PrusaSlicer-NonPlainar/src/libslic3r/GCode/ExtrusionProcessor.hpp
Vojtech Bubnik 9cde96993e Reworked the ClipperLib / Polygon types to use
the tbb::scallable_allocator to better scale on multiple threads.
2023-04-20 11:31:44 +02:00

324 lines
14 KiB
C++

#ifndef slic3r_ExtrusionProcessor_hpp_
#define slic3r_ExtrusionProcessor_hpp_
#include "../AABBTreeLines.hpp"
#include "../SupportSpotsGenerator.hpp"
#include "../libslic3r.h"
#include "../ExtrusionEntity.hpp"
#include "../Layer.hpp"
#include "../Point.hpp"
#include "../SVG.hpp"
#include "../BoundingBox.hpp"
#include "../Polygon.hpp"
#include "../ClipperUtils.hpp"
#include "../Flow.hpp"
#include "../Config.hpp"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <limits>
#include <numeric>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Slic3r {
class SlidingWindowCurvatureAccumulator
{
float window_size;
float total_distance = 0; // accumulated distance
float total_curvature = 0; // accumulated signed ccw angles
deque<float> distances;
deque<float> angles;
public:
SlidingWindowCurvatureAccumulator(float window_size) : window_size(window_size) {}
void add_point(float distance, float angle)
{
total_distance += distance;
total_curvature += angle;
distances.push_back(distance);
angles.push_back(angle);
while (distances.size() > 1 && total_distance > window_size) {
total_distance -= distances.front();
total_curvature -= angles.front();
distances.pop_front();
angles.pop_front();
}
}
float get_curvature() const
{
return total_curvature / window_size;
}
void reset()
{
total_curvature = 0;
total_distance = 0;
distances.clear();
angles.clear();
}
};
class CurvatureEstimator
{
static const size_t sliders_count = 3;
SlidingWindowCurvatureAccumulator sliders[sliders_count] = {{1.0},{4.0}, {10.0}};
public:
void add_point(float distance, float angle)
{
if (distance < EPSILON)
return;
for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.add_point(distance, angle);
}
}
float get_curvature()
{
float max_curvature = 0.0f;
for (const SlidingWindowCurvatureAccumulator &slider : sliders) {
if (abs(slider.get_curvature()) > abs(max_curvature)) {
max_curvature = slider.get_curvature();
}
}
return max_curvature;
}
void reset()
{
for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.reset();
}
}
};
struct ExtendedPoint
{
ExtendedPoint(Vec2d position, float distance = 0.0, size_t nearest_prev_layer_line = size_t(-1), float curvature = 0.0)
: position(position), distance(distance), nearest_prev_layer_line(nearest_prev_layer_line), curvature(curvature)
{}
Vec2d position;
float distance;
size_t nearest_prev_layer_line;
float curvature;
};
template<bool SCALED_INPUT, bool ADD_INTERSECTIONS, bool PREV_LAYER_BOUNDARY_OFFSET, bool SIGNED_DISTANCE, typename POINTS, typename L>
std::vector<ExtendedPoint> estimate_points_properties(const POINTS &input_points,
const AABBTreeLines::LinesDistancer<L> &unscaled_prev_layer,
float flow_width,
float max_line_length = -1.0f)
{
using P = typename POINTS::value_type;
using AABBScalar = typename AABBTreeLines::LinesDistancer<L>::Scalar;
if (input_points.empty())
return {};
float boundary_offset = PREV_LAYER_BOUNDARY_OFFSET ? 0.5 * flow_width : 0.0f;
CurvatureEstimator cestim;
auto maybe_unscale = [](const P &p) { return SCALED_INPUT ? unscaled(p) : p.template cast<double>(); };
std::vector<ExtendedPoint> points;
points.reserve(input_points.size() * (ADD_INTERSECTIONS ? 1.5 : 1));
{
ExtendedPoint start_point{maybe_unscale(input_points.front())};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(start_point.position.cast<AABBScalar>());
start_point.distance = distance + boundary_offset;
