1462 lines
47 KiB
C++
1462 lines
47 KiB
C++
#include "Model.hpp"
|
|
#include "Geometry.hpp"
|
|
|
|
#include "Format/AMF.hpp"
|
|
#include "Format/OBJ.hpp"
|
|
#include "Format/PRUS.hpp"
|
|
#include "Format/STL.hpp"
|
|
#include "Format/3mf.hpp"
|
|
|
|
#include <numeric>
|
|
#include <libnest2d.h>
|
|
#include <ClipperUtils.hpp>
|
|
#include "slic3r/GUI/GUI.hpp"
|
|
|
|
#include <float.h>
|
|
|
|
#include <boost/algorithm/string/predicate.hpp>
|
|
#include <boost/filesystem.hpp>
|
|
#include <boost/nowide/iostream.hpp>
|
|
#include <boost/algorithm/string/replace.hpp>
|
|
|
|
#include "SVG.hpp"
|
|
#include <Eigen/Dense>
|
|
|
|
namespace Slic3r {
|
|
|
|
unsigned int Model::s_auto_extruder_id = 1;
|
|
|
|
Model::Model(const Model &other)
|
|
{
|
|
// copy materials
|
|
for (const auto &m : other.materials)
|
|
this->add_material(m.first, *m.second);
|
|
// copy objects
|
|
this->objects.reserve(other.objects.size());
|
|
for (const ModelObject *o : other.objects)
|
|
this->add_object(*o, true);
|
|
}
|
|
|
|
Model& Model::operator=(Model other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void Model::swap(Model &other)
|
|
{
|
|
std::swap(this->materials, other.materials);
|
|
std::swap(this->objects, other.objects);
|
|
}
|
|
|
|
Model Model::read_from_file(const std::string &input_file, bool add_default_instances)
|
|
{
|
|
Model model;
|
|
|
|
bool result = false;
|
|
if (boost::algorithm::iends_with(input_file, ".stl"))
|
|
result = load_stl(input_file.c_str(), &model);
|
|
else if (boost::algorithm::iends_with(input_file, ".obj"))
|
|
result = load_obj(input_file.c_str(), &model);
|
|
else if (!boost::algorithm::iends_with(input_file, ".zip.amf") && (boost::algorithm::iends_with(input_file, ".amf") ||
|
|
boost::algorithm::iends_with(input_file, ".amf.xml")))
|
|
result = load_amf(input_file.c_str(), nullptr, &model);
|
|
#ifdef SLIC3R_PRUS
|
|
else if (boost::algorithm::iends_with(input_file, ".prusa"))
|
|
result = load_prus(input_file.c_str(), &model);
|
|
#endif /* SLIC3R_PRUS */
|
|
else
|
|
throw std::runtime_error("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
|
|
|
|
if (! result)
|
|
throw std::runtime_error("Loading of a model file failed.");
|
|
|
|
if (model.objects.empty())
|
|
throw std::runtime_error("The supplied file couldn't be read because it's empty");
|
|
|
|
for (ModelObject *o : model.objects)
|
|
o->input_file = input_file;
|
|
|
|
if (add_default_instances)
|
|
model.add_default_instances();
|
|
|
|
return model;
|
|
}
|
|
|
|
Model Model::read_from_archive(const std::string &input_file, PresetBundle* bundle, bool add_default_instances)
|
|
{
|
|
Model model;
|
|
|
|
bool result = false;
|
|
if (boost::algorithm::iends_with(input_file, ".3mf"))
|
|
result = load_3mf(input_file.c_str(), bundle, &model);
|
|
else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
|
|
result = load_amf(input_file.c_str(), bundle, &model);
|
|
else
|
|
throw std::runtime_error("Unknown file format. Input file must have .3mf or .zip.amf extension.");
|
|
|
|
if (!result)
|
|
throw std::runtime_error("Loading of a model file failed.");
|
|
|
|
if (model.objects.empty())
|
|
throw std::runtime_error("The supplied file couldn't be read because it's empty");
|
|
|
|
for (ModelObject *o : model.objects)
|
|
{
|
|
if (boost::algorithm::iends_with(input_file, ".zip.amf"))
|
|
{
|
|
// we remove the .zip part of the extension to avoid it be added to filenames when exporting
|
|
o->input_file = boost::ireplace_last_copy(input_file, ".zip.", ".");
|
|
}
|
|
else
|
|
o->input_file = input_file;
|
|
}
|
|
|
|
if (add_default_instances)
|
|
model.add_default_instances();
|
|
|
|
return model;
|
|
}
|
|
|
|
ModelObject* Model::add_object()
|
|
{
|
|
this->objects.emplace_back(new ModelObject(this));
|
|
return this->objects.back();
|
|
}
|
|
|
|
ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh)
|
|
{
|
|
ModelObject* new_object = new ModelObject(this);
|
|
this->objects.push_back(new_object);
|
|
new_object->name = name;
|
|
new_object->input_file = path;
|
|
ModelVolume *new_volume = new_object->add_volume(mesh);
|
|
new_volume->name = name;
|
|
new_object->invalidate_bounding_box();
|
|
return new_object;
|
|
}
|
|
|
|
ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh)
|
|
{
|
|
ModelObject* new_object = new ModelObject(this);
|
|
this->objects.push_back(new_object);
|
|
new_object->name = name;
|
|
new_object->input_file = path;
|
|
ModelVolume *new_volume = new_object->add_volume(std::move(mesh));
|
|
new_volume->name = name;
|
|
new_object->invalidate_bounding_box();
|
|
return new_object;
|
|
}
|
|
|
|
ModelObject* Model::add_object(const ModelObject &other, bool copy_volumes)
|
|
{
|
|
ModelObject* new_object = new ModelObject(this, other, copy_volumes);
|
|
this->objects.push_back(new_object);
|
|
return new_object;
|
|
}
|
|
|
|
void Model::delete_object(size_t idx)
|
|
{
|
|
ModelObjectPtrs::iterator i = this->objects.begin() + idx;
|
|
delete *i;
|
|
this->objects.erase(i);
|
|
}
|
|
|
|
void Model::delete_object(ModelObject* object)
|
|
{
|
|
if (object == nullptr)
|
|
return;
|
|
|
|
for (ModelObjectPtrs::iterator it = objects.begin(); it != objects.end(); ++it)
|
|
{
|
|
ModelObject* obj = *it;
|
|
if (obj == object)
|
|
{
|
|
delete obj;
|
|
objects.erase(it);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Model::clear_objects()
|
|
{
|
|
for (ModelObject *o : this->objects)
|
|
delete o;
|
|
this->objects.clear();
