PrusaSlicer-NonPlainar/xs/src/libslic3r/LayerRegion.cpp
bubnikv 3731820c48 Optimization of the configuration layer:
The values of StaticPrintConfig derived objects were searched by a name
walking through a huge chained if.
Now they are being mapped with a std::map.
Also initialization of StaticPrintConfig classes from their ConfigOptionDef
defaults is done by maintaining a single global definition of each
StaticPrintConfig derived class, and a new instance is initialized
from this static copy.

Also the ConfigOption instances are casted using static_cast
wherever possible, and their types are verified by a virtual type() method.
This approach avoids insiginificant performance penalty of a dynamic_cast.

Also the compare and clone methods were added to ConfigOption,
and the cloning & compare work on binary values, not by serialization.
2017-10-17 16:01:18 +02:00

447 lines
20 KiB
C++

#include "Layer.hpp"
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "PerimeterGenerator.hpp"
#include "Print.hpp"
#include "Surface.hpp"
#include "BoundingBox.hpp"
#include "SVG.hpp"
#include <string>
#include <map>
#include <boost/log/trivial.hpp>
namespace Slic3r {
Flow
LayerRegion::flow(FlowRole role, bool bridge, double width) const
{
return this->_region->flow(
role,
this->_layer->height,
bridge,
this->_layer->id() == 0,
width,
*this->_layer->object()
);
}
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
void LayerRegion::slices_to_fill_surfaces_clipped()
{
// Note: this method should be idempotent, but fill_surfaces gets modified
// in place. However we're now only using its boundaries (which are invariant)
// so we're safe. This guarantees idempotence of prepare_infill() also in case
// that combine_infill() turns some fill_surface into VOID surfaces.
// Polygons fill_boundaries = to_polygons(STDMOVE(this->fill_surfaces));
Polygons fill_boundaries = to_polygons(this->fill_expolygons);
// Collect polygons per surface type.
std::vector<Polygons> polygons_by_surface;
polygons_by_surface.assign(size_t(stCount), Polygons());
for (Surface &surface : this->slices.surfaces)
polygons_append(polygons_by_surface[(size_t)surface.surface_type], surface.expolygon);
// Trim surfaces by the fill_boundaries.
this->fill_surfaces.surfaces.clear();
for (size_t surface_type = 0; surface_type < size_t(stCount); ++ surface_type) {
const Polygons &polygons = polygons_by_surface[surface_type];
if (! polygons.empty())
this->fill_surfaces.append(intersection_ex(polygons, fill_boundaries), SurfaceType(surface_type));
}
}
void
LayerRegion::make_perimeters(const SurfaceCollection &slices, SurfaceCollection* fill_surfaces)
{
this->perimeters.clear();
this->thin_fills.clear();
PerimeterGenerator g(
// input:
&slices,
this->layer()->height,
this->flow(frPerimeter),
&this->region()->config,
&this->layer()->object()->config,
&this->layer()->object()->print()->config,
// output:
&this->perimeters,
&this->thin_fills,
fill_surfaces
);
if (this->layer()->lower_layer != NULL)
// Cummulative sum of polygons over all the regions.
g.lower_slices = &this->layer()->lower_layer->slices;
g.layer_id = this->layer()->id();
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
g.overhang_flow = this->region()->flow(frPerimeter, -1, true, false, -1, *this->layer()->object());
g.solid_infill_flow = this->flow(frSolidInfill);
g.process();
}
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
void LayerRegion::process_external_surfaces(const Layer* lower_layer)
{
const Surfaces &surfaces = this->fill_surfaces.surfaces;
const double margin = scale_(EXTERNAL_INFILL_MARGIN);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// 1) Collect bottom and bridge surfaces, each of them grown by a fixed 3mm offset
// for better anchoring.
// Bottom surfaces, grown.
Surfaces bottom;
// Bridge surfaces, initialy not grown.
Surfaces bridges;
// Top surfaces, grown.
Surfaces top;
// Internal surfaces, not grown.
Surfaces internal;
// Areas, where an infill of various types (top, bottom, bottom bride, sparse, void) could be placed.
//FIXME if non zero infill, then fill_boundaries could be cheaply initialized from layerm->fill_expolygons.
Polygons fill_boundaries;
// Collect top surfaces and internal surfaces.
// Collect fill_boundaries: If we're slicing with no infill, we can't extend external surfaces over non-existent infill.
// This loop destroys the surfaces (aliasing this->fill_surfaces.surfaces) by moving into top/internal/fill_boundaries!
