print_object.is_step_done(posSupportMaterial);
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
ctxt.color_print_values = color_print_values.empty() ? nullptr : &color_print_values;
ctxt.is_single_material_print = this->fff_print()->extruders().size()==1;
ctxt.extruders_cnt = wxGetApp().extruders_edited_cnt();
ctxt.shifted_copies = &print_object.instances();
// order layers by print_z
{
size_t nlayers = 0;
if (ctxt.has_perimeters || ctxt.has_infill)
nlayers = print_object.layers().size();
if (ctxt.has_support)
nlayers += print_object.support_layers().size();
ctxt.layers.reserve(nlayers);
}
if (ctxt.has_perimeters || ctxt.has_infill)
for (const Layer *layer : print_object.layers())
ctxt.layers.emplace_back(layer);
if (ctxt.has_support)
for (const Layer *layer : print_object.support_layers())
ctxt.layers.emplace_back(layer);
std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
// Maximum size of an allocation block: 32MB / sizeof(float)
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start" << m_volumes.log_memory_info() << log_memory_info();
const bool is_selected_separate_extruder = m_selected_extruder > 0 && ctxt.color_by_color_print();
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
// Allocate the volume before locking.
GLVolume *volume = new GLVolume(color);
volume->is_extrusion_path = true;
tbb::spin_mutex::scoped_lock lock;
// Lock by ROII, so if the emplace_back() fails, the lock will be released.
lock.acquire(new_volume_mutex);
m_volumes.volumes.emplace_back(volume);
lock.release();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
tbb::parallel_for(
tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
[&ctxt, &new_volume, is_selected_separate_extruder, this](const tbb::blocked_range<size_t>& range) {
GLVolumePtrs vols;
std::vector<size_t> color_print_layer_to_glvolume;
auto volume = [&ctxt, &vols, &color_print_layer_to_glvolume, &range](size_t layer_idx, int extruder, int feature) -> GLVolume& {
return *vols[ctxt.color_by_color_print()?
ctxt.color_print_color_idx_by_layer_idx_and_extruder(layer_idx, extruder) :
ctxt.color_by_tool() ?
std::min<int>(ctxt.number_tools() - 1, std::max<int>(extruder - 1, 0)) :
feature
];
};
if (ctxt.color_by_color_print() || ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
for (GLVolume *vol : vols)
// Reserving number of vertices (3x position + 3x color)
vol->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6);
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
const Layer *layer = ctxt.layers[idx_layer];
if (is_selected_separate_extruder)
{
bool at_least_one_has_correct_extruder = false;
for (const LayerRegion* layerm : layer->regions())
{
if (layerm->slices.surfaces.empty())
continue;
const PrintRegionConfig& cfg = layerm->region()->config();
if (cfg.perimeter_extruder.value == m_selected_extruder ||
cfg.infill_extruder.value == m_selected_extruder ||
cfg.solid_infill_extruder.value == m_selected_extruder ) {
at_least_one_has_correct_extruder = true;
break;
}
}
if (!at_least_one_has_correct_extruder)
continue;
}
for (GLVolume *vol : vols)
if (vol->print_zs.empty() || vol->print_zs.back() != layer->print_z) {
vol->print_zs.emplace_back(layer->print_z);
vol->offsets.emplace_back(vol->indexed_vertex_array.quad_indices.size());
vol->offsets.emplace_back(vol->indexed_vertex_array.triangle_indices.size());
}
for (const PrintInstance &instance : *ctxt.shifted_copies) {
const Point &copy = instance.shift;
for (const LayerRegion *layerm : layer->regions()) {
if (is_selected_separate_extruder)
{
const PrintRegionConfig& cfg = layerm->region()->config();
if (cfg.perimeter_extruder.value != m_selected_extruder ||
cfg.infill_extruder.value != m_selected_extruder ||
cfg.solid_infill_extruder.value != m_selected_extruder)
continue;
}
if (ctxt.has_perimeters)
_3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
volume(idx_layer, layerm->region()->config().perimeter_extruder.value, 0));
if (ctxt.has_infill) {
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (! fill->entities.empty())
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy,
volume(idx_layer,
is_solid_infill(fill->entities.front()->role()) ?
layerm->region()->config().solid_infill_extruder :
layerm->region()->config().infill_extruder,
1));
}
}
}
if (ctxt.has_support) {
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
_3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
volume(idx_layer,
(extrusion_entity->role() == erSupportMaterial) ?