start_point.nearest_prev_layer_line = nearest_line;
points.push_back(start_point);
}
for (size_t i = 1; i < input_points.size(); i++) {
ExtendedPoint next_point{maybe_unscale(input_points[i])};
auto [distance, nearest_line, x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(next_point.position.cast<AABBScalar>());
next_point.distance = distance + boundary_offset;
next_point.nearest_prev_layer_line = nearest_line;
if (ADD_INTERSECTIONS &&
((points.back().distance > boundary_offset + EPSILON) != (next_point.distance > boundary_offset + EPSILON))) {
const ExtendedPoint &prev_point = points.back();
auto intersections = unscaled_prev_layer.template intersections_with_line<true>(L{prev_point.position.cast<AABBScalar>(), next_point.position.cast<AABBScalar>()});
for (const auto &intersection : intersections) {
points.emplace_back(intersection.first.template cast<double>(), boundary_offset, intersection.second);
}
}
points.push_back(next_point);
}
if (PREV_LAYER_BOUNDARY_OFFSET && ADD_INTERSECTIONS) {
std::vector<ExtendedPoint> new_points;
new_points.reserve(points.size()*2);
new_points.push_back(points.front());
for (int point_idx = 0; point_idx < int(points.size()) - 1; ++point_idx) {
const ExtendedPoint &curr = points[point_idx];
const ExtendedPoint &next = points[point_idx + 1];
if ((curr.distance > 0 && curr.distance < boundary_offset + 2.0f) ||
(next.distance > 0 && next.distance < boundary_offset + 2.0f)) {
double line_len = (next.position - curr.position).norm();
if (line_len > 4.0f) {
double a0 = std::clamp((curr.distance + 2 * boundary_offset) / line_len, 0.0, 1.0);
double a1 = std::clamp(1.0f - (next.distance + 2 * boundary_offset) / line_len, 0.0, 1.0);
double t0 = std::min(a0, a1);
double t1 = std::max(a0, a1);
if (t0 < 1.0) {
auto p0 = curr.position + t0 * (next.position - curr.position);
auto [p0_dist, p0_near_l, p0_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(p0.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{p0, float(p0_dist + boundary_offset), p0_near_l});
}
if (t1 > 0.0) {
auto p1 = curr.position + t1 * (next.position - curr.position);
auto [p1_dist, p1_near_l, p1_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(p1.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{p1, float(p1_dist + boundary_offset), p1_near_l});
}
}
}
new_points.push_back(next);
}
points = new_points;
}
if (max_line_length > 0) {
std::vector<ExtendedPoint> new_points;
new_points.reserve(points.size()*2);
{
for (size_t i = 0; i + 1 < points.size(); i++) {
const ExtendedPoint &curr = points[i];
const ExtendedPoint &next = points[i + 1];
new_points.push_back(curr);
double len = (next.position - curr.position).squaredNorm();
double t = sqrt((max_line_length * max_line_length) / len);
size_t new_point_count = 1.0 / t;
for (size_t j = 1; j < new_point_count + 1; j++) {
Vec2d pos = curr.position * (1.0 - j * t) + next.position * (j * t);
auto [p_dist, p_near_l,
p_x] = unscaled_prev_layer.template distance_from_lines_extra<SIGNED_DISTANCE>(pos.cast<AABBScalar>());
new_points.push_back(ExtendedPoint{pos, float(p_dist + boundary_offset), p_near_l});
}
}
new_points.push_back(points.back());
}
points = new_points;
}
for (int point_idx = 0; point_idx < int(points.size()); ++point_idx) {
ExtendedPoint &a = points[point_idx];
ExtendedPoint &prev = points[point_idx > 0 ? point_idx - 1 : point_idx];
int prev_point_idx = point_idx;
while (prev_point_idx > 0) {
prev_point_idx--;
if ((a.position - points[prev_point_idx].position).squaredNorm() > EPSILON) { break; }
}
int next_point_index = point_idx;
while (next_point_index < int(points.size()) - 1) {
next_point_index++;
