350 lines
18 KiB
C++
350 lines
18 KiB
C++
#ifndef slic3r_TriangleMesh_hpp_
|
|
#define slic3r_TriangleMesh_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include <admesh/stl.h>
|
|
#include <functional>
|
|
#include <vector>
|
|
#include "BoundingBox.hpp"
|
|
#include "Line.hpp"
|
|
#include "Point.hpp"
|
|
#include "Polygon.hpp"
|
|
#include "ExPolygon.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
class TriangleMesh;
|
|
class TriangleMeshSlicer;
|
|
|
|
struct RepairedMeshErrors {
|
|
// How many edges were united by merging their end points with some other end points in epsilon neighborhood?
|
|
int edges_fixed = 0;
|
|
// How many degenerate faces were removed?
|
|
int degenerate_facets = 0;
|
|
// How many faces were removed during fixing? Includes degenerate_faces and disconnected faces.
|
|
int facets_removed = 0;
|
|
// New faces could only be created with stl_fill_holes() and we ditched stl_fill_holes(), because mostly it does more harm than good.
|
|
//int facets_added = 0;
|
|
// How many facets were revesed? Faces are reversed by admesh while it connects patches of triangles togeter and a flipped triangle is encountered.
|
|
// Also the facets are reversed when a negative volume is corrected by flipping all facets.
|
|
int facets_reversed = 0;
|
|
// Edges shared by two triangles, oriented incorrectly.
|
|
int backwards_edges = 0;
|
|
|
|
void clear() { *this = RepairedMeshErrors(); }
|
|
|
|
void merge(const RepairedMeshErrors& rhs) {
|
|
this->edges_fixed += rhs.edges_fixed;
|
|
this->degenerate_facets += rhs.degenerate_facets;
|
|
this->facets_removed += rhs.facets_removed;
|
|
this->facets_reversed += rhs.facets_reversed;
|
|
this->backwards_edges += rhs.backwards_edges;
|
|
}
|
|
|
|
bool repaired() const { return degenerate_facets > 0 || edges_fixed > 0 || facets_removed > 0 || facets_reversed > 0 || backwards_edges > 0; }
|
|
};
|
|
|
|
struct TriangleMeshStats {
|
|
// Mesh metrics.
|
|
uint32_t number_of_facets = 0;
|
|
stl_vertex max = stl_vertex::Zero();
|
|
stl_vertex min = stl_vertex::Zero();
|
|
stl_vertex size = stl_vertex::Zero();
|
|
float volume = -1.f;
|
|
int number_of_parts = 0;
|
|
|
|
// Mesh errors, remaining.
|
|
int open_edges = 0;
|
|
|
|
// Mesh errors, fixed.
|
|
RepairedMeshErrors repaired_errors;
|
|
|
|
void clear() { *this = TriangleMeshStats(); }
|
|
|
|
TriangleMeshStats merge(const TriangleMeshStats &rhs) const {
|
|
if (this->number_of_facets == 0)
|
|
return rhs;
|
|
else if (rhs.number_of_facets == 0)
|
|
return *this;
|
|
else {
|
|
TriangleMeshStats out;
|
|
out.number_of_facets = this->number_of_facets + rhs.number_of_facets;
|
|
out.min = this->min.cwiseMin(rhs.min);
|
|
out.max = this->max.cwiseMax(rhs.max);
|
|
out.size = out.max - out.min;
|
|
out.number_of_parts = this->number_of_parts + rhs.number_of_parts;
|
|
out.open_edges = this->open_edges + rhs.open_edges;
|
|
out.volume = this->volume + rhs.volume;
|
|
out.repaired_errors.merge(rhs.repaired_errors);
|
|
return out;
|
|
}
|
|
}
|
|
|
|
bool manifold() const { return open_edges == 0; }
|
|
bool repaired() const { return repaired_errors.repaired(); }
|
|
};
|
|
|
|
class TriangleMesh
|
|
{
|
|
public:
|
|
TriangleMesh() = default;
|
|
TriangleMesh(const std::vector<Vec3f> &vertices, const std::vector<Vec3i> &faces);
|
|
TriangleMesh(std::vector<Vec3f> &&vertices, const std::vector<Vec3i> &&faces);
|
|