support_layer->object()->config().support_material_extruder :
support_layer->object()->config().support_material_interface_extruder,
2));
}
}
}
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
vols[i] = new_volume(vol.color);
reserve_new_volume_finalize_old_volume(*vols[i], vol, false);
}
}
}
for (GLVolume *vol : vols)
// Ideally one would call vol->indexed_vertex_array.finalize() here to move the buffers to the OpenGL driver,
// but this code runs in parallel and the OpenGL driver is not thread safe.
vol->indexed_vertex_array.shrink_to_fit();
});
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info();
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
}
void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors)
{
const Print *print = this->fff_print();
if ((print == nullptr) || print->wipe_tower_data().tool_changes.empty())
return;
if (!print->is_step_done(psWipeTower))
return;
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const Print *print;
const std::vector<float> *tool_colors;
Vec2f wipe_tower_pos;
float wipe_tower_angle;
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int tool, int feature) const
{
return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature;
}
const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
const auto &tool_changes = print->wipe_tower_data().tool_changes;
return priming.empty() ?
((idx == tool_changes.size()) ? final : tool_changes[idx]) :
((idx == 0) ? priming : (idx == tool_changes.size() + 1) ? final : tool_changes[idx - 1]);
}
std::vector<WipeTower::ToolChangeResult> priming;
std::vector<WipeTower::ToolChangeResult> final;
} ctxt;
ctxt.print = print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (print->wipe_tower_data().priming && print->config().single_extruder_multi_material_priming)
for (int i=0; i<(int)print->wipe_tower_data().priming.get()->size(); ++i)
ctxt.priming.emplace_back(print->wipe_tower_data().priming.get()->at(i));
if (print->wipe_tower_data().final_purge)
ctxt.final.emplace_back(*print->wipe_tower_data().final_purge.get());
ctxt.wipe_tower_angle = ctxt.print->config().wipe_tower_rotation_angle.value/180.f * PI;
ctxt.wipe_tower_pos = Vec2f(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start" << m_volumes.log_memory_info() << log_memory_info();
//FIXME Improve the heuristics for a grain size.
size_t n_items = print->wipe_tower_data().tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
size_t grain_size = std::max(n_items / 128, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
volume->is_extrusion_path = true;
tbb::spin_mutex::scoped_lock lock;
lock.acquire(new_volume_mutex);
m_volumes.volumes.emplace_back(volume);
lock.release();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(n_items);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, n_items, grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// Bounding box of this slab of a wipe tower.
GLVolumePtrs vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_support()) };
for (GLVolume *volume : vols)
// Reserving number of vertices (3x position + 3x color)
volume->indexed_vertex_array.reserve(VERTEX_BUFFER_RESERVE_SIZE / 6);
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
vol.print_zs.emplace_back(layer.front().print_z);
vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const WipeTower::ToolChangeResult &extrusions : layer) {
for (size_t i = 1; i < extrusions.extrusions.size();) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
if (e.width == 0.) {
++i;
continue;
}
size_t j = i + 1;
if (ctxt.color_by_tool())
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j);
else
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j);
size_t n_lines = j - i;
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
lines.reserve(n_lines);
widths.reserve(n_lines);
heights.assign(n_lines, extrusions.layer_height);
WipeTower::Extrusion e_prev = extrusions.extrusions[i-1];
if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation
e_prev.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e_prev.pos;
e_prev.pos += ctxt.wipe_tower_pos;
}
for (; i < j; ++i) {
WipeTower::Extrusion e = extrusions.extrusions[i];
assert(e.width > 0.f);
if (!extrusions.priming) {
e.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e.pos;
e.pos += ctxt.wipe_tower_pos;
}
lines.emplace_back(Point::new_scale(e_prev.pos.x(), e_prev.pos.y()), Point::new_scale(e.pos.x(), e.pos.y()));
widths.emplace_back(e.width);
e_prev = e;
}
_3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
vols[i] = new_volume(vol.color);
reserve_new_volume_finalize_old_volume(*vols[i], vol, false);
}
}
for (GLVolume *vol : vols)
vol->indexed_vertex_array.shrink_to_fit();
});
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results" << m_volumes.log_memory_info() << log_memory_info();
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
}
static inline int hex_digit_to_int(const char c)
{
return
(c >= '0' && c <= '9') ? int(c - '0') :
(c >= 'A' && c <= 'F') ? int(c - 'A') + 10 :
(c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1;
}
void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - start" << m_volumes.log_memory_info() << log_memory_info();
// helper functions to select data in dependence of the extrusion view type
struct Helper
{
static float path_filter(GCodePreviewData::Extrusion::EViewType type, const GCodePreviewData::Extrusion::Path& path)
{
switch (type)
{
case GCodePreviewData::Extrusion::FeatureType:
// The role here is used for coloring.