|
|
}
|
|
|
|
void Model::delete_material(t_model_material_id material_id)
|
|
{
|
|
ModelMaterialMap::iterator i = this->materials.find(material_id);
|
|
if (i != this->materials.end()) {
|
|
delete i->second;
|
|
this->materials.erase(i);
|
|
}
|
|
}
|
|
|
|
void Model::clear_materials()
|
|
{
|
|
for (auto &m : this->materials)
|
|
delete m.second;
|
|
this->materials.clear();
|
|
}
|
|
|
|
ModelMaterial* Model::add_material(t_model_material_id material_id)
|
|
{
|
|
ModelMaterial* material = this->get_material(material_id);
|
|
if (material == nullptr)
|
|
material = this->materials[material_id] = new ModelMaterial(this);
|
|
return material;
|
|
}
|
|
|
|
ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other)
|
|
{
|
|
// delete existing material if any
|
|
ModelMaterial* material = this->get_material(material_id);
|
|
delete material;
|
|
// set new material
|
|
material = new ModelMaterial(this, other);
|
|
this->materials[material_id] = material;
|
|
return material;
|
|
}
|
|
|
|
// makes sure all objects have at least one instance
|
|
bool Model::add_default_instances()
|
|
{
|
|
// apply a default position to all objects not having one
|
|
for (ModelObject *o : this->objects)
|
|
if (o->instances.empty())
|
|
o->add_instance();
|
|
return true;
|
|
}
|
|
|
|
// this returns the bounding box of the *transformed* instances
|
|
BoundingBoxf3 Model::bounding_box() const
|
|
{
|
|
BoundingBoxf3 bb;
|
|
for (ModelObject *o : this->objects)
|
|
bb.merge(o->bounding_box());
|
|
return bb;
|
|
}
|
|
|
|
BoundingBoxf3 Model::transformed_bounding_box() const
|
|
{
|
|
BoundingBoxf3 bb;
|
|
for (const ModelObject* obj : this->objects)
|
|
bb.merge(obj->tight_bounding_box(false));
|
|
return bb;
|
|
}
|
|
|
|
void Model::center_instances_around_point(const Pointf &point)
|
|
{
|
|
// BoundingBoxf3 bb = this->bounding_box();
|
|
BoundingBoxf3 bb;
|
|
for (ModelObject *o : this->objects)
|
|
for (size_t i = 0; i < o->instances.size(); ++ i)
|
|
bb.merge(o->instance_bounding_box(i, false));
|
|
|
|
Sizef3 size = bb.size();
|
|
coordf_t shift_x = -bb.min.x + point.x - size.x/2;
|
|
coordf_t shift_y = -bb.min.y + point.y - size.y/2;
|
|
for (ModelObject *o : this->objects) {
|
|
for (ModelInstance *i : o->instances)
|
|
i->offset.translate(shift_x, shift_y);
|
|
o->invalidate_bounding_box();
|
|
}
|
|
}
|
|
|
|
// flattens everything to a single mesh
|
|
TriangleMesh Model::mesh() const
|
|
{
|
|
TriangleMesh mesh;
|
|
for (const ModelObject *o : this->objects)
|
|
mesh.merge(o->mesh());
|
|
return mesh;
|
|
}
|
|
|
|
static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb, Pointfs &out)
|
|
{
|
|
if (sizes.empty())
|
|
// return if the list is empty or the following call to BoundingBoxf constructor will lead to a crash
|
|
return true;
|
|
|
|
// we supply unscaled data to arrange()
|
|
bool result = Slic3r::Geometry::arrange(
|
|
sizes.size(), // number of parts
|
|
BoundingBoxf(sizes).max, // width and height of a single cell
|
|
dist, // distance between cells
|
|
bb, // bounding box of the area to fill
|
|
out // output positions
|
|
);
|
|
|
|
if (!result && bb != nullptr) {
|
|
// Try to arrange again ignoring bb
|
|
result = Slic3r::Geometry::arrange(
|
|
sizes.size(), // number of parts
|
|
BoundingBoxf(sizes).max, // width and height of a single cell
|
|
dist, // distance between cells
|
|
nullptr, // bounding box of the area to fill
|
|
out // output positions
|
|
);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
namespace arr {
|
|
|
|
using namespace libnest2d;
|
|
|
|
std::string toString(const Model& model, bool holes = true) {
|
|
std::stringstream ss;
|
|
|
|
ss << "{\n";
|
|
|
|
for(auto objptr : model.objects) {
|
|
if(!objptr) continue;
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(!objinst) continue;
|
|
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
objinst->transform_mesh(&tmpmesh);
|
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
for(auto& expoly_complex : expolys) {
|
|
|
|
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
|
if(tmp.empty()) continue;
|
|
auto expoly = tmp.front();
|
|
expoly.contour.make_clockwise();
|
|
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
|
|
|
ss << "\t{\n";
|
|
ss << "\t\t{\n";
|
|
|
|
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
|
<< v.x << ", "
|
|
<< v.y << "},\n";
|
|
{
|
|
auto v = expoly.contour.points.front();
|
|
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
}
|
|
ss << "\t\t},\n";
|
|
|
|
// Holes:
|
|
ss << "\t\t{\n";
|
|
if(holes) for(auto h : expoly.holes) {
|
|
ss << "\t\t\t{\n";
|
|
for(auto v : h.points) ss << "\t\t\t\t{"
|
|
<< v.x << ", "
|
|
<< v.y << "},\n";
|
|
{
|
|
auto v = h.points.front();
|
|
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
|
}
|
|
ss << "\t\t\t},\n";
|
|
}
|
|
ss << "\t\t},\n";
|
|
|
|
ss << "\t},\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
ss << "}\n";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
void toSVG(SVG& svg, const Model& model) {
|
|
for(auto objptr : model.objects) {
|
|
if(!objptr) continue;
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(!objinst) continue;
|
|
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
objinst->transform_mesh(&tmpmesh);
|
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
svg.draw(expolys);
|
|
}
|
|
}
|
|
}
|
|
|
|
// A container which stores a pointer to the 3D object and its projected
|
|
// 2D shape from top view.
