Prusa-Firmware/Firmware/Marlin_main.cpp

5379 lines
183 KiB
C++
Raw Normal View History

/* -*- c++ -*- */
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#endif
#include "ultralcd.h"
#include "Configuration_prusa.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "util.h"
#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif
#ifdef ULTRALCD
#include "ultralcd.h"
#endif
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
#define VERSION_STRING "1.0.2"
#include "ultralcd.h"
// Macros for bit masks
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// PRUSA CODES
// P F - Returns FW versions
// P R - Returns revision of printer
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G80 - Automatic mesh bed leveling
// G81 - Print bed profile
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Displays measured filament diameter
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M509 - force language selection on next restart
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif
unsigned long TimeSent = millis();
unsigned long TimeNow = millis();
union Data
{
byte b[2];
int value;
};
float homing_feedrate[] = HOMING_FEEDRATE;
// Currently only the extruder axis may be switched to a relative mode.
// Other axes are always absolute or relative based on the common relative_mode flag.
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#endif
#endif
};
bool is_usb_printing = false;
2016-07-20 13:02:52 +00:00
2016-12-14 13:59:01 +00:00
unsigned long kicktime = millis()+100000;
2016-05-31 12:08:04 +00:00
unsigned int usb_printing_counter;
int lcd_change_fil_state = 0;
int feedmultiplyBckp = 100;
unsigned char lang_selected = 0;
2016-12-14 13:38:36 +00:00
bool prusa_sd_card_upload = false;
2016-05-31 12:08:04 +00:00
unsigned long total_filament_used;
unsigned int heating_status;
unsigned int heating_status_counter;
bool custom_message;
unsigned int custom_message_type;
unsigned int custom_message_state;
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 1
, DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 2
, DEFAULT_NOMINAL_FILAMENT_DIA
#endif
#endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homing[3]={0,0,0};
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
float zprobe_zoffset;
// Extruder offset
#if EXTRUDERS > 1
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef FWRETRACT
bool autoretract_enabled=false;
bool retracted[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
bool retracted_swap[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
#ifdef ULTIPANEL
#ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
#endif
bool cancel_heatup = false ;
#ifdef FILAMENT_SENSOR
//Variables for Filament Sensor input
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1=0; //index into ring buffer
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist=0; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
// For tracing an arc
static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
// Determines Absolute or Relative Coordinates.
// Also there is bool axis_relative_modes[] per axis flag.
static bool relative_mode = false;
// String circular buffer. Commands may be pushed to the buffer from both sides:
// Chained commands will be pushed to the front, interactive (from LCD menu)
// and printing commands (from serial line or from SD card) are pushed to the tail.
// First character of each entry indicates the type of the entry:
#define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
// Command in cmdbuffer was sent over USB.
#define CMDBUFFER_CURRENT_TYPE_USB 1
// Command in cmdbuffer was read from SDCARD.
#define CMDBUFFER_CURRENT_TYPE_SDCARD 2
// Command in cmdbuffer was generated by the UI.
#define CMDBUFFER_CURRENT_TYPE_UI 3
// Command in cmdbuffer was generated by another G-code.
#define CMDBUFFER_CURRENT_TYPE_CHAINED 4
// How much space to reserve for the chained commands
// of type CMDBUFFER_CURRENT_TYPE_CHAINED,
// which are pushed to the front of the queue?
// Maximum 5 commands of max length 20 + null terminator.
#define CMDBUFFER_RESERVE_FRONT (5*21)
// Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
// Head of the circular buffer, where to read.
static int bufindr = 0;
// Tail of the buffer, where to write.
static int bufindw = 0;
// Number of lines in cmdbuffer.
static int buflen = 0;
// Flag for processing the current command inside the main Arduino loop().
// If a new command was pushed to the front of a command buffer while
// processing another command, this replaces the command on the top.
// Therefore don't remove the command from the queue in the loop() function.
static bool cmdbuffer_front_already_processed = false;
// Type of a command, which is to be executed right now.
#define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
// String of a command, which is to be executed right now.
#define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
// Enable debugging of the command buffer.
// Debugging information will be sent to serial line.
// #define CMDBUFFER_DEBUG
static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
//static float tt = 0;
//static float bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
unsigned long starttime=0;
unsigned long stoptime=0;
2016-05-31 12:08:04 +00:00
unsigned long _usb_timer = 0;
static uint8_t tmp_extruder;
bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
bool CooldownNoWait = true;
bool target_direction;
//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
//===========================================================================
//=============================Routines======================================
//===========================================================================
void get_arc_coordinates();
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
#ifdef SDSUPPORT
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
// Pop the currently processed command from the queue.
// It is expected, that there is at least one command in the queue.
bool cmdqueue_pop_front()
{
if (buflen > 0) {
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("Dequeing ");
SERIAL_ECHO(cmdbuffer+bufindr+1);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Old indices: buflen ");
SERIAL_ECHO(buflen);
SERIAL_ECHOPGM(", bufindr ");
SERIAL_ECHO(bufindr);
SERIAL_ECHOPGM(", bufindw ");
SERIAL_ECHO(bufindw);
SERIAL_ECHOPGM(", serial_count ");
SERIAL_ECHO(serial_count);
SERIAL_ECHOPGM(", bufsize ");
SERIAL_ECHO(sizeof(cmdbuffer));
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
if (-- buflen == 0) {
// Empty buffer.
if (serial_count == 0)
// No serial communication is pending. Reset both pointers to zero.
bufindw = 0;
bufindr = bufindw;
} else {
// There is at least one ready line in the buffer.
// First skip the current command ID and iterate up to the end of the string.
for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
// Second, skip the end of string null character and iterate until a nonzero command ID is found.
for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
// If the end of the buffer was empty,
if (bufindr == sizeof(cmdbuffer)) {
// skip to the start and find the nonzero command.
for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
}
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("New indices: buflen ");
SERIAL_ECHO(buflen);
SERIAL_ECHOPGM(", bufindr ");
SERIAL_