return (float)path.extrusion_role;
case GCodePreviewData::Extrusion::Height:
return path.height;
case GCodePreviewData::Extrusion::Width:
return path.width;
case GCodePreviewData::Extrusion::Feedrate:
return path.feedrate;
case GCodePreviewData::Extrusion::FanSpeed:
return path.fan_speed;
case GCodePreviewData::Extrusion::VolumetricRate:
return path.feedrate * path.mm3_per_mm;
case GCodePreviewData::Extrusion::Tool:
return (float)path.extruder_id;
case GCodePreviewData::Extrusion::ColorPrint:
return (float)path.cp_color_id;
default:
return 0.0f;
}
return 0.0f;
}
static Color path_color(const GCodePreviewData& data, const std::vector<float>& tool_colors, float value)
{
switch (data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::FeatureType:
return data.get_extrusion_role_color((ExtrusionRole)(int)value);
case GCodePreviewData::Extrusion::Height:
return data.get_height_color(value);
case GCodePreviewData::Extrusion::Width:
return data.get_width_color(value);
case GCodePreviewData::Extrusion::Feedrate:
return data.get_feedrate_color(value);
case GCodePreviewData::Extrusion::FanSpeed:
return data.get_fan_speed_color(value);
case GCodePreviewData::Extrusion::VolumetricRate:
return data.get_volumetric_rate_color(value);
case GCodePreviewData::Extrusion::Tool:
{
Color color;
::memcpy((void*)color.rgba.data(), (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float));
return color;
}
case GCodePreviewData::Extrusion::ColorPrint:
{
int color_cnt = (int)tool_colors.size() / 4;
int val = value > color_cnt ? color_cnt - 1 : value;
Color color;
::memcpy((void*)color.rgba.data(), (const void*)(tool_colors.data() + val * 4), 4 * sizeof(float));
return color;
}
default:
return Color{};
}
return Color{};
}
};
size_t initial_volumes_count = m_volumes.volumes.size();
size_t initial_volume_index_count = m_gcode_preview_volume_index.first_volumes.size();
try
{
BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - create volumes" << m_volumes.log_memory_info() << log_memory_info();
// detects filters
size_t vertex_buffer_prealloc_size = 0;
std::vector<std::vector<std::pair<float, GLVolume*>>> roles_filters;
{
std::vector<size_t> num_paths_per_role(size_t(erCount), 0);
for (const GCodePreviewData::Extrusion::Layer &layer : preview_data.extrusion.layers)
for (const GCodePreviewData::Extrusion::Path &path : layer.paths)
++ num_paths_per_role[size_t(path.extrusion_role)];
std::vector<std::vector<float>> roles_values;
roles_values.assign(size_t(erCount), std::vector<float>());
for (size_t i = 0; i < roles_values.size(); ++ i)
roles_values[i].reserve(num_paths_per_role[i]);
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
for (const GCodePreviewData::Extrusion::Path &path : layer.paths)
roles_values[size_t(path.extrusion_role)].emplace_back(Helper::path_filter(preview_data.extrusion.view_type, path));
roles_filters.reserve(size_t(erCount));
size_t num_buffers = 0;
for (std::vector<float> &values : roles_values) {
sort_remove_duplicates(values);
num_buffers += values.size();
}
if (num_buffers == 0)
// nothing to render, return
return;
vertex_buffer_prealloc_size = (uint64_t(num_buffers) * uint64_t(VERTEX_BUFFER_RESERVE_SIZE) < VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX) ?