explicit TriangleMesh(const indexed_triangle_set &M);
|
|
explicit TriangleMesh(indexed_triangle_set &&M, const RepairedMeshErrors& repaired_errors = RepairedMeshErrors());
|
|
void clear() { this->its.clear(); this->m_stats.clear(); }
|
|
bool ReadSTLFile(const char* input_file, bool repair = true);
|
|
bool write_ascii(const char* output_file);
|
|
bool write_binary(const char* output_file);
|
|
float volume();
|
|
void WriteOBJFile(const char* output_file) const;
|
|
void scale(float factor);
|
|
void scale(const Vec3f &versor);
|
|
void translate(float x, float y, float z);
|
|
void translate(const Vec3f &displacement);
|
|
void rotate(float angle, const Axis &axis);
|
|
void rotate(float angle, const Vec3d& axis);
|
|
void rotate_x(float angle) { this->rotate(angle, X); }
|
|
void rotate_y(float angle) { this->rotate(angle, Y); }
|
|
void rotate_z(float angle) { this->rotate(angle, Z); }
|
|
void mirror(const Axis axis);
|
|
void mirror_x() { this->mirror(X); }
|
|
void mirror_y() { this->mirror(Y); }
|
|
void mirror_z() { this->mirror(Z); }
|
|
void transform(const Transform3d& t, bool fix_left_handed = false);
|
|
void transform(const Matrix3d& t, bool fix_left_handed = false);
|
|
// Flip triangles, negate volume.
|
|
void flip_triangles();
|
|
void align_to_origin();
|
|
void rotate(double angle, Point* center);
|
|
std::vector<TriangleMesh> split() const;
|
|
void merge(const TriangleMesh &mesh);
|
|
ExPolygons horizontal_projection() const;
|
|
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
|
|
Polygon convex_hull();
|
|
BoundingBoxf3 bounding_box() const;
|
|
// Returns the bbox of this TriangleMesh transformed by the given transformation
|
|
BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
|
|
// Variant returning the bbox of the part of this TriangleMesh above the given world_min_z
|
|
BoundingBoxf3 transformed_bounding_box(const Transform3d& trafo, double world_min_z) const;
|
|
// Return the size of the mesh in coordinates.
|
|
Vec3d size() const { return m_stats.size.cast<double>(); }
|
|
/// Return the center of the related bounding box.
|
|
Vec3d center() const { return this->bounding_box().center(); }
|
|
// Returns the convex hull of this TriangleMesh
|
|
TriangleMesh convex_hull_3d() const;
|
|
// Slice this mesh at the provided Z levels and return the vector
|
|
std::vector<ExPolygons> slice(const std::vector<double>& z) const;
|
|
size_t facets_count() const { assert(m_stats.number_of_facets == this->its.indices.size()); return m_stats.number_of_facets; }
|
|
bool empty() const { return this->facets_count() == 0; }
|
|
bool repaired() const;
|
|
bool is_splittable() const;
|
|
// Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
|
|
size_t memsize() const;
|
|
|
|
// Used by the Undo / Redo stack, legacy interface. As of now there is nothing cached at TriangleMesh,
|
|
// but we may decide to cache some data in the future (for example normals), thus we keep the interface in place.
|
|
// Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
|
|
size_t release_optional() { return 0; }
|
|
// Restore optional data possibly released by release_optional().
|
|
void restore_optional() {}
|
|
|
|
const TriangleMeshStats& stats() const { return m_stats; }
|
|
|
|
indexed_triangle_set its;
|
|
|
|
private:
|
|
TriangleMeshStats m_stats;
|
|
};
|
|
|
|
// Index of face indices incident with a vertex index.