|
|
using ShapeData2D =
|
|
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
|
|
|
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
|
ShapeData2D ret;
|
|
|
|
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
|
[](size_t s, ModelObject* o){
|
|
return s + o->instances.size();
|
|
});
|
|
|
|
ret.reserve(s);
|
|
|
|
for(auto objptr : model.objects) {
|
|
if(objptr) {
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(objinst) {
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
ClipperLib::PolygonImpl pn;
|
|
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
|
|
// TODO export the exact 2D projection
|
|
auto p = tmpmesh.convex_hull();
|
|
|
|
p.make_clockwise();
|
|
p.append(p.first_point());
|
|
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
|
|
|
// Efficient conversion to item.
|
|
Item item(std::move(pn));
|
|
|
|
// Invalid geometries would throw exceptions when arranging
|
|
if(item.vertexCount() > 3) {
|
|
item.rotation(objinst->rotation);
|
|
item.translation( {
|
|
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
|
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
|
});
|
|
ret.emplace_back(objinst, item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* \brief Arranges the model objects on the screen.
|
|
*
|
|
* The arrangement considers multiple bins (aka. print beds) for placing all
|
|
* the items provided in the model argument. If the items don't fit on one
|
|
* print bed, the remaining will be placed onto newly created print beds.
|
|
* The first_bin_only parameter, if set to true, disables this behaviour and
|
|
* makes sure that only one print bed is filled and the remaining items will be
|
|
* untouched. When set to false, the items which could not fit onto the
|
|
* print bed will be placed next to the print bed so the user should see a
|
|
* pile of items on the print bed and some other piles outside the print
|
|
* area that can be dragged later onto the print bed as a group.
|
|
*
|
|
* \param model The model object with the 3D content.
|
|
* \param dist The minimum distance which is allowed for any pair of items
|
|
* on the print bed in any direction.
|
|
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
|
* for bin packing.
|
|
* \param first_bin_only This parameter controls whether to place the
|
|
* remaining items which do not fit onto the print area next to the print
|
|
* bed or leave them untouched (let the user arrange them by hand or remove
|
|
* them).
|
|
*/
|
|
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
|
bool first_bin_only,
|
|
std::function<void(unsigned)> progressind)
|
|
{
|
|
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
|
|
|
bool ret = true;
|
|
|
|
// Create the arranger config
|
|
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
|
|
|
// Get the 2D projected shapes with their 3D model instance pointers
|
|
auto shapemap = arr::projectModelFromTop(model);
|
|
|
|
bool hasbin = bb != nullptr && bb->defined;
|
|
double area_max = 0;
|
|
|
|
// Copy the references for the shapes only as the arranger expects a
|
|
// sequence of objects convertible to Item or ClipperPolygon
|
|
std::vector<std::reference_wrapper<Item>> shapes;
|
|
shapes.reserve(shapemap.size());
|
|
std::for_each(shapemap.begin(), shapemap.end(),
|
|
[&shapes, min_obj_distance, &area_max, hasbin]
|
|
(ShapeData2D::value_type& it)
|
|
{
|
|
shapes.push_back(std::ref(it.second));
|
|
});
|
|
|
|
Box bin;
|
|
|
|
if(hasbin) {
|
|
// Scale up the bounding box to clipper scale.
|
|
BoundingBoxf bbb = *bb;
|
|
bbb.scale(1.0/SCALING_FACTOR);
|
|
|
|
bin = Box({
|
|
static_cast<libnest2d::Coord>(bbb.min.x),
|
|
static_cast<libnest2d::Coord>(bbb.min.y)
|
|
},
|
|
{
|
|
static_cast<libnest2d::Coord>(bbb.max.x),
|
|
static_cast<libnest2d::Coord>(bbb.max.y)
|
|
});
|
|
}
|
|
|
|
// Will use the DJD selection heuristic with the BottomLeft placement
|
|
// strategy
|
|
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
|
|
using PConf = Arranger::PlacementConfig;
|
|
using SConf = Arranger::SelectionConfig;
|
|
|
|
PConf pcfg; // Placement configuration
|
|
SConf scfg; // Selection configuration
|
|
|
|
// Align the arranged pile into the center of the bin
|
|
pcfg.alignment = PConf::Alignment::CENTER;
|
|
|
|
// Start placing the items from the center of the print bed
|
|
pcfg.starting_point = PConf::Alignment::CENTER;
|
|
|
|
// TODO cannot use rotations until multiple objects of same geometry can
|
|
// handle different rotations
|
|
// arranger.useMinimumBoundigBoxRotation();
|
|
pcfg.rotations = { 0.0 };
|
|
|
|
// Magic: we will specify what is the goal of arrangement... In this case
|
|
// we override the default object function to make the larger items go into
|
|
// the center of the pile and smaller items orbit it so the resulting pile
|
|
// has a circle-like shape. This is good for the print bed's heat profile.
|
|
// We alse sacrafice a bit of pack efficiency for this to work. As a side
|
|
// effect, the arrange procedure is a lot faster (we do not need to
|
|
// calculate the convex hulls)
|
|
pcfg.object_function = [bin, hasbin](
|
|
NfpPlacer::Pile pile, // The currently arranged pile
|
|
double /*area*/, // Sum area of items (not needed)
|
|
double norm, // A norming factor for physical dimensions
|
|
double penality) // Min penality in case of bad arrangement
|
|
{
|
|
auto bb = ShapeLike::boundingBox(pile);
|
|
|
|
// We get the current item that's being evaluated.
|
|
auto& sh = pile.back();
|
|
|
|
// We retrieve the reference point of this item
|
|
auto rv = Nfp::referenceVertex(sh);
|
|
|
|
// We get the distance of the reference point from the center of the
|
|
// heat bed
|
|
auto c = bin.center();
|
|
auto d = PointLike::distance(rv, c);
|
|
|
|
// The score will be the normalized distance which will be minimized,
|
|
// effectively creating a circle shaped pile of items
|
|
double score = double(d)/norm;
|
|
|
|
// If it does not fit into the print bed we will beat it
|
|
// with a large penality. If we would not do this, there would be only
|
|
// one big pile that doesn't care whether it fits onto the print bed.