VERTEX_BUFFER_RESERVE_SIZE : next_highest_power_of_2(VERTEX_BUFFER_RESERVE_SIZE_SUM_MAX / num_buffers) / 2;
for (std::vector<float> &values : roles_values) {
size_t role = &values - &roles_values.front();
roles_filters.emplace_back();
if (! values.empty()) {
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, role, (unsigned int)m_volumes.volumes.size());
for (const float value : values)
roles_filters.back().emplace_back(value, m_volumes.new_toolpath_volume(Helper::path_color(preview_data, tool_colors, value).rgba.data(), vertex_buffer_prealloc_size));
}
}
}
BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - populate volumes" << m_volumes.log_memory_info() << log_memory_info();
// populates volumes
const bool is_selected_separate_extruder = m_selected_extruder > 0 && preview_data.extrusion.view_type == GCodePreviewData::Extrusion::ColorPrint;
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
{
for (const GCodePreviewData::Extrusion::Path& path : layer.paths)
{
if (is_selected_separate_extruder && path.extruder_id != m_selected_extruder - 1)
continue;
std::vector<std::pair<float, GLVolume*>> &filters = roles_filters[size_t(path.extrusion_role)];
auto key = std::make_pair<float, GLVolume*>(Helper::path_filter(preview_data.extrusion.view_type, path), nullptr);
auto it_filter = std::lower_bound(filters.begin(), filters.end(), key);
assert(it_filter != filters.end() && key.first == it_filter->first);
GLVolume& vol = *it_filter->second;
vol.print_zs.emplace_back(layer.z);
vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size());
_3DScene::extrusionentity_to_verts(path.polyline, path.width, path.height, layer.z, vol);
}
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
for (std::vector<std::pair<float, GLVolume*>> &filters : roles_filters) {
unsigned int role = (unsigned int)(&filters - &roles_filters.front());
for (std::pair<float, GLVolume*> &filter : filters)
if (filter.second->indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
if (m_gcode_preview_volume_index.first_volumes.back().type != GCodePreviewVolumeIndex::Extrusion || m_gcode_preview_volume_index.first_volumes.back().flag != role)
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, role, (unsigned int)m_volumes.volumes.size());
GLVolume& vol = *filter.second;
filter.second = m_volumes.new_toolpath_volume(vol.color);
reserve_new_volume_finalize_old_volume(*filter.second, vol, m_initialized, vertex_buffer_prealloc_size);
}
}
}
// Finalize volumes and sends geometry to gpu
for (std::vector<std::pair<float, GLVolume*>> &filters : roles_filters)
for (std::pair<float, GLVolume*> &filter : filters)
filter.second->indexed_vertex_array.finalize_geometry(m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - end" << m_volumes.log_memory_info() << log_memory_info();
}
catch (const std::bad_alloc & /* err */)
{
// an error occourred - restore to previous state and return
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
GLVolumePtrs::iterator end = m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it < end; ++it)
delete *it;
m_volumes.volumes.erase(begin, end);
m_gcode_preview_volume_index.first_volumes.erase(m_gcode_preview_volume_index.first_volumes.begin() + initial_volume_index_count, m_gcode_preview_volume_index.first_volumes.end());
BOOST_LOG_TRIVIAL(debug) << "Loading G-code extrusion paths - failed on low memory" << m_volumes.log_memory_info() << log_memory_info();
//FIXME rethrow bad_alloc?
}
}
template<typename TYPE, typename FUNC_VALUE, typename FUNC_COLOR>
inline void travel_paths_internal(
// input
const GCodePreviewData &preview_data,
// accessors
FUNC_VALUE func_value, FUNC_COLOR func_color,
// output
GLVolumeCollection &volumes, bool gl_initialized)
{
// colors travels by type
std::vector<std::pair<TYPE, GLVolume*>> by_type;
{
std::vector<TYPE> values;
values.reserve(preview_data.travel.polylines.size());
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
values.emplace_back(func_value(polyline));
sort_remove_duplicates(values);
by_type.reserve(values.size());
// creates a new volume for each feedrate
for (TYPE type : values)
by_type.emplace_back(type, volumes.new_nontoolpath_volume(func_color(type).rgba.data(), VERTEX_BUFFER_RESERVE_SIZE));
}
// populates volumes
std::pair<TYPE, GLVolume*> key(0.f, nullptr);
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
key.first = func_value(polyline);
auto it = std::lower_bound(by_type.begin(), by_type.end(), key, [](const std::pair<TYPE, GLVolume*>& l, const std::pair<TYPE, GLVolume*>& r) { return l.first < r.first; });
assert(it != by_type.end() && it->first == func_value(polyline));
GLVolume& vol = *it->second;
vol.print_zs.emplace_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
vol.offsets.emplace_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.emplace_back(vol.indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, vol);
// Ensure that no volume grows over the limits. If the volume is too large, allocate a new one.