|
|
struct VertexFaceIndex
|
|
{
|
|
public:
|
|
using iterator = std::vector<size_t>::const_iterator;
|
|
|
|
VertexFaceIndex(const indexed_triangle_set &its) { this->create(its); }
|
|
VertexFaceIndex() {}
|
|
|
|
void create(const indexed_triangle_set &its);
|
|
void clear() { m_vertex_to_face_start.clear(); m_vertex_faces_all.clear(); }
|
|
|
|
// Iterators of face indices incident with the input vertex_id.
|
|
iterator begin(size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id]; }
|
|
iterator end (size_t vertex_id) const throw() { return m_vertex_faces_all.begin() + m_vertex_to_face_start[vertex_id + 1]; }
|
|
// Vertex incidence.
|
|
size_t count(size_t vertex_id) const throw() { return m_vertex_to_face_start[vertex_id + 1] - m_vertex_to_face_start[vertex_id]; }
|
|
|
|
const Range<iterator> operator[](size_t vertex_id) const { return {begin(vertex_id), end(vertex_id)}; }
|
|
|
|
private:
|
|
std::vector<size_t> m_vertex_to_face_start;
|
|
std::vector<size_t> m_vertex_faces_all;
|
|
};
|
|
|
|
// Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
|
|
// Two neighbor faces share a unique edge identifier even if they are flipped.
|
|
// Used for chaining slice lines into polygons.
|
|
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its);
|
|
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback);
|
|
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, const std::vector<bool> &face_mask);
|
|
// Having the face neighbors available, assign unique edge IDs to face edges for chaining of polygons over slices.
|
|
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::vector<Vec3i> &face_neighbors, bool assign_unbound_edges = false, int *num_edges = nullptr);
|
|
|
|
// Create index that gives neighbor faces for each face. Ignores face orientations.
|
|
std::vector<Vec3i> its_face_neighbors(const indexed_triangle_set &its);
|
|
std::vector<Vec3i> its_face_neighbors_par(const indexed_triangle_set &its);
|
|
|
|
// After applying a transformation with negative determinant, flip the faces to keep the transformed mesh volume positive.
|
|
void its_flip_triangles(indexed_triangle_set &its);
|
|
|
|
// Merge duplicate vertices, return number of vertices removed.
|
|
// This function will happily create non-manifolds if more than two faces share the same vertex position
|
|
// or more than two faces share the same edge position!
|
|
int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit = true);
|
|
|
|
// Remove degenerate faces, return number of faces removed.
|
|
int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit = true);
|
|
|
|
// Remove vertices, which none of the faces references. Return number of freed vertices.
|
|
int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true);
|
|
|
|
// store part of index triangle set
|
|
bool its_store_triangle(const indexed_triangle_set &its, const char *obj_filename, size_t triangle_index);
|
|
bool its_store_triangles(const indexed_triangle_set &its, const char *obj_filename, const std::vector<size_t>& triangles);
|
|
|
|
std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its);
|
|
std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its, std::vector<Vec3i> &face_neighbors);
|
|
|
|
// Number of disconnected patches (faces are connected if they share an edge, shared edge defined with 2 shared vertex indices).
|
|
size_t its_number_of_patches(const indexed_triangle_set &its);
|
|
size_t its_number_of_patches(const indexed_triangle_set &its, const std::vector<Vec3i> &face_neighbors);
|
|
// Same as its_number_of_patches(its) > 1, but faster.
|
|
bool its_is_splittable(const indexed_triangle_set &its);
|
|
bool its_is_splittable(const indexed_triangle_set &its, const std::vector<Vec3i> &face_neighbors);
|
|
|
|
// Calculate number of unconnected face edges. There should be no unconnected edge in a manifold mesh.
|
|
size_t its_num_open_edges(const indexed_triangle_set &its);
|
|
size_t its_num_open_edges(const std::vector<Vec3i> &face_neighbors);
|
|
|
|
// Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors.
