PrusaSlicer-NonPlainar/sandboxes/its_neighbor_index/main.cpp
2021-06-08 10:34:32 +02:00

273 lines
8.8 KiB
C++

#include <iostream>
#include <fstream>
#include <vector>
#include <tuple>
#include <random>
#include "ItsNeighborIndex.hpp"
#include "libnest2d/tools/benchmark.h"
#include "libnest2d/utils/metaloop.hpp"
namespace Slic3r {
enum { IndexCreation, Split };
struct MeasureResult
{
static constexpr const char * Names[] = {
"Index creation [s]",
"Split [s]"
};
double measurements[std::size(Names)] = {0.};
};
template<class IndexCreatorFn>
static MeasureResult measure_index(const indexed_triangle_set &its, IndexCreatorFn fn)
{
Benchmark b;
MeasureResult r;
for (int i = 0; i < 10; ++i) {
b.start();
ItsNeighborsWrapper itsn{its, fn(its)};
b.stop();
r.measurements[IndexCreation] += b.getElapsedSec();
b.start();
auto res = its_split(itsn);
b.stop();
// if (res.size() != 2 || res[0].indices.size() != res[1].indices.size() )
// std::cerr << "Something is wrong, split result invalid" << std::endl;
r.measurements[Split] += b.getElapsedSec();
}
r.measurements[IndexCreation] /= 10;
r.measurements[Split] /= 10;
return r;
}
const auto Seed = 0;// std::random_device{}();
static indexed_triangle_set make_sphere_rnd(double radius, double detail)
{
using namespace Slic3r;
auto sphere = its_make_sphere(radius, detail);
auto vfidx = create_vertex_faces_index(sphere);
const size_t vertexnum = sphere.vertices.size();
const size_t facenum = sphere.indices.size();
std::mt19937 rng{Seed};
std::uniform_int_distribution<size_t> distv(sphere.vertices.size() / 2, sphere.vertices.size() - 1);
std::uniform_int_distribution<size_t> distf(sphere.indices.size() / 2, sphere.indices.size() - 1) ;
std::vector<bool> was(vertexnum / 2, false);
for (size_t i = 0; i < vertexnum / 2; ++i) {
size_t image = distv(rng);
if (was[image - vertexnum / 2]) continue;
was[image - vertexnum / 2] = true;
std::swap(sphere.vertices[i], sphere.vertices[image]);
for (size_t face_id : vfidx[i]) {
for (int &vi : sphere.indices[face_id])
if (vi == int(i)) vi = image;
}
for (size_t face_id : vfidx[image]) {
for (int &vi : sphere.indices[face_id])
if (vi == int(image)) vi = i;
}
std::swap(vfidx[i], vfidx[image]);
}
for (size_t i = 0; i < facenum / 2; ++i) {
size_t image = distf(rng);
std::swap(sphere.indices[i], sphere.indices[image]);
}
return sphere;
}
static indexed_triangle_set two_spheres(double detail)
{
auto sphere1 = make_sphere_rnd(10., 2 * PI / detail), sphere2 = sphere1;
its_transform(sphere1, identity3f().translate(Vec3f{-5.f, 0.f, 0.f}));
its_transform(sphere2, identity3f().translate(Vec3f{5.f, 0.f, 0.f}));
its_merge(sphere1, sphere2);
return sphere1;
}
static indexed_triangle_set make_spheres(unsigned N, double detail)
{
indexed_triangle_set ret, sphere = make_sphere_rnd(10., 2. * PI / detail);
for (unsigned i = 0u ; i < N; ++i)
its_merge(ret, sphere);
return ret;
}
constexpr double sq2 = std::sqrt(2.);
static const std::pair<const std::string, indexed_triangle_set> ToMeasure[] = {
// {"two_spheres_1x", two_spheres(60.)},
// {"two_spheres_2x", two_spheres(120.)},
// {"two_spheres_4x", two_spheres(240.)},
// {"two_spheres_8x", two_spheres(480.)},
// {"two_spheres_16x", two_spheres(2 * 480.)},
// {"two_spheres_32x", two_spheres(2 * 2 * 480.)},
{"two_spheres_1x", two_spheres(60.)},
{"two_spheres_2x", two_spheres(sq2 * 60.)},
{"two_spheres_4x", two_spheres(2 * 60.)},
{"two_spheres_8x", two_spheres(sq2 * 2. * 60.)},
{"two_spheres_16x", two_spheres(4. * 60.)},
{"two_spheres_32x", two_spheres(sq2 * 4. * 60.)},
{"two_spheres_64x", two_spheres(8. * 60.)},
{"two_spheres_128x", two_spheres(sq2 * 8. * 60.)},
{"two_spheres_256x", two_spheres(16. * 60.)},
{"two_spheres_512x", two_spheres(sq2 * 16. * 60.)}
// {"2_spheres", make_spheres(2, 60.)},
// {"4_spheres", make_spheres(4, 60.)},
// {"8_spheres", make_spheres(8, 60.)},
// {"16_spheres", make_spheres(16, 60.)},