|
|
if(hasbin && !NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
|
|
|
|
return score;
|
|
};
|
|
|
|
// Create the arranger object
|
|
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
|
|
|
|
// Set the progress indicator for the arranger.
|
|
arranger.progressIndicator(progressind);
|
|
|
|
// Arrange and return the items with their respective indices within the
|
|
// input sequence.
|
|
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
|
|
|
|
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
|
|
Coord batch_offset)
|
|
{
|
|
for(auto& r : group) {
|
|
auto idx = r.first; // get the original item index
|
|
Item& item = r.second; // get the item itself
|
|
|
|
// Get the model instance from the shapemap using the index
|
|
ModelInstance *inst_ptr = shapemap[idx].first;
|
|
|
|
// Get the tranformation data from the item object and scale it
|
|
// appropriately
|
|
auto off = item.translation();
|
|
Radians rot = item.rotation();
|
|
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
|
off.Y*SCALING_FACTOR);
|
|
|
|
// write the tranformation data into the model instance
|
|
inst_ptr->rotation = rot;
|
|
inst_ptr->offset = foff;
|
|
}
|
|
};
|
|
|
|
if(first_bin_only) {
|
|
applyResult(result.front(), 0);
|
|
} else {
|
|
|
|
const auto STRIDE_PADDING = 1.2;
|
|
|
|
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
|
bin.width()*SCALING_FACTOR);
|
|
Coord batch_offset = 0;
|
|
|
|
for(auto& group : result) {
|
|
applyResult(group, batch_offset);
|
|
|
|
// Only the first pack group can be placed onto the print bed. The
|
|
// other objects which could not fit will be placed next to the
|
|
// print bed
|
|
batch_offset += stride;
|
|
}
|
|
}
|
|
|
|
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
|
|
|
return ret && result.size() == 1;
|
|
}
|
|
}
|
|
|
|
/* arrange objects preserving their instance count
|
|
but altering their instance positions */
|
|
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
|
std::function<void(unsigned)> progressind)
|
|
{
|
|
bool ret = false;
|
|
if(bb != nullptr && bb->defined) {
|
|
// Despite the new arrange is able to run without a specified bin,
|
|
// the perl testsuit still fails for this case. For now the safest
|
|
// thing to do is to use the new arrange only when a proper bin is
|
|
// specified.
|
|
ret = arr::arrange(*this, dist, bb, false, progressind);
|
|
} else {
|
|
// get the (transformed) size of each instance so that we take
|
|
// into account their different transformations when packing
|
|
Pointfs instance_sizes;
|
|
Pointfs instance_centers;
|
|
for (const ModelObject *o : this->objects)
|
|
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
|
// an accurate snug bounding box around the transformed mesh.
|
|
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
|
instance_sizes.push_back(bbox.size());
|
|
instance_centers.push_back(bbox.center());
|
|
}
|
|
|
|
Pointfs positions;
|
|
if (! _arrange(instance_sizes, dist, bb, positions))
|
|
return false;
|
|
|
|
size_t idx = 0;
|
|
for (ModelObject *o : this->objects) {
|
|
for (ModelInstance *i : o->instances) {
|
|
i->offset = positions[idx] - instance_centers[idx];
|
|
++ idx;
|
|
}
|
|
o->invalidate_bounding_box();
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Duplicate the entire model preserving instance relative positions.
|
|
void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
|
{
|
|
Pointfs model_sizes(copies_num-1, this->bounding_box().size());
|
|
Pointfs positions;
|
|
if (! _arrange(model_sizes, dist, bb, positions))
|
|
CONFESS("Cannot duplicate part as the resulting objects would not fit on the print bed.\n");
|
|
|
|
// note that this will leave the object count unaltered
|
|
|
|
for (ModelObject *o : this->objects) {
|
|
// make a copy of the pointers in order to avoid recursion when appending their copies
|
|
ModelInstancePtrs instances = o->instances;
|
|
for (const ModelInstance *i : instances) {
|
|
for (const Pointf &pos : positions) {
|
|
ModelInstance *instance = o->add_instance(*i);
|
|
instance->offset.translate(pos);
|
|
}
|
|
}
|
|
o->invalidate_bounding_box();
|
|
}
|
|
}
|
|
|
|
/* this will append more instances to each object
|
|
and then automatically rearrange everything */
|
|
void Model::duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb)
|
|
{
|
|
for (ModelObject *o : this->objects) {
|
|
// make a copy of the pointers in order to avoid recursion when appending their copies
|
|
ModelInstancePtrs instances = o->instances;
|
|
for (const ModelInstance *i : instances)
|
|
for (size_t k = 2; k <= copies_num; ++ k)
|
|
o->add_instance(*i);
|
|
}
|
|
|
|
this->arrange_objects(dist, bb);
|
|
}
|
|
|
|
void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
|
|
{
|
|
if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects";
|
|
if (this->objects.empty()) throw "No objects!";
|
|
|
|
ModelObject* object = this->objects.front();
|
|
object->clear_instances();
|
|
|
|
Sizef3 size = object->bounding_box().size();
|
|
|
|
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
|
|
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
|
|
ModelInstance* instance = object->add_instance();
|
|
instance->offset.x = (size.x + dist) * (x_copy-1);
|
|
instance->offset.y = (size.y + dist) * (y_copy-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Model::looks_like_multipart_object() const
|
|
{
|
|
if (this->objects.size() <= 1)
|
|
return false;
|
|
double zmin = std::numeric_limits<double>::max();
|
|
for (const ModelObject *obj : this->objects) {
|
|
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
|
|
return false;
|
|
for (const ModelVolume *vol : obj->volumes) {
|
|
double zmin_this = vol->mesh.bounding_box().min.z;