|
|
void its_shrink_to_fit(indexed_triangle_set &its);
|
|
|
|
// For convex hull calculation: Transform mesh, trim it by the Z plane and collect all vertices. Duplicate vertices will be produced.
|
|
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts);
|
|
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts);
|
|
|
|
// Calculate 2D convex hull of a transformed and clipped mesh. Uses the function above.
|
|
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z);
|
|
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z);
|
|
|
|
// Index of a vertex inside triangle_indices.
|
|
inline int its_triangle_vertex_index(const stl_triangle_vertex_indices &triangle_indices, int vertex_idx)
|
|
{
|
|
return vertex_idx == triangle_indices[0] ? 0 :
|
|
vertex_idx == triangle_indices[1] ? 1 :
|
|
vertex_idx == triangle_indices[2] ? 2 : -1;
|
|
}
|
|
|
|
inline Vec2i its_triangle_edge(const stl_triangle_vertex_indices &triangle_indices, int edge_idx)
|
|
{
|
|
int next_edge_idx = (edge_idx == 2) ? 0 : edge_idx + 1;
|
|
return { triangle_indices[edge_idx], triangle_indices[next_edge_idx] };
|
|
}
|
|
|
|
// Index of an edge inside triangle.
|
|
inline int its_triangle_edge_index(const stl_triangle_vertex_indices &triangle_indices, const Vec2i &triangle_edge)
|
|
{
|
|
return triangle_edge(0) == triangle_indices[0] && triangle_edge(1) == triangle_indices[1] ? 0 :
|
|
triangle_edge(0) == triangle_indices[1] && triangle_edge(1) == triangle_indices[2] ? 1 :
|
|
triangle_edge(0) == triangle_indices[2] && triangle_edge(1) == triangle_indices[0] ? 2 : -1;
|
|
}
|
|
|
|
using its_triangle = std::array<stl_vertex, 3>;
|
|
|
|
inline its_triangle its_triangle_vertices(const indexed_triangle_set &its,
|
|
size_t face_id)
|
|
{
|
|
return {its.vertices[its.indices[face_id](0)],
|
|
its.vertices[its.indices[face_id](1)],
|
|
its.vertices[its.indices[face_id](2)]};
|
|
}
|
|
|
|
inline stl_normal its_unnormalized_normal(const indexed_triangle_set &its,
|
|
size_t face_id)
|
|
{
|
|
its_triangle tri = its_triangle_vertices(its, face_id);
|
|
return (tri[1] - tri[0]).cross(tri[2] - tri[0]);
|
|
}
|
|
|
|
float its_volume(const indexed_triangle_set &its);
|
|
float its_average_edge_length(const indexed_triangle_set &its);
|
|
|
|
void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B);
|
|
void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles);
|
|
void its_merge(indexed_triangle_set &A, const Pointf3s &triangles);
|
|
|
|
std::vector<Vec3f> its_face_normals(const indexed_triangle_set &its);
|
|
inline Vec3f face_normal(const stl_vertex vertex[3]) { return (vertex[1] - vertex[0]).cross(vertex[2] - vertex[1]).normalized(); }
|
|
inline Vec3f face_normal_normalized(const stl_vertex vertex[3]) { return face_normal(vertex).normalized(); }
|
|
inline Vec3f its_face_normal(const indexed_triangle_set &its, const stl_triangle_vertex_indices face)
|
|
{ const stl_vertex vertices[3] { its.vertices[face[0]], its.vertices[face[1]], its.vertices[face[2]] }; return face_normal_normalized(vertices); }
|
|
inline Vec3f its_face_normal(const indexed_triangle_set &its, const int face_idx)
|
|
{ return its_face_normal(its, its.indices[face_idx]); }
|
|
|
|
indexed_triangle_set its_make_cube(double x, double y, double z);
|
|