// {"32_spheres", make_spheres(32, 60.)},
// {"64_spheres", make_spheres(64, 60.)},
// {"128_spheres", make_spheres(128, 60.)},
// {"256_spheres", make_spheres(256, 60.)},
// {"512_spheres", make_spheres(512, 60.)},
// {"1024_spheres", make_spheres(1024, 60.)}
};
static const auto IndexFunctions = std::make_tuple(
std::make_pair("tamas's unordered_map based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_1); }),
std::make_pair("vojta std::sort based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_2); }),
std::make_pair("vojta tbb::parallel_sort based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_3); }),
std::make_pair("filip's vertex->face based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_5); }),
std::make_pair("vojta's vertex->face", [](const auto &its) { return measure_index(its, its_create_neighbors_index_9); }),
std::make_pair("tamas's std::sort based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_6); }),
std::make_pair("tamas's tbb::parallel_sort based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_7); }),
std::make_pair("tamas's map based", [](const auto &its) { return measure_index(its, its_create_neighbors_index_8); }),
std::make_pair("TriangleMesh split", [](const auto &its) {
MeasureResult r;
for (int i = 0; i < 10; ++i) {
TriangleMesh m{its};
Benchmark b;
b.start();
m.repair(); // FIXME: this does more than just create neighborhood map
b.stop();
r.measurements[IndexCreation] += b.getElapsedSec();
b.start();
auto res = m.split();
b.stop();
r.measurements[Split] += b.getElapsedSec();
// if (res.size() != 2 || res[0]->size() != res[1]->size())
// std::cerr << "Something is wrong, split result invalid" << std::endl;
}
r.measurements[IndexCreation] /= 10;
r.measurements[Split] /= 10;
return r;
})
// std::make_pair("Vojta's vertex->face index", [](const auto &its){
// Benchmark b;
// b.start();
// auto index = create_vertex_faces_index(its);
// b.stop();
// if (index.size() != its.vertices.size())
// std::cerr << "Something went wrong!";
// return MeasureResult{b.getElapsedSec(), 0., 0.};
// }),
// std::make_pair("Tamas's vertex->face index", [](const auto &its){
// Benchmark b;
// b.start();
// VertexFaceIndex index{its};
// b.stop();
// if (index.size() < its.vertices.size())
// std::cerr << "Something went wrong!";
// return MeasureResult{b.getElapsedSec(), 0., 0.};
// })
);
static constexpr size_t IndexFuncNum = std::tuple_size_v<decltype (IndexFunctions)>;
} // namespace Slic3r
int main(const int argc, const char * argv[])
{
using namespace Slic3r;
std::array<MeasureResult, IndexFuncNum> results[std::size(ToMeasure)];
std::array<std::string, IndexFuncNum> funcnames;
for (size_t i = 0; i < std::size(ToMeasure); ++i) {
auto &m = ToMeasure[i];
auto &name = m.first;
auto &mesh = m.second;
// its_write_obj(mesh, (std::string(name) + ".obj").c_str());
std::cout << "Mesh " << name << " has " << mesh.indices.size() << " faces and " << mesh.vertices.size() << " vertices." << std::endl;
libnest2d::opt::metaloop::apply([&mesh, i, &results, &funcnames](int N, auto &e) {
MeasureResult r = e.second(mesh);
funcnames[N] = e.first;
results[i][N] = r;
}, IndexFunctions);
}
std::string outfilename = "out.csv";
std::fstream outfile;
if (argc > 1) {
outfilename = argv[1];
outfile.open(outfilename, std::fstream::out);
std::cout << outfilename << " will be used" << std::endl;
}
std::ostream &out = outfile.is_open() ? outfile : std::cout;
for (size_t m = 0; m < std::size(MeasureResult::Names); ++m) {
out << MeasureResult::Names[m] << "\n";
out << std::endl;
out << "model;" ;
for (const std::string &funcname : funcnames) {
out << funcname << ";";
}
out << std::endl;
for (size_t i = 0; i < std::size(ToMeasure); ++i) {
const auto &result_row = results[i];
const std::string &name = ToMeasure[i].first;
out << name << ";";
for (auto &r : result_row)
out << r.measurements[m] << ";";
out << std::endl;
}
}
return 0;
}