{
// bottom_polygons are used to trim inflated top surfaces.
fill_boundaries.reserve(number_polygons(surfaces));
bool has_infill = this->region()->config.fill_density.value > 0.;
for (const Surface &surface : this->fill_surfaces.surfaces) {
if (surface.surface_type == stTop) {
// Collect the top surfaces, inflate them and trim them by the bottom surfaces.
// This gives the priority to bottom surfaces.
surfaces_append(top, offset_ex(surface.expolygon, float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
} else if (surface.surface_type == stBottom || (surface.surface_type == stBottomBridge && lower_layer == NULL)) {
// Grown by 3mm.
surfaces_append(bottom, offset_ex(surface.expolygon, float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
} else if (surface.surface_type == stBottomBridge) {
if (! surface.empty())
bridges.push_back(surface);
}
bool internal_surface = surface.surface_type != stTop && ! surface.is_bottom();
if (has_infill || surface.surface_type != stInternal) {
if (internal_surface)
// Make a copy as the following line uses the move semantics.
internal.push_back(surface);
polygons_append(fill_boundaries, STDMOVE(surface.expolygon));
} else if (internal_surface)
internal.push_back(STDMOVE(surface));
}
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-before-grouping-%d.svg", iRun ++), true);
}
#endif
if (bridges.empty())
{
fill_boundaries = union_(fill_boundaries, true);
} else
{
// 1) Calculate the inflated bridge regions, each constrained to its island.
ExPolygons fill_boundaries_ex = union_ex(fill_boundaries, true);
std::vector<Polygons> bridges_grown;
std::vector<BoundingBox> bridge_bboxes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
SVG svg(debug_out_path("3_process_external_surfaces-fill_regions-%d.svg", iRun ++).c_str(), get_extents(fill_boundaries_ex));
svg.draw(fill_boundaries_ex);
svg.draw_outline(fill_boundaries_ex, "black", "blue", scale_(0.05));
svg.Close();
}
// export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
{
// Bridge expolygons, grown, to be tested for intersection with other bridge regions.
std::vector<BoundingBox> fill_boundaries_ex_bboxes = get_extents_vector(fill_boundaries_ex);
bridges_grown.reserve(bridges.size());
bridge_bboxes.reserve(bridges.size());
for (size_t i = 0; i < bridges.size(); ++ i) {
// Find the island of this bridge.
const Point pt = bridges[i].expolygon.contour.points.front();
int idx_island = -1;
for (int j = 0; j < int(fill_boundaries_ex.size()); ++ j)
if (fill_boundaries_ex_bboxes[j].contains(pt) &&
fill_boundaries_ex[j].contains(pt)) {
idx_island = j;
break;
}
// Grown by 3mm.
Polygons polys = offset(to_polygons(bridges[i].expolygon), float(margin), EXTERNAL_SURFACES_OFFSET_PARAMETERS);
if (idx_island == -1) {
printf("Bridge did not fall into the source region!\r\n");
} else {
// Found an island, to which this bridge region belongs. Trim it,
polys = intersection(polys, to_polygons(fill_boundaries_ex[idx_island]));
}
bridge_bboxes.push_back(get_extents(polys));
bridges_grown.push_back(STDMOVE(polys));
}
}
// 2) Group the bridge surfaces by overlaps.
std::vector<size_t> bridge_group(bridges.size(), (size_t)-1);
size_t n_groups = 0;
for (size_t i = 0; i < bridges.size(); ++ i) {
// A grup id for this bridge.
size_t group_id = (bridge_group[i] == -1) ? (n_groups ++) : bridge_group[i];
bridge_group[i] = group_id;
// For all possibly overlaping bridges:
for (size_t j = i + 1; j < bridges.size(); ++ j) {
if (! bridge_bboxes[i].overlap(bridge_bboxes[j]))
continue;
if (intersection(bridges_grown[i], bridges_grown[j], false).empty())
continue;
// The two bridge regions intersect. Give them the same group id.
if (bridge_group[j] != -1) {
// The j'th bridge has been merged with some other bridge before.
size_t group_id_new = bridge_group[j];
for (size_t k = 0; k < j; ++ k)
if (bridge_group[k] == group_id)
bridge_group[k] = group_id_new;
group_id = group_id_new;
}
bridge_group[j] = group_id;
}
}
// 3) Merge the groups with the same group id, detect bridges.
{
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z << ", bridge groups: " << n_groups;
for (size_t group_id = 0; group_id < n_groups; ++ group_id) {
size_t n_bridges_merged = 0;
size_t idx_last = (size_t)-1;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] == group_id) {
++ n_bridges_merged;
idx_last = i;
}
}
if (n_bridges_merged == 0)
// This group has no regions assigned as these were moved into another group.
continue;
// Collect the initial ungrown regions and the grown polygons.