indexed_triangle_set its_make_prism(float width, float length, float height);
|
|
indexed_triangle_set its_make_cylinder(double r, double h, double fa=(2*PI/360));
|
|
indexed_triangle_set its_make_cone(double r, double h, double fa=(2*PI/360));
|
|
indexed_triangle_set its_make_pyramid(float base, float height);
|
|
indexed_triangle_set its_make_sphere(double radius, double fa);
|
|
|
|
indexed_triangle_set its_convex_hull(const std::vector<Vec3f> &pts);
|
|
inline indexed_triangle_set its_convex_hull(const indexed_triangle_set &its) { return its_convex_hull(its.vertices); }
|
|
|
|
inline TriangleMesh make_cube(double x, double y, double z) { return TriangleMesh(its_make_cube(x, y, z)); }
|
|
inline TriangleMesh make_prism(float width, float length, float height) { return TriangleMesh(its_make_prism(width, length, height)); }
|
|
inline TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360)) { return TriangleMesh{its_make_cylinder(r, h, fa)}; }
|
|
inline TriangleMesh make_cone(double r, double h, double fa=(2*PI/360)) { return TriangleMesh(its_make_cone(r, h, fa)); }
|
|
inline TriangleMesh make_pyramid(float base, float height) { return TriangleMesh(its_make_pyramid(base, height)); }
|
|
inline TriangleMesh make_sphere(double rho, double fa=(2*PI/360)) { return TriangleMesh(its_make_sphere(rho, fa)); }
|
|
|
|
bool its_write_stl_ascii(const char *file, const char *label, const std::vector<stl_triangle_vertex_indices> &indices, const std::vector<stl_vertex> &vertices);
|
|
inline bool its_write_stl_ascii(const char *file, const char *label, const indexed_triangle_set &its) { return its_write_stl_ascii(file, label, its.indices, its.vertices); }
|
|
bool its_write_stl_binary(const char *file, const char *label, const std::vector<stl_triangle_vertex_indices> &indices, const std::vector<stl_vertex> &vertices);
|
|
inline bool its_write_stl_binary(const char *file, const char *label, const indexed_triangle_set &its) { return its_write_stl_binary(file, label, its.indices, its.vertices); }
|
|
|
|
inline BoundingBoxf3 bounding_box(const TriangleMesh &m) { return m.bounding_box(); }
|
|
inline BoundingBoxf3 bounding_box(const indexed_triangle_set& its)
|
|
{
|
|
if (its.vertices.empty())
|
|
return {};
|
|
|
|
Vec3f bmin = its.vertices.front(), bmax = its.vertices.front();
|
|
|
|
for (const Vec3f &p : its.vertices) {
|
|
bmin = p.cwiseMin(bmin);
|
|
bmax = p.cwiseMax(bmax);
|
|
}
|
|
|
|
return {bmin.cast<double>(), bmax.cast<double>()};
|
|
}
|
|
|
|
}
|
|
|
|
// Serialization through the Cereal library
|
|
#include <cereal/access.hpp>
|
|
namespace cereal {
|
|
template <class Archive> struct specialize<Archive, Slic3r::TriangleMesh, cereal::specialization::non_member_load_save> {};
|
|
template<class Archive> void load(Archive &archive, Slic3r::TriangleMesh &mesh) {
|
|
archive.loadBinary(reinterpret_cast<char*>(const_cast<Slic3r::TriangleMeshStats*>(&mesh.stats())), sizeof(Slic3r::TriangleMeshStats));
|
|
archive(mesh.its.indices, mesh.its.vertices);
|
|
}
|
|
template<class Archive> void save(Archive &archive, const Slic3r::TriangleMesh &mesh) {
|
|
archive.saveBinary(reinterpret_cast<const char*>(&mesh.stats()), sizeof(Slic3r::TriangleMeshStats));
|
|
archive(mesh.its.indices, mesh.its.vertices);
|
|
}
|
|
}
|
|
|
|
#endif
|