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() > MAX_VERTEX_BUFFER_SIZE) {
it->second = volumes.new_nontoolpath_volume(vol.color);
reserve_new_volume_finalize_old_volume(*it->second, vol, gl_initialized);
}
}
for (auto &feedrate : by_type)
feedrate.second->finalize_geometry(gl_initialized);
}
void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
// nothing to render, return
if (preview_data.travel.polylines.empty())
return;
size_t initial_volumes_count = m_volumes.volumes.size();
size_t volume_index_allocated = false;
try {
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count);
volume_index_allocated = true;
switch (preview_data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::Feedrate:
travel_paths_internal<float>(preview_data,
[](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.feedrate; },
[&preview_data](const float feedrate) -> const Color { return preview_data.get_feedrate_color(feedrate); },
m_volumes, m_initialized);
break;
case GCodePreviewData::Extrusion::Tool:
travel_paths_internal<unsigned int>(preview_data,
[](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.extruder_id; },
[&tool_colors](const unsigned int extruder_id) -> const Color { assert((extruder_id + 1) * 4 <= tool_colors.size()); return Color(tool_colors.data() + extruder_id * 4); },
m_volumes, m_initialized);
break;
default:
travel_paths_internal<unsigned int>(preview_data,
[](const GCodePreviewData::Travel::Polyline &polyline) { return polyline.type; },
[&preview_data](const unsigned int type) -> const Color& { return preview_data.travel.type_colors[type]; },
m_volumes, m_initialized);
break;
}
} catch (const std::bad_alloc & /* ex */) {
// an error occourred - restore to previous state and return
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
GLVolumePtrs::iterator end = m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it < end; ++it)
delete *it;
m_volumes.volumes.erase(begin, end);
if (volume_index_allocated)
m_gcode_preview_volume_index.first_volumes.pop_back();
//FIXME report the memory issue?
}
}
void GLCanvas3D::_load_fff_shells()
{
size_t initial_volumes_count = m_volumes.volumes.size();
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count);
const Print *print = this->fff_print();
if (print->objects().empty())
// nothing to render, return
return;
// adds objects' volumes
int object_id = 0;
for (const PrintObject* obj : print->objects())
{
const ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i)
{
instance_ids[i] = i;
}
m_volumes.load_object(model_obj, object_id, instance_ids, "object", m_initialized);
++object_id;
}
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF) {
// adds wipe tower's volume
double max_z = print->objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print->config();
size_t extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.wipe_tower && !config.complete_objects) {
const DynamicPrintConfig &print_config = wxGetApp().preset_bundle->prints.get_edited_preset().config;
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
double nozzle_diameter = print->config().nozzle_diameter.values[0];
float depth = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).depth;
float brim_width = print->wipe_tower_data(extruders_count, first_layer_height, nozzle_diameter).brim_width;
m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
!print->is_step_done(psWipeTower), brim_width, m_initialized);
}
}
}
// While it looks like we can call
// this->reload_scene(true, true)
// the two functions are quite different:
// 1) This function only loads objects, for which the step slaposSliceSupports already finished. Therefore objects outside of the print bed never load.
// 2) This function loads object mesh with the relative scaling correction (the "relative_correction" parameter) was applied,
// therefore the mesh may be slightly larger or smaller than the mesh shown in the 3D scene.
void GLCanvas3D::_load_sla_shells()
{
const SLAPrint* print = this->sla_print();
if (print->objects().empty())
// nothing to render, return
return;
auto add_volume = [this](const SLAPrintObject &object, int volume_id, const SLAPrintObject::Instance& instance,
const TriangleMesh &mesh, const float color[4], bool outside_printer_detection_enabled) {
m_volumes.volumes.emplace_back(new GLVolume(color));
GLVolume& v = *m_volumes.volumes.back();
v.indexed_vertex_array.load_mesh(mesh);
v.indexed_vertex_array.finalize_geometry(this->m_initialized);
v.shader_outside_printer_detection_enabled = outside_printer_detection_enabled;
v.composite_id.volume_id = volume_id;
v.set_instance_offset(unscale(instance.shift.x(), instance.shift.y(), 0));
v.set_instance_rotation(Vec3d(0.0, 0.0, (double)instance.rotation));
v.set_instance_mirror(X, object.is_left_handed() ? -1. : 1.);
v.set_convex_hull(mesh.convex_hull_3d());
};
// adds objects' volumes
for (const SLAPrintObject* obj : print->objects())
if (obj->is_step_done(slaposSliceSupports)) {
unsigned int initial_volumes_count = (unsigned int)m_volumes.volumes.size();
for (const SLAPrintObject::Instance& instance : obj->instances()) {
add_volume(*obj, 0, instance, obj->get_mesh_to_print(), GLVolume::MODEL_COLOR[0], true);
// Set the extruder_id and volume_id to achieve the same color as in the 3D scene when
// through the update_volumes_colors_by_extruder() call.