|
|
if (zmin == std::numeric_limits<double>::max())
|
|
zmin = zmin_this;
|
|
else if (std::abs(zmin - zmin_this) > EPSILON)
|
|
// The volumes don't share zmin.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Model::convert_multipart_object(unsigned int max_extruders)
|
|
{
|
|
if (this->objects.empty())
|
|
return;
|
|
|
|
ModelObject* object = new ModelObject(this);
|
|
object->input_file = this->objects.front()->input_file;
|
|
|
|
reset_auto_extruder_id();
|
|
|
|
for (const ModelObject* o : this->objects)
|
|
for (const ModelVolume* v : o->volumes)
|
|
{
|
|
ModelVolume* new_v = object->add_volume(*v);
|
|
if (new_v != nullptr)
|
|
{
|
|
new_v->name = o->name;
|
|
new_v->config.set_deserialize("extruder", get_auto_extruder_id_as_string(max_extruders));
|
|
}
|
|
}
|
|
|
|
for (const ModelInstance* i : this->objects.front()->instances)
|
|
object->add_instance(*i);
|
|
|
|
this->clear_objects();
|
|
this->objects.push_back(object);
|
|
}
|
|
|
|
void Model::adjust_min_z()
|
|
{
|
|
if (objects.empty())
|
|
return;
|
|
|
|
if (bounding_box().min.z < 0.0)
|
|
{
|
|
for (ModelObject* obj : objects)
|
|
{
|
|
if (obj != nullptr)
|
|
{
|
|
coordf_t obj_min_z = obj->bounding_box().min.z;
|
|
if (obj_min_z < 0.0)
|
|
obj->translate(0.0, 0.0, -obj_min_z);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned int Model::get_auto_extruder_id(unsigned int max_extruders)
|
|
{
|
|
unsigned int id = s_auto_extruder_id;
|
|
|
|
if (++s_auto_extruder_id > max_extruders)
|
|
reset_auto_extruder_id();
|
|
|
|
return id;
|
|
}
|
|
|
|
std::string Model::get_auto_extruder_id_as_string(unsigned int max_extruders)
|
|
{
|
|
char str_extruder[64];
|
|
sprintf(str_extruder, "%ud", get_auto_extruder_id(max_extruders));
|
|
return str_extruder;
|
|
}
|
|
|
|
void Model::reset_auto_extruder_id()
|
|
{
|
|
s_auto_extruder_id = 1;
|
|
}
|
|
|
|
ModelObject::ModelObject(Model *model, const ModelObject &other, bool copy_volumes) :
|
|
name(other.name),
|
|
input_file(other.input_file),
|
|
instances(),
|
|
volumes(),
|
|
config(other.config),
|
|
layer_height_ranges(other.layer_height_ranges),
|
|
layer_height_profile(other.layer_height_profile),
|
|
layer_height_profile_valid(other.layer_height_profile_valid),
|
|
origin_translation(other.origin_translation),
|
|
m_bounding_box(other.m_bounding_box),
|
|
m_bounding_box_valid(other.m_bounding_box_valid),
|
|
m_model(model)
|
|
{
|
|
if (copy_volumes) {
|
|
this->volumes.reserve(other.volumes.size());
|
|
for (ModelVolumePtrs::const_iterator i = other.volumes.begin(); i != other.volumes.end(); ++i)
|
|
this->add_volume(**i);
|
|
}
|
|
|
|
this->instances.reserve(other.instances.size());
|
|
for (ModelInstancePtrs::const_iterator i = other.instances.begin(); i != other.instances.end(); ++i)
|
|
this->add_instance(**i);
|
|
}
|
|
|
|
ModelObject& ModelObject::operator=(ModelObject other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void ModelObject::swap(ModelObject &other)
|
|
{
|
|
std::swap(this->input_file, other.input_file);
|
|
std::swap(this->instances, other.instances);
|
|
std::swap(this->volumes, other.volumes);
|
|
std::swap(this->config, other.config);
|
|
std::swap(this->layer_height_ranges, other.layer_height_ranges);
|
|
std::swap(this->layer_height_profile, other.layer_height_profile);
|
|
std::swap(this->layer_height_profile_valid, other.layer_height_profile_valid);
|
|
std::swap(this->origin_translation, other.origin_translation);
|
|
std::swap(m_bounding_box, other.m_bounding_box);
|
|
std::swap(m_bounding_box_valid, other.m_bounding_box_valid);
|
|
}
|
|
|
|
ModelObject::~ModelObject()
|
|
{
|
|
this->clear_volumes();
|
|
this->clear_instances();
|
|
}
|
|
|
|
ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh)
|
|
{
|
|
ModelVolume* v = new ModelVolume(this, mesh);
|
|
this->volumes.push_back(v);
|
|
this->invalidate_bounding_box();
|
|
return v;
|
|
}
|
|
|
|
ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh)
|
|
{
|
|
ModelVolume* v = new ModelVolume(this, std::move(mesh));
|
|
this->volumes.push_back(v);
|
|
this->invalidate_bounding_box();
|
|
return v;
|
|
}
|
|
|
|
ModelVolume* ModelObject::add_volume(const ModelVolume &other)
|
|
{
|
|
ModelVolume* v = new ModelVolume(this, other);
|
|
this->volumes.push_back(v);
|
|
this->invalidate_bounding_box();
|
|
return v;
|
|
}
|
|
|
|
void ModelObject::delete_volume(size_t idx)
|
|
{
|
|
ModelVolumePtrs::iterator i = this->volumes.begin() + idx;
|
|
delete *i;
|
|
this->volumes.erase(i);
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
void ModelObject::clear_volumes()
|
|
{
|
|
for (ModelVolume *v : this->volumes)
|
|
delete v;
|
|
this->volumes.clear();
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
ModelInstance* ModelObject::add_instance()
|
|
{
|
|
ModelInstance* i = new ModelInstance(this);
|
|
this->instances.push_back(i);
|
|
this->invalidate_bounding_box();
|
|
return i;
|
|
}
|
|
|
|
ModelInstance* ModelObject::add_instance(const ModelInstance &other)
|
|
{
|
|
ModelInstance* i = new ModelInstance(this, other);
|
|
this->instances.push_back(i);
|
|
this->invalidate_bounding_box();
|
|
return i;
|
|
}
|
|
|
|
void ModelObject::delete_instance(size_t idx)
|
|
{
|
|
ModelInstancePtrs::iterator i = this->instances.begin() + idx;
|
|
delete *i;
|
|
this->instances.erase(i);
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
void ModelObject::delete_last_instance()
|
|
{
|
|
this->delete_instance(this->instances.size() - 1);
|
|
}
|
|
|
|
void ModelObject::clear_instances()
|
|
{
|
|
for (ModelInstance *i : this->instances)
|
|
delete i;
|
|
this->instances.clear();
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
// Returns the bounding box of the transformed instances.
