237 lines
8.2 KiB
C++
237 lines
8.2 KiB
C++
// KD tree built upon external data set, referencing the external data by integer indices.
|
|
|
|
#ifndef slic3r_KDTreeIndirect_hpp_
|
|
#define slic3r_KDTreeIndirect_hpp_
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "Utils.hpp" // for next_highest_power_of_2()
|
|
|
|
namespace Slic3r {
|
|
|
|
// KD tree for N-dimensional closest point search.
|
|
template<size_t ANumDimensions, typename ACoordType, typename ACoordinateFn>
|
|
class KDTreeIndirect
|
|
{
|
|
public:
|
|
static constexpr size_t NumDimensions = ANumDimensions;
|
|
using CoordinateFn = ACoordinateFn;
|
|
using CoordType = ACoordType;
|
|
// Following could be static constexpr size_t, but that would not link in C++11
|
|
enum : size_t {
|
|
npos = size_t(-1)
|
|
};
|
|
|
|
KDTreeIndirect(CoordinateFn coordinate) : coordinate(coordinate) {}
|
|
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(std::move(indices)); }
|
|
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> &&indices) : coordinate(coordinate) { this->build(std::move(indices)); }
|
|
KDTreeIndirect(CoordinateFn coordinate, size_t num_indices) : coordinate(coordinate) { this->build(num_indices); }
|
|
KDTreeIndirect(KDTreeIndirect &&rhs) : m_nodes(std::move(rhs.m_nodes)), coordinate(std::move(rhs.coordinate)) {}
|
|
KDTreeIndirect& operator=(KDTreeIndirect &&rhs) { m_nodes = std::move(rhs.m_nodes); coordinate = std::move(rhs.coordinate); return *this; }
|
|
void clear() { m_nodes.clear(); }
|
|
|
|
void build(size_t num_indices)
|
|
{
|
|
std::vector<size_t> indices;
|
|
indices.reserve(num_indices);
|
|
for (size_t i = 0; i < num_indices; ++ i)
|
|
indices.emplace_back(i);
|
|
this->build(std::move(indices));
|
|
}
|
|
|
|
void build(std::vector<size_t> &&indices)
|
|
{
|
|
if (indices.empty())
|
|
clear();
|
|
else {
|
|
// Allocate enough memory for a full binary tree.
|
|
m_nodes.assign(next_highest_power_of_2(indices.size() + 1), npos);
|
|
build_recursive(indices, 0, 0, 0, indices.size() - 1);
|
|
}
|
|
indices.clear();
|
|
}
|
|
|
|
enum class VisitorReturnMask : unsigned int
|
|
{
|
|
CONTINUE_LEFT = 1,
|
|
CONTINUE_RIGHT = 2,
|
|
STOP = 4,
|
|
};
|
|
template<typename CoordType>
|
|
unsigned int descent_mask(const CoordType &point_coord, const CoordType &search_radius, size_t idx, size_t dimension) const
|
|
{
|
|
CoordType dist = point_coord - this->coordinate(idx, dimension);
|
|
return (dist * dist < search_radius + CoordType(EPSILON)) ?
|
|
// The plane intersects a hypersphere centered at point_coord of search_radius.
|
|
((unsigned int)(VisitorReturnMask::CONTINUE_LEFT) | (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT)) :
|
|
// The plane does not intersect the hypersphere.
|
|
(dist > CoordType(0)) ? (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT) : (unsigned int)(VisitorReturnMask::CONTINUE_LEFT);
|
|
}
|
|
|
|
// Visitor is supposed to return a bit mask of VisitorReturnMask.
|
|
template<typename Visitor>
|
|
void visit(Visitor &visitor) const
|
|
{
|
|
visit_recursive(0, 0, visitor);
|
|
}
|
|
|
|
CoordinateFn coordinate;
|
|
|
|
private:
|
|
// Build a balanced tree by splitting the input sequence by an axis aligned plane at a dimension.
|
|
void build_recursive(std::vector<size_t> &input, size_t node, const size_t dimension, const size_t left, const size_t right)
|
|
{
|
|
if (left > right)
|
|
return;
|
|
|
|
assert(node < m_nodes.size());
|
|
|
|
if (left == right) {
|
|
// Insert a node into the balanced tree.
|
|
m_nodes[node] = input[left];
|
|
return;
|
|
}
|
|
|
|
// Partition the input to left / right pieces of the same length to produce a balanced tree.
|
|
size_t center = (left + right) / 2;
|
|
partition_input(input, dimension, left, right, center);
|
|
// Insert a node into the tree.
|
|
m_nodes[node] = input[center];
|
|
// Build up the left / right subtrees.