m_volumes.volumes.back()->extruder_id = obj->model_object()->volumes.front()->extruder_id();
if (obj->is_step_done(slaposSupportTree) && obj->has_mesh(slaposSupportTree))
add_volume(*obj, -int(slaposSupportTree), instance, obj->support_mesh(), GLVolume::SLA_SUPPORT_COLOR, true);
if (obj->is_step_done(slaposPad) && obj->has_mesh(slaposPad))
add_volume(*obj, -int(slaposPad), instance, obj->pad_mesh(), GLVolume::SLA_PAD_COLOR, false);
}
double shift_z = obj->get_current_elevation();
for (unsigned int i = initial_volumes_count; i < m_volumes.volumes.size(); ++ i) {
GLVolume& v = *m_volumes.volumes[i];
// apply shift z
v.set_sla_shift_z(shift_z);
}
}
update_volumes_colors_by_extruder();
}
void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data)
{
unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size();
for (unsigned int i = 0; i < size; ++i)
{
GLVolumePtrs::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id;
GLVolumePtrs::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end();
for (GLVolumePtrs::iterator it = begin; it != end; ++it)
{
GLVolume* volume = *it;
switch (m_gcode_preview_volume_index.first_volumes[i].type)
{
case GCodePreviewVolumeIndex::Extrusion:
{
if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom)
volume->zoom_to_volumes = false;
volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag);
break;
}
case GCodePreviewVolumeIndex::Travel:
{
volume->is_active = preview_data.travel.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Retraction:
{
volume->is_active = preview_data.retraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Unretraction:
{
volume->is_active = preview_data.unretraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Shell:
{
volume->is_active = preview_data.shell.is_visible;
volume->color[3] = 0.25f;
volume->zoom_to_volumes = false;
break;
}
default:
{
volume->is_active = false;
volume->zoom_to_volumes = false;
break;
}
}
}
}
}
void GLCanvas3D::_update_toolpath_volumes_outside_state()
{
// tolerance to avoid false detection at bed edges
static const double tolerance_x = 0.05;
static const double tolerance_y = 0.05;
BoundingBoxf3 print_volume;
if (m_config != nullptr)
{
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(m_config->option("bed_shape"));
if (opt != nullptr)
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
print_volume = BoundingBoxf3(Vec3d(unscale<double>(bed_box_2D.min(0)) - tolerance_x, unscale<double>(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)) + tolerance_x, unscale<double>(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min(2) = -1e10;
}
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_outside = ((print_volume.radius() > 0.0) && volume->is_extrusion_path) ? !print_volume.contains(volume->bounding_box()) : false;
}
}
void GLCanvas3D::_update_sla_shells_outside_state()
{
// tolerance to avoid false detection at bed edges
static const double tolerance_x = 0.05;
static const double tolerance_y = 0.05;
BoundingBoxf3 print_volume;
if (m_config != nullptr)
{
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(m_config->option("bed_shape"));
if (opt != nullptr)
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
print_volume = BoundingBoxf3(Vec3d(unscale<double>(bed_box_2D.min(0)) - tolerance_x, unscale<double>(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)) + tolerance_x, unscale<double>(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min(2) = -1e10;
}
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_outside = ((print_volume.radius() > 0.0) && volume->shader_outside_printer_detection_enabled) ? !print_volume.contains(volume->transformed_convex_hull_bounding_box()) : false;
}
}
void GLCanvas3D::_show_warning_texture_if_needed(WarningTexture::Warning warning)
{
_set_current();
_set_warning_texture(warning, _is_any_volume_outside());
}
std::vector<float> GLCanvas3D::_parse_colors(const std::vector<std::string>& colors)
