PrusaSlicer-NonPlainar/src/libslic3r/KDTreeIndirect.hpp

237 lines
8.2 KiB
C++
Raw Normal View History

// KD tree built upon external data set, referencing the external data by integer indices.
#ifndef slic3r_KDTreeIndirect_hpp_
#define slic3r_KDTreeIndirect_hpp_
#include <algorithm>
#include <limits>
#include <vector>
#include "Utils.hpp" // for next_highest_power_of_2()
namespace Slic3r {
// KD tree for N-dimensional closest point search.
template<size_t ANumDimensions, typename ACoordType, typename ACoordinateFn>
class KDTreeIndirect
{
public:
static constexpr size_t NumDimensions = ANumDimensions;
using CoordinateFn = ACoordinateFn;
using CoordType = ACoordType;
// Following could be static constexpr size_t, but that would not link in C++11
enum : size_t {
npos = size_t(-1)
};
KDTreeIndirect(CoordinateFn coordinate) : coordinate(coordinate) {}
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> indices) : coordinate(coordinate) { this->build(std::move(indices)); }
KDTreeIndirect(CoordinateFn coordinate, std::vector<size_t> &&indices) : coordinate(coordinate) { this->build(std::move(indices)); }
KDTreeIndirect(CoordinateFn coordinate, size_t num_indices) : coordinate(coordinate) { this->build(num_indices); }
KDTreeIndirect(KDTreeIndirect &&rhs) : m_nodes(std::move(rhs.m_nodes)), coordinate(std::move(rhs.coordinate)) {}
KDTreeIndirect& operator=(KDTreeIndirect &&rhs) { m_nodes = std::move(rhs.m_nodes); coordinate = std::move(rhs.coordinate); return *this; }
void clear() { m_nodes.clear(); }
void build(size_t num_indices)
{
std::vector<size_t> indices;
indices.reserve(num_indices);
for (size_t i = 0; i < num_indices; ++ i)
indices.emplace_back(i);
this->build(std::move(indices));
}
void build(std::vector<size_t> &&indices)
{
if (indices.empty())
clear();
else {
// Allocate enough memory for a full binary tree.
m_nodes.assign(next_highest_power_of_2(indices.size() + 1), npos);
build_recursive(indices, 0, 0, 0, indices.size() - 1);
}
indices.clear();
}
enum class VisitorReturnMask : unsigned int
{
CONTINUE_LEFT = 1,
CONTINUE_RIGHT = 2,
STOP = 4,
};
template<typename CoordType>
unsigned int descent_mask(const CoordType &point_coord, const CoordType &search_radius, size_t idx, size_t dimension) const
{
CoordType dist = point_coord - this->coordinate(idx, dimension);
return (dist * dist < search_radius + CoordType(EPSILON)) ?
// The plane intersects a hypersphere centered at point_coord of search_radius.
((unsigned int)(VisitorReturnMask::CONTINUE_LEFT) | (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT)) :
// The plane does not intersect the hypersphere.
(dist > CoordType(0)) ? (unsigned int)(VisitorReturnMask::CONTINUE_RIGHT) : (unsigned int)(VisitorReturnMask::CONTINUE_LEFT);
}
// Visitor is supposed to return a bit mask of VisitorReturnMask.
template<typename Visitor>
void visit(Visitor &visitor) const
{
visit_recursive(0, 0, visitor);
}
CoordinateFn coordinate;
private:
// Build a balanced tree by splitting the input sequence by an axis aligned plane at a dimension.
void build_recursive(std::vector<size_t> &input, size_t node, const size_t dimension, const size_t left, const size_t right)
{
if (left > right)
return;
assert(node < m_nodes.size());
if (left == right) {
// Insert a node into the balanced tree.
m_nodes[node] = input[left];
return;
}
// Partition the input to left / right pieces of the same length to produce a balanced tree.
size_t center = (left + right) / 2;
partition_input(input, dimension, left, right, center);
// Insert a node into the tree.
m_nodes[node] = input[center];
// Build up the left / right subtrees.
size_t next_dimension = dimension;
if (++ next_dimension == NumDimensions)
next_dimension = 0;
if (center > left)
build_recursive(input, node * 2 + 1, next_dimension, left, center - 1);
build_recursive(input, node * 2 + 2, next_dimension, center + 1, right);
}
// Partition the input m_nodes <left, right> at "k" and "dimension" using the QuickSelect method:
// https://en.wikipedia.org/wiki/Quickselect
// Items left of the k'th item are lower than the k'th item in the "dimension",
// items right of the k'th item are higher than the k'th item in the "dimension",
void partition_input(std::vector<size_t> &input, const size_t dimension, size_t left, size_t right, const size_t k) const
{
while (left < right) {
size_t center = (left + right) / 2;
CoordType pivot;
{
// Bubble sort the input[left], input[center], input[right], so that a median of the three values
// will end up in input[center].
