PrusaSlicer-NonPlainar/src/libslic3r/SupportSpotsGenerator.hpp

83 lines
3.6 KiB
C++

#ifndef SRC_LIBSLIC3R_SUPPORTABLEISSUESSEARCH_HPP_
#define SRC_LIBSLIC3R_SUPPORTABLEISSUESSEARCH_HPP_
#include "libslic3r/Print.hpp"
#include <boost/log/trivial.hpp>
namespace Slic3r {
namespace SupportSpotsGenerator {
struct Params {
Params(const std::vector<std::string> &filament_types) {
if (filament_types.size() > 1) {
BOOST_LOG_TRIVIAL(warning)
<< "SupportSpotsGenerator does not currently handle different materials properly, only first will be used";
}
if (filament_types.empty() || filament_types[0].empty()) {
BOOST_LOG_TRIVIAL(error)
<< "SupportSpotsGenerator error: empty filament_type";
filament_type = std::string("PLA");
} else {
filament_type = filament_types[0];
}
}
// the algorithm should use the following units for all computations: distance [mm], mass [g], time [s], force [g*mm/s^2]
const float bridge_distance = 12.0f; //mm
const float bridge_distance_decrease_by_curvature_factor = 5.0f; // allowed bridge distance = bridge_distance / (1 + this factor * (curvature / PI) )
const float overhang_angle_deg = 80.0f;
const std::pair<float,float> malformation_angle_span_deg = std::pair<float, float> { 45.0f, 80.0f };
const float min_distance_between_support_points = 3.0f; //mm
const float support_points_interface_radius = 1.5f; // mm
const float connections_min_considerable_area = 1.5f; //mm^2
const float small_parts_threshold = 5.0f; //mm^3
const float small_parts_support_points_interface_radius = 3.0f; // mm
std::string filament_type;
const float gravity_constant = 9806.65f; // mm/s^2; gravity acceleration on Earth's surface, algorithm assumes that printer is in upwards position.
const float max_acceleration = 9 * 1000.0f; // mm/s^2 ; max acceleration of object (bed) in XY (NOTE: The max hit is received by the object in the jerk phase, so the usual machine limits are too low)
const double filament_density = 1.25e-3f; // g/mm^3 ; Common filaments are very lightweight, so precise number is not that important
const double material_yield_strength = 33.0f * 1e6f; // (g*mm/s^2)/mm^2; 33 MPa is yield strength of ABS, which has the lowest yield strength from common materials.
const float standard_extruder_conflict_force = 20.0f * gravity_constant; // force that can occasionally push the model due to various factors (filament leaks, small curling, ... );
const float malformations_additive_conflict_extruder_force = 300.0f * gravity_constant; // for areas with possible high layered curled filaments
// MPa * 1e^6 = (g*mm/s^2)/mm^2 = g/(mm*s^2); yield strength of the bed surface
double get_bed_adhesion_yield_strength() const {
if (filament_type == "PLA") {
return 0.018 * 1e6;
} else if (filament_type == "PET" || filament_type == "PETG") {
return 0.3 * 1e6;
} else { //PLA default value - defensive approach, PLA has quite low adhesion
return 0.018 * 1e6;
}
}
//just return PLA adhesion value as value for supports
double get_support_spots_adhesion_strength() const {
return 0.018f * 1e6;
}
};
struct SupportPoint {
SupportPoint(const Vec3f &position, float force, float spot_radius, const Vec3f &direction);
Vec3f position;
float force;
float spot_radius;
Vec3f direction;
};
struct Issues {
std::vector<SupportPoint> support_points;
};
// std::vector<size_t> quick_search(const PrintObject *po, const Params &params);
Issues full_search(const PrintObject *po, const Params &params);
}
}
#endif /* SRC_LIBSLIC3R_SUPPORTABLEISSUESSEARCH_HPP_ */