{
static const float INV_255 = 1.0f / 255.0f;
std::vector<float> output(colors.size() * 4, 1.0f);
for (size_t i = 0; i < colors.size(); ++i)
{
const std::string& color = colors[i];
const char* c = color.data() + 1;
if ((color.size() == 7) && (color.front() == '#'))
{
for (size_t j = 0; j < 3; ++j)
{
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if ((digit1 == -1) || (digit2 == -1))
break;
output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255;
}
}
}
return output;
}
void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
m_legend_texture.generate(preview_data, tool_colors, *this, true);
}
void GLCanvas3D::_set_warning_texture(WarningTexture::Warning warning, bool state)
{
m_warning_texture.activate(warning, state, *this);
}
bool GLCanvas3D::_is_any_volume_outside() const
{
for (const GLVolume* volume : m_volumes.volumes)
{
if ((volume != nullptr) && volume->is_outside)
return true;
}
return false;
}
void GLCanvas3D::_update_selection_from_hover()
{
bool ctrl_pressed = wxGetKeyState(WXK_CONTROL);
if (m_hover_volume_idxs.empty())
{
if (!ctrl_pressed && (m_rectangle_selection.get_state() == GLSelectionRectangle::Select))
m_selection.remove_all();
return;
}
GLSelectionRectangle::EState state = m_rectangle_selection.get_state();
bool hover_modifiers_only = true;
for (int i : m_hover_volume_idxs)
{
if (!m_volumes.volumes[i]->is_modifier)
{
hover_modifiers_only = false;
break;
}
}
bool selection_changed = false;
if (state == GLSelectionRectangle::Select)
{
bool contains_all = true;
for (int i : m_hover_volume_idxs)
{
if (!m_selection.contains_volume((unsigned int)i))
{
contains_all = false;
break;
}
}
// the selection is going to be modified (Add)
if (!contains_all)
{
wxGetApp().plater()->take_snapshot(_(L("Selection-Add from rectangle")));
selection_changed = true;
}
}
else
{
bool contains_any = false;
for (int i : m_hover_volume_idxs)
{
if (m_selection.contains_volume((unsigned int)i))
{
contains_any = true;
break;
}
}
// the selection is going to be modified (Remove)
if (contains_any)
{
wxGetApp().plater()->take_snapshot(_(L("Selection-Remove from rectangle")));
selection_changed = true;
}
}
if (!selection_changed)
return;
Plater::SuppressSnapshots suppress(wxGetApp().plater());
if ((state == GLSelectionRectangle::Select) && !ctrl_pressed)
m_selection.clear();
for (int i : m_hover_volume_idxs)
{
if (state == GLSelectionRectangle::Select)
{
if (hover_modifiers_only)
{
const GLVolume& v = *m_volumes.volumes[i];
m_selection.add_volume(v.object_idx(), v.volume_idx(), v.instance_idx(), false);
}
else
m_selection.add(i, false);
}
else
m_selection.remove(i);
}
if (m_selection.is_empty())
m_gizmos.reset_all_states();
else
m_gizmos.refresh_on_off_state();
m_gizmos.update_data();
post_event(SimpleEvent(EVT_GLCANVAS_OBJECT_SELECT));
m_dirty = true;
}
bool GLCanvas3D::_deactivate_undo_redo_toolbar_items()
{
if (m_undoredo_toolbar.is_item_pressed("undo"))
{
m_undoredo_toolbar.force_right_action(m_undoredo_toolbar.get_item_id("undo"), *this);
return true;
}
else if (m_undoredo_toolbar.is_item_pressed("redo"))
{
m_undoredo_toolbar.force_right_action(m_undoredo_toolbar.get_item_id("redo"), *this);
return true;
}
return false;
}
const Print* GLCanvas3D::fff_print() const
{
return (m_process == nullptr) ? nullptr : m_process->fff_print();
}
const SLAPrint* GLCanvas3D::sla_print() const
{
return (m_process == nullptr) ? nullptr : m_process->sla_print();
}
void GLCanvas3D::WipeTowerInfo::apply_wipe_tower() const
{
DynamicPrintConfig cfg;
cfg.opt<ConfigOptionFloat>("wipe_tower_x", true)->value = m_pos(X);
cfg.opt<ConfigOptionFloat>("wipe_tower_y", true)->value = m_pos(Y);
cfg.opt<ConfigOptionFloat>("wipe_tower_rotation_angle", true)->value = (180./M_PI) * m_rotation;
wxGetApp().get_tab(Preset::TYPE_PRINT)->load_config(cfg);
}
} // namespace GUI
} // namespace Slic3r