|
|
// This bounding box is approximate and not snug.
|
|
const BoundingBoxf3& ModelObject::bounding_box() const
|
|
{
|
|
if (! m_bounding_box_valid) {
|
|
BoundingBoxf3 raw_bbox;
|
|
for (const ModelVolume *v : this->volumes)
|
|
if (! v->modifier)
|
|
raw_bbox.merge(v->mesh.bounding_box());
|
|
BoundingBoxf3 bb;
|
|
for (const ModelInstance *i : this->instances)
|
|
bb.merge(i->transform_bounding_box(raw_bbox));
|
|
m_bounding_box = bb;
|
|
m_bounding_box_valid = true;
|
|
}
|
|
return m_bounding_box;
|
|
}
|
|
|
|
BoundingBoxf3 ModelObject::tight_bounding_box(bool include_modifiers) const
|
|
{
|
|
BoundingBoxf3 bb;
|
|
|
|
for (const ModelVolume* vol : this->volumes)
|
|
{
|
|
if (include_modifiers || !vol->modifier)
|
|
{
|
|
for (const ModelInstance* inst : this->instances)
|
|
{
|
|
double c = cos(inst->rotation);
|
|
double s = sin(inst->rotation);
|
|
|
|
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
|
{
|
|
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
// original point
|
|
const stl_vertex& v = facet.vertex[i];
|
|
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
|
|
|
// scale
|
|
p.x *= inst->scaling_factor;
|
|
p.y *= inst->scaling_factor;
|
|
p.z *= inst->scaling_factor;
|
|
|
|
// rotate Z
|
|
double x = p.x;
|
|
double y = p.y;
|
|
p.x = c * x - s * y;
|
|
p.y = s * x + c * y;
|
|
|
|
// translate
|
|
p.x += inst->offset.x;
|
|
p.y += inst->offset.y;
|
|
|
|
bb.merge(p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return bb;
|
|
}
|
|
|
|
// A mesh containing all transformed instances of this object.
|
|
TriangleMesh ModelObject::mesh() const
|
|
{
|
|
TriangleMesh mesh;
|
|
TriangleMesh raw_mesh = this->raw_mesh();
|
|
for (const ModelInstance *i : this->instances) {
|
|
TriangleMesh m = raw_mesh;
|
|
i->transform_mesh(&m);
|
|
mesh.merge(m);
|
|
}
|
|
return mesh;
|
|
}
|
|
|
|
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
|
|
// Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D platter
|
|
// and to display the object statistics at ModelObject::print_info().
|
|
TriangleMesh ModelObject::raw_mesh() const
|
|
{
|
|
TriangleMesh mesh;
|
|
for (const ModelVolume *v : this->volumes)
|
|
if (! v->modifier)
|
|
mesh.merge(v->mesh);
|
|
return mesh;
|
|
}
|
|
|
|
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
|
|
// This bounding box is only used for the actual slicing.
|
|
BoundingBoxf3 ModelObject::raw_bounding_box() const
|
|
{
|
|
BoundingBoxf3 bb;
|
|
for (const ModelVolume *v : this->volumes)
|
|
if (! v->modifier) {
|
|
if (this->instances.empty()) CONFESS("Can't call raw_bounding_box() with no instances");
|
|
bb.merge(this->instances.front()->transform_mesh_bounding_box(&v->mesh, true));
|
|
}
|
|
return bb;
|
|
}
|
|
|
|
// This returns an accurate snug bounding box of the transformed object instance, without the translation applied.
|
|
BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const
|
|
{
|
|
BoundingBoxf3 bb;
|
|
for (ModelVolume *v : this->volumes)
|
|
if (! v->modifier)
|
|
bb.merge(this->instances[instance_idx]->transform_mesh_bounding_box(&v->mesh, dont_translate));
|
|
return bb;
|
|
}
|
|
|
|
void ModelObject::center_around_origin()
|
|
{
|
|
// calculate the displacements needed to
|
|
// center this object around the origin
|
|
BoundingBoxf3 bb;
|
|
for (ModelVolume *v : this->volumes)
|
|
if (! v->modifier)
|
|
bb.merge(v->mesh.bounding_box());
|
|
|
|
// first align to origin on XYZ
|
|
Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z);
|
|
|
|
// then center it on XY
|
|
Sizef3 size = bb.size();
|
|
vector.x -= size.x/2;
|
|
vector.y -= size.y/2;
|
|
|
|
this->translate(vector);
|
|
this->origin_translation.translate(vector);
|
|
|
|
if (!this->instances.empty()) {
|
|
for (ModelInstance *i : this->instances) {
|
|
// apply rotation and scaling to vector as well before translating instance,
|
|
// in order to leave final position unaltered
|
|
Vectorf3 v = vector.negative();
|
|
v.rotate(i->rotation);
|
|
v.scale(i->scaling_factor);
|
|
i->offset.translate(v.x, v.y);
|
|
}
|
|
this->invalidate_bounding_box();
|
|
}
|
|
}
|
|
|
|
void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z)
|
|
{
|
|
for (ModelVolume *v : this->volumes)
|
|
v->mesh.translate(float(x), float(y), float(z));
|
|
if (m_bounding_box_valid)
|
|
m_bounding_box.translate(x, y, z);
|
|
}
|
|
|
|
void ModelObject::scale(const Pointf3 &versor)
|
|
{
|
|
for (ModelVolume *v : this->volumes)
|
|
v->mesh.scale(versor);
|
|
// reset origin translation since it doesn't make sense anymore
|
|
this->origin_translation = Pointf3(0,0,0);
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
void ModelObject::rotate(float angle, const Axis &axis)
|
|
{
|
|
for (ModelVolume *v : this->volumes)
|
|
v->mesh.rotate(angle, axis);
|
|
this->origin_translation = Pointf3(0,0,0);
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
void ModelObject::transform(const float* matrix3x4)
|
|
{
|
|
if (matrix3x4 == nullptr)
|
|
return;
|
|
|
|
for (ModelVolume* v : volumes)
|
|
{
|
|
v->mesh.transform(matrix3x4);
|
|
}
|
|
|
|
origin_translation = Pointf3(0.0, 0.0, 0.0);
|
|
invalidate_bounding_box();
|
|
}
|
|
|
|
void ModelObject::mirror(const Axis &axis)
|
|
{
|
|
for (ModelVolume *v : this->volumes)
|
|
v->mesh.mirror(axis);
|
|
this->origin_translation = Pointf3(0,0,0);
|
|
this->invalidate_bounding_box();
|
|
}
|
|
|
|
size_t ModelObject::materials_count() const
|
|
{
|
|
std::set<t_model_material_id> material_ids;
|
|
for (const ModelVolume *v : this->volumes)
|
|
material_ids.insert(v->material_id());
|
|
return material_ids.size();
|
|
}
|
|
|
|
size_t ModelObject::facets_count() const
|
|
{
|
|
size_t num = 0;
|
|
for (const ModelVolume *v : this->volumes)
|
|
if (! v->modifier)
|
|
num += v->mesh.stl.stats.number_of_facets;
|
|
return num;
|
|
}
|
|
|
|
bool ModelObject::needed_repair() const
|
|
{
|
|
for (const ModelVolume *v : this->volumes)
|
|
if (! v->modifier && v->mesh.needed_repair())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void ModelObject::cut(coordf_t z, Model* model) const
|
|
{
|
|
// clone this one to duplicate instances, materials etc.