if ((a.position - points[next_point_index].position).squaredNorm() > EPSILON) { break; }
}
if (prev_point_idx != point_idx && next_point_index != point_idx) {
float distance = (prev.position - a.position).norm();
float alfa = angle(a.position - points[prev_point_idx].position, points[next_point_index].position - a.position);
cestim.add_point(distance, alfa);
}
a.curvature = cestim.get_curvature();
}
return points;
}
struct ProcessedPoint
{
Point p;
float speed = 1.0f;
int fan_speed = 0;
};
class ExtrusionQualityEstimator
{
std::unordered_map<const PrintObject *, AABBTreeLines::LinesDistancer<Linef>> prev_layer_boundaries;
std::unordered_map<const PrintObject *, AABBTreeLines::LinesDistancer<Linef>> next_layer_boundaries;
const PrintObject *current_object;
public:
void set_current_object(const PrintObject *object) { current_object = object; }
void prepare_for_new_layer(const Layer *layer)
{
if (layer == nullptr) return;
const PrintObject *object = layer->object();
prev_layer_boundaries[object] = next_layer_boundaries[object];
next_layer_boundaries[object] = AABBTreeLines::LinesDistancer<Linef>{to_unscaled_linesf(layer->lslices)};
}
std::vector<ProcessedPoint> estimate_extrusion_quality(const ExtrusionPath &path,
const std::vector<std::pair<int, ConfigOptionFloatOrPercent>> overhangs_w_speeds,
const std::vector<std::pair<int, ConfigOptionInts>> overhangs_w_fan_speeds,
size_t extruder_id,
float ext_perimeter_speed,
float original_speed)
{
float speed_base = ext_perimeter_speed > 0 ? ext_perimeter_speed : original_speed;
std::map<float, float> speed_sections;
for (size_t i = 0; i < overhangs_w_speeds.size(); i++) {
float distance = path.width * (1.0 - (overhangs_w_speeds[i].first / 100.0));
float speed = overhangs_w_speeds[i].second.percent ? (speed_base * overhangs_w_speeds[i].second.value / 100.0) :
overhangs_w_speeds[i].second.value;
if (speed < EPSILON) speed = speed_base;
speed_sections[distance] = speed;
}
std::map<float, float> fan_speed_sections;
for (size_t i = 0; i < overhangs_w_fan_speeds.size(); i++) {
float distance = path.width * (1.0 - (overhangs_w_fan_speeds[i].first / 100.0));
float fan_speed = overhangs_w_fan_speeds[i].second.get_at(extruder_id);
fan_speed_sections[distance] = fan_speed;
}
std::vector<ExtendedPoint> extended_points =
estimate_points_properties<true, true, true, true>(path.polyline.points, prev_layer_boundaries[current_object], path.width);
std::vector<ProcessedPoint> processed_points;
processed_points.reserve(extended_points.size());
for (size_t i = 0; i < extended_points.size(); i++) {
const ExtendedPoint &curr = extended_points[i];
const ExtendedPoint &next = extended_points[i + 1 < extended_points.size() ? i + 1 : i];
auto interpolate_speed = [](const std::map<float, float> &values, float distance) {
auto upper_dist = values.lower_bound(distance);
if (upper_dist == values.end()) {
return values.rbegin()->second;
}
if (upper_dist == values.begin()) {
return upper_dist->second;
}
auto lower_dist = std::prev(upper_dist);
float t = (distance - lower_dist->first) / (upper_dist->first - lower_dist->first);
return (1.0f - t) * lower_dist->second + t * upper_dist->second;
};
float extrusion_speed = std::min(interpolate_speed(speed_sections, curr.distance),
interpolate_speed(speed_sections, next.distance));
float fan_speed = std::min(interpolate_speed(fan_speed_sections, curr.distance),
interpolate_speed(fan_speed_sections, next.distance));
processed_points.push_back({scaled(curr.position), extrusion_speed, int(fan_speed)});
}
return processed_points;
}
};
} // namespace Slic3r
#endif // slic3r_ExtrusionProcessor_hpp_