|
|
size_t next_dimension = dimension;
|
|
if (++ next_dimension == NumDimensions)
|
|
next_dimension = 0;
|
|
if (center > left)
|
|
build_recursive(input, node * 2 + 1, next_dimension, left, center - 1);
|
|
build_recursive(input, node * 2 + 2, next_dimension, center + 1, right);
|
|
}
|
|
|
|
// Partition the input m_nodes <left, right> at "k" and "dimension" using the QuickSelect method:
|
|
// https://en.wikipedia.org/wiki/Quickselect
|
|
// Items left of the k'th item are lower than the k'th item in the "dimension",
|
|
// items right of the k'th item are higher than the k'th item in the "dimension",
|
|
void partition_input(std::vector<size_t> &input, const size_t dimension, size_t left, size_t right, const size_t k) const
|
|
{
|
|
while (left < right) {
|
|
size_t center = (left + right) / 2;
|
|
CoordType pivot;
|
|
{
|
|
// Bubble sort the input[left], input[center], input[right], so that a median of the three values
|
|
// will end up in input[center].
|
|
CoordType left_value = this->coordinate(input[left], dimension);
|
|
CoordType center_value = this->coordinate(input[center], dimension);
|
|
CoordType right_value = this->coordinate(input[right], dimension);
|
|
if (left_value > center_value) {
|
|
std::swap(input[left], input[center]);
|
|
std::swap(left_value, center_value);
|
|
}
|
|
if (left_value > right_value) {
|
|
std::swap(input[left], input[right]);
|
|
right_value = left_value;
|
|
}
|
|
if (center_value > right_value) {
|
|
std::swap(input[center], input[right]);
|
|
center_value = right_value;
|
|
}
|
|
pivot = center_value;
|
|
}
|
|
if (right <= left + 2)
|
|
// The <left, right> interval is already sorted.
|
|
break;
|
|
size_t i = left;
|
|
size_t j = right - 1;
|
|
std::swap(input[center], input[j]);
|
|
// Partition the set based on the pivot.
|
|
for (;;) {
|
|
// Skip left points that are already at correct positions.
|
|
// Search will certainly stop at position (right - 1), which stores the pivot.
|
|
while (this->coordinate(input[++ i], dimension) < pivot) ;
|
|
// Skip right points that are already at correct positions.
|
|
while (this->coordinate(input[-- j], dimension) > pivot && i < j) ;
|
|
if (i >= j)
|
|
break;
|
|
std::swap(input[i], input[j]);
|
|
}
|
|
// Restore pivot to the center of the sequence.
|
|
std::swap(input[i], input[right - 1]);
|
|
// Which side the kth element is in?
|
|
if (k < i)
|
|
right = i - 1;
|
|
else if (k == i)
|
|
// Sequence is partitioned, kth element is at its place.
|
|
break;
|
|
else
|
|
left = i + 1;
|
|
}
|
|
}
|
|
|
|
template<typename Visitor>
|
|
void visit_recursive(size_t node, size_t dimension, Visitor &visitor) const
|
|
{
|
|
assert(! m_nodes.empty());
|
|
if (node >= m_nodes.size() || m_nodes[node] == npos)
|
|
return;
|
|
|
|
// Left / right child node index.
|
|
size_t left = node * 2 + 1;
|
|
size_t right = left + 1;
|
|
unsigned int mask = visitor(m_nodes[node], dimension);
|
|
if ((mask & (unsigned int)VisitorReturnMask::STOP) == 0) {
|
|
size_t next_dimension = (++ dimension == NumDimensions) ? 0 : dimension;
|
|
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_LEFT)
|
|
visit_recursive(left, next_dimension, visitor);
|
|
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_RIGHT)
|
|
visit_recursive(right, next_dimension, visitor);
|
|
}
|
|
}
|
|
|
|
std::vector<size_t> m_nodes;
|
|
};
|
|
|
|
// Find a closest point using Euclidian metrics.
|
|
// Returns npos if not found.
|
|
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
|
|
size_t find_closest_point(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter)
|
|
{
|
|
using CoordType = typename KDTreeIndirectType::CoordType;
|
|
|
|
struct Visitor {
|
|
const KDTreeIndirectType &kdtree;
|
|
const PointType &point;
|
|
const FilterFn filter;
|
|
size_t min_idx = KDTreeIndirectType::npos;
|
|
CoordType min_dist = std::numeric_limits<CoordType>::max();
|
|
|
|
Visitor(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter) : kdtree(kdtree), point(point), filter(filter) {}
|
|
unsigned int operator()(size_t idx, size_t dimension) {
|
|
if (this->filter(idx)) {
|
|
auto dist = CoordType(0);
|
|
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++ i) {
|
|
CoordType d = point[i] - kdtree.coordinate(idx, i);
|
|
dist += d * d;
|
|
}
|
|
if (dist < min_dist) {
|
|
min_dist = dist;
|
|
min_idx = idx;
|
|
}
|
|
}
|
|
return kdtree.descent_mask(point[dimension], min_dist, idx, dimension);
|
|
}
|
|
} visitor(kdtree, point, filter);
|
|
|
|
kdtree.visit(visitor);
|
|
return visitor.min_idx;
|
|
}
|
|
|
|
template<typename KDTreeIndirectType, typename PointType>
|
|
size_t find_closest_point(const KDTreeIndirectType& kdtree, const PointType& point)
|
|
{
|
|
return find_closest_point(kdtree, point, [](size_t) { return true; });
|
|
}
|
|
|
|
} // namespace Slic3r
|
|
|
|
#endif /* slic3r_KDTreeIndirect_hpp_ */
|