|
|
ModelObject* upper = model->add_object(*this);
|
|
ModelObject* lower = model->add_object(*this);
|
|
upper->clear_volumes();
|
|
lower->clear_volumes();
|
|
upper->input_file = "";
|
|
lower->input_file = "";
|
|
|
|
for (ModelVolume *volume : this->volumes) {
|
|
if (volume->modifier) {
|
|
// don't cut modifiers
|
|
upper->add_volume(*volume);
|
|
lower->add_volume(*volume);
|
|
} else {
|
|
TriangleMesh upper_mesh, lower_mesh;
|
|
TriangleMeshSlicer tms(&volume->mesh);
|
|
tms.cut(z, &upper_mesh, &lower_mesh);
|
|
|
|
upper_mesh.repair();
|
|
lower_mesh.repair();
|
|
upper_mesh.reset_repair_stats();
|
|
lower_mesh.reset_repair_stats();
|
|
|
|
if (upper_mesh.facets_count() > 0) {
|
|
ModelVolume* vol = upper->add_volume(upper_mesh);
|
|
vol->name = volume->name;
|
|
vol->config = volume->config;
|
|
vol->set_material(volume->material_id(), *volume->material());
|
|
}
|
|
if (lower_mesh.facets_count() > 0) {
|
|
ModelVolume* vol = lower->add_volume(lower_mesh);
|
|
vol->name = volume->name;
|
|
vol->config = volume->config;
|
|
vol->set_material(volume->material_id(), *volume->material());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ModelObject::split(ModelObjectPtrs* new_objects)
|
|
{
|
|
if (this->volumes.size() > 1) {
|
|
// We can't split meshes if there's more than one volume, because
|
|
// we can't group the resulting meshes by object afterwards
|
|
new_objects->push_back(this);
|
|
return;
|
|
}
|
|
|
|
ModelVolume* volume = this->volumes.front();
|
|
TriangleMeshPtrs meshptrs = volume->mesh.split();
|
|
for (TriangleMesh *mesh : meshptrs) {
|
|
// Snap the mesh to Z=0.
|
|
float z0 = FLT_MAX;
|
|
|
|
mesh->repair();
|
|
|
|
ModelObject* new_object = m_model->add_object(*this, false);
|
|
new_object->input_file = "";
|
|
ModelVolume* new_volume = new_object->add_volume(*mesh);
|
|
new_volume->name = volume->name;
|
|
new_volume->config = volume->config;
|
|
new_volume->modifier = volume->modifier;
|
|
new_volume->material_id(volume->material_id());
|
|
|
|
new_objects->push_back(new_object);
|
|
delete mesh;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
|
|
{
|
|
for (ModelVolume* vol : this->volumes)
|
|
{
|
|
if (!vol->modifier)
|
|
{
|
|
for (ModelInstance* inst : this->instances)
|
|
{
|
|
BoundingBoxf3 bb;
|
|
|
|
double c = cos(inst->rotation);
|
|
double s = sin(inst->rotation);
|
|
|
|
for (int f = 0; f < vol->mesh.stl.stats.number_of_facets; ++f)
|
|
{
|
|
const stl_facet& facet = vol->mesh.stl.facet_start[f];
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
// original point
|
|
const stl_vertex& v = facet.vertex[i];
|
|
Pointf3 p((double)v.x, (double)v.y, (double)v.z);
|
|
|
|
// scale
|
|
p.x *= inst->scaling_factor;
|
|
p.y *= inst->scaling_factor;
|
|
p.z *= inst->scaling_factor;
|
|
|
|
// rotate Z
|
|
double x = p.x;
|
|
double y = p.y;
|
|
p.x = c * x - s * y;
|
|
p.y = s * x + c * y;
|
|
|
|
// translate
|
|
p.x += inst->offset.x;
|
|
p.y += inst->offset.y;
|
|
|
|
bb.merge(p);
|
|
}
|
|
}
|
|
|
|
if (print_volume.contains(bb))
|
|
inst->print_volume_state = ModelInstance::PVS_Inside;
|
|
else if (print_volume.intersects(bb))
|
|
inst->print_volume_state = ModelInstance::PVS_Partly_Outside;
|
|
else
|
|
inst->print_volume_state = ModelInstance::PVS_Fully_Outside;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ModelObject::print_info() const
|
|
{
|
|
using namespace std;
|
|
cout << fixed;
|
|
boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
|
|
|
|
TriangleMesh mesh = this->raw_mesh();
|
|
mesh.check_topology();
|
|
BoundingBoxf3 bb = mesh.bounding_box();
|
|
Sizef3 size = bb.size();
|
|
cout << "size_x = " << size.x << endl;
|
|
cout << "size_y = " << size.y << endl;
|
|
cout << "size_z = " << size.z << endl;
|
|
cout << "min_x = " << bb.min.x << endl;
|
|
cout << "min_y = " << bb.min.y << endl;
|
|
cout << "min_z = " << bb.min.z << endl;
|
|
cout << "max_x = " << bb.max.x << endl;
|
|
cout << "max_y = " << bb.max.y << endl;
|
|
cout << "max_z = " << bb.max.z << endl;
|
|
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
|
|
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
|
|
|
|
mesh.repair(); // this calculates number_of_parts
|
|
if (mesh.needed_repair()) {
|
|
mesh.repair();
|
|
if (mesh.stl.stats.degenerate_facets > 0)
|
|
cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl;
|
|
if (mesh.stl.stats.edges_fixed > 0)
|
|
cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl;
|
|
if (mesh.stl.stats.facets_removed > 0)
|
|
cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl;
|
|
if (mesh.stl.stats.facets_added > 0)
|
|
cout << "facets_added = " << mesh.stl.stats.facets_added << endl;
|
|
if (mesh.stl.stats.facets_reversed > 0)