CoordType left_value = this->coordinate(input[left], dimension);
CoordType center_value = this->coordinate(input[center], dimension);
CoordType right_value = this->coordinate(input[right], dimension);
if (left_value > center_value) {
std::swap(input[left], input[center]);
std::swap(left_value, center_value);
}
if (left_value > right_value) {
std::swap(input[left], input[right]);
right_value = left_value;
}
if (center_value > right_value) {
std::swap(input[center], input[right]);
center_value = right_value;
}
pivot = center_value;
}
if (right <= left + 2)
// The <left, right> interval is already sorted.
break;
size_t i = left;
size_t j = right - 1;
std::swap(input[center], input[j]);
// Partition the set based on the pivot.
for (;;) {
// Skip left points that are already at correct positions.
// Search will certainly stop at position (right - 1), which stores the pivot.
while (this->coordinate(input[++ i], dimension) < pivot) ;
// Skip right points that are already at correct positions.
while (this->coordinate(input[-- j], dimension) > pivot && i < j) ;
if (i >= j)
break;
std::swap(input[i], input[j]);
}
// Restore pivot to the center of the sequence.
std::swap(input[i], input[right - 1]);
// Which side the kth element is in?
if (k < i)
right = i - 1;
else if (k == i)
// Sequence is partitioned, kth element is at its place.
break;
else
left = i + 1;
}
}
template<typename Visitor>
void visit_recursive(size_t node, size_t dimension, Visitor &visitor) const
{
assert(! m_nodes.empty());
if (node >= m_nodes.size() || m_nodes[node] == npos)
return;
// Left / right child node index.
size_t left = node * 2 + 1;
size_t right = left + 1;
unsigned int mask = visitor(m_nodes[node], dimension);
if ((mask & (unsigned int)VisitorReturnMask::STOP) == 0) {
size_t next_dimension = (++ dimension == NumDimensions) ? 0 : dimension;
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_LEFT)
visit_recursive(left, next_dimension, visitor);
if (mask & (unsigned int)VisitorReturnMask::CONTINUE_RIGHT)
visit_recursive(right, next_dimension, visitor);
}
}
std::vector<size_t> m_nodes;
};
// Find a closest point using Euclidian metrics.
// Returns npos if not found.
template<typename KDTreeIndirectType, typename PointType, typename FilterFn>
size_t find_closest_point(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter)
{
using CoordType = typename KDTreeIndirectType::CoordType;
struct Visitor {
const KDTreeIndirectType &kdtree;
const PointType &point;
const FilterFn filter;
size_t min_idx = KDTreeIndirectType::npos;
CoordType min_dist = std::numeric_limits<CoordType>::max();
Visitor(const KDTreeIndirectType &kdtree, const PointType &point, FilterFn filter) : kdtree(kdtree), point(point), filter(filter) {}
unsigned int operator()(size_t idx, size_t dimension) {
if (this->filter(idx)) {
auto dist = CoordType(0);
for (size_t i = 0; i < KDTreeIndirectType::NumDimensions; ++ i) {
CoordType d = point[i] - kdtree.coordinate(idx, i);
dist += d * d;
}
if (dist < min_dist) {
min_dist = dist;
min_idx = idx;
}
}
return kdtree.descent_mask(point[dimension], min_dist, idx, dimension);
}
} visitor(kdtree, point, filter);
kdtree.visit(visitor);
return visitor.min_idx;
}
template<typename KDTreeIndirectType, typename PointType>
size_t find_closest_point(const KDTreeIndirectType& kdtree, const PointType& point)
{
return find_closest_point(kdtree, point, [](size_t) { return true; });
}
} // namespace Slic3r
#endif /* slic3r_KDTreeIndirect_hpp_ */