ExPolygons initial;
Polygons grown;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] != group_id)
continue;
initial.push_back(STDMOVE(bridges[i].expolygon));
polygons_append(grown, bridges_grown[i]);
}
// detect bridge direction before merging grown surfaces otherwise adjacent bridges
// would get merged into a single one while they need different directions
// also, supply the original expolygon instead of the grown one, because in case
// of very thin (but still working) anchors, the grown expolygon would go beyond them
BridgeDetector bd(
initial,
lower_layer->slices,
this->flow(frInfill, true).scaled_width()
);
#ifdef SLIC3R_DEBUG
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id());
#endif
if (bd.detect_angle(Geometry::deg2rad(this->region()->config.bridge_angle.value))) {
bridges[idx_last].bridge_angle = bd.angle;
if (this->layer()->object()->config.support_material) {
polygons_append(this->bridged, bd.coverage());
this->unsupported_bridge_edges.append(bd.unsupported_edges());
}
}
// without safety offset, artifacts are generated (GH #2494)
surfaces_append(bottom, union_ex(grown, true), bridges[idx_last]);
}
fill_boundaries = STDMOVE(to_polygons(fill_boundaries_ex));
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun ++), true);
}
#endif
}
Surfaces new_surfaces;
{
// Merge top and bottom in a single collection.
surfaces_append(top, STDMOVE(bottom));
// Intersect the grown surfaces with the actual fill boundaries.
Polygons bottom_polygons = to_polygons(bottom);
for (size_t i = 0; i < top.size(); ++ i) {
Surface &s1 = top[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, STDMOVE(s1));
for (size_t j = i + 1; j < top.size(); ++ j) {
Surface &s2 = top[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, STDMOVE(s2));
s2.clear();
}
}
if (s1.surface_type == stTop)
// Trim the top surfaces by the bottom surfaces. This gives the priority to the bottom surfaces.
polys = diff(polys, bottom_polygons);
surfaces_append(
new_surfaces,
// Don't use a safety offset as fill_boundaries were already united using the safety offset.
STDMOVE(intersection_ex(polys, fill_boundaries, false)),
s1);
}
}
// Subtract the new top surfaces from the other non-top surfaces and re-add them.
Polygons new_polygons = to_polygons(new_surfaces);
for (size_t i = 0; i < internal.size(); ++ i) {
Surface &s1 = internal[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, STDMOVE(s1));
for (size_t j = i + 1; j < internal.size(); ++ j) {
Surface &s2 = internal[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, STDMOVE(s2));
s2.clear();
}
}
ExPolygons new_expolys = diff_ex(polys, new_polygons);
polygons_append(new_polygons, to_polygons(new_expolys));
surfaces_append(new_surfaces, STDMOVE(new_expolys), s1);
}
this->fill_surfaces.surfaces = STDMOVE(new_surfaces);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
void
LayerRegion::prepare_fill_surfaces()
{
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-initial");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
/* Note: in order to make the psPrepareInfill step idempotent, we should never
alter fill_surfaces boundaries on which our idempotency relies since that's
the only meaningful information returned by psPerimeters. */
// if no solid layers are requested, turn top/bottom surfaces to internal
if (this->region()->config.top_solid_layers == 0) {
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
if (surface->surface_type == stTop)
surface->surface_type = (this->layer()->object()->config.infill_only_where_needed) ?
stInternalVoid : stInternal;
}
if (this->region()->config.bottom_solid_layers == 0) {
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) {
if (surface->surface_type == stBottom || surface->surface_type == stBottomBridge)
surface->surface_type = stInternal;
}
}
// turn too small internal regions into solid regions according to the user setting
if (this->region()->config.fill_density.value > 0) {
// scaling an area requires two calls!
double min_area = scale_(scale_(this->region()->config.solid_infill_below_area.value));
for (Surfaces::iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface) {
if (surface->surface_type == stInternal && surface->area() <= min_area)
surface->surface_type = stInternalSolid;
}
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-final");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
double
LayerRegion::infill_area_threshold() const
{
double ss = this->flow(frSolidInfill).scaled_spacing();
return ss*ss;
}
void LayerRegion::export_region_slices_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
svg.draw(surface->expolygon, surface_type_to_color_name(surface->surface_type), transparency);
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
svg.draw(surface->expolygon.lines(), surface_type_to_color_name(surface->surface_type));
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_slices_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_slices_to_svg(debug_out_path("LayerRegion-slices-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min.x, bbox.max.y);
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const Surface &surface : this->fill_surfaces.surfaces) {
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
svg.draw_outline(surface.expolygon, "black", "blue", scale_(0.05));
}
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_fill_surfaces_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_fill_surfaces_to_svg(debug_out_path("LayerRegion-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
}
}