|
|
cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl;
|
|
if (mesh.stl.stats.backwards_edges > 0)
|
|
cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl;
|
|
}
|
|
cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl;
|
|
cout << "volume = " << mesh.volume() << endl;
|
|
}
|
|
|
|
void ModelVolume::material_id(t_model_material_id material_id)
|
|
{
|
|
this->_material_id = material_id;
|
|
|
|
// ensure this->_material_id references an existing material
|
|
(void)this->object->get_model()->add_material(material_id);
|
|
}
|
|
|
|
ModelMaterial* ModelVolume::material() const
|
|
{
|
|
return this->object->get_model()->get_material(this->_material_id);
|
|
}
|
|
|
|
void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material)
|
|
{
|
|
this->_material_id = material_id;
|
|
(void)this->object->get_model()->add_material(material_id, material);
|
|
}
|
|
|
|
ModelMaterial* ModelVolume::assign_unique_material()
|
|
{
|
|
Model* model = this->get_object()->get_model();
|
|
|
|
// as material-id "0" is reserved by the AMF spec we start from 1
|
|
this->_material_id = 1 + model->materials.size(); // watchout for implicit cast
|
|
return model->add_material(this->_material_id);
|
|
}
|
|
|
|
// Split this volume, append the result to the object owning this volume.
|
|
// Return the number of volumes created from this one.
|
|
// This is useful to assign different materials to different volumes of an object.
|
|
size_t ModelVolume::split(unsigned int max_extruders)
|
|
{
|
|
TriangleMeshPtrs meshptrs = this->mesh.split();
|
|
if (meshptrs.size() <= 1) {
|
|
delete meshptrs.front();
|
|
return 1;
|
|
}
|
|
|
|
size_t idx = 0;
|
|
size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin();
|
|
std::string name = this->name;
|
|
|
|
Model::reset_auto_extruder_id();
|
|
|
|
for (TriangleMesh *mesh : meshptrs) {
|
|
mesh->repair();
|
|
if (idx == 0)
|
|
this->mesh = std::move(*mesh);
|
|
else
|
|
this->object->volumes.insert(this->object->volumes.begin() + (++ ivolume), new ModelVolume(object, *this, std::move(*mesh)));
|
|
char str_idx[64];
|
|
sprintf(str_idx, "_%d", idx + 1);
|
|
this->object->volumes[ivolume]->name = name + str_idx;
|
|
this->object->volumes[ivolume]->config.set_deserialize("extruder", Model::get_auto_extruder_id_as_string(max_extruders));
|
|
delete mesh;
|
|
++ idx;
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const
|
|
{
|
|
mesh->rotate_z(this->rotation); // rotate around mesh origin
|
|
mesh->scale(this->scaling_factor); // scale around mesh origin
|
|
if (!dont_translate)
|
|
mesh->translate(this->offset.x, this->offset.y, 0);
|
|
}
|
|
|
|
BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mesh, bool dont_translate) const
|
|
{
|
|
// Rotate around mesh origin.
|
|
double c = cos(this->rotation);
|
|
double s = sin(this->rotation);
|
|
BoundingBoxf3 bbox;
|
|
for (int i = 0; i < mesh->stl.stats.number_of_facets; ++ i) {
|
|
const stl_facet &facet = mesh->stl.facet_start[i];
|
|
for (int j = 0; j < 3; ++ j) {
|
|
stl_vertex v = facet.vertex[j];
|
|
double xold = v.x;
|
|
double yold = v.y;
|
|
v.x = float(c * xold - s * yold);
|
|
v.y = float(s * xold + c * yold);
|
|
bbox.merge(Pointf3(v.x, v.y, v.z));
|
|
}
|
|
}
|
|
if (! empty(bbox)) {
|
|
// Scale the bounding box uniformly.
|
|
if (std::abs(this->scaling_factor - 1.) > EPSILON) {
|
|
bbox.min.x *= float(this->scaling_factor);
|
|
bbox.min.y *= float(this->scaling_factor);
|
|
bbox.min.z *= float(this->scaling_factor);
|
|
bbox.max.x *= float(this->scaling_factor);
|
|
bbox.max.y *= float(this->scaling_factor);
|
|
bbox.max.z *= float(this->scaling_factor);
|
|
}
|
|
// Translate the bounding box.
|
|
if (! dont_translate) {
|
|
bbox.min.x += float(this->offset.x);
|
|
bbox.min.y += float(this->offset.y);
|
|
bbox.max.x += float(this->offset.x);
|
|
bbox.max.y += float(this->offset.y);
|
|
}
|
|
}
|
|
return bbox;
|
|
}
|
|
|
|
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
|
|
{
|
|
Eigen::Transform<float, 3, Eigen::Affine> matrix = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
|
|
if (!dont_translate)
|
|
matrix.translate(Eigen::Vector3f((float)offset.x, (float)offset.y, 0.0f));
|
|
|
|
matrix.rotate(Eigen::AngleAxisf(rotation, Eigen::Vector3f::UnitZ()));
|
|
matrix.scale(scaling_factor);
|
|
|
|
std::vector<float> m(16, 0.0f);
|
|
::memcpy((void*)m.data(), (const void*)matrix.data(), 16 * sizeof(float));
|
|
return bbox.transformed(m);
|
|
}
|
|
|
|
void ModelInstance::transform_polygon(Polygon* polygon) const
|
|
{
|
|
polygon->rotate(this->rotation); // rotate around polygon origin
|
|
polygon->scale(this->scaling_factor); // scale around polygon origin
|
|
}
|
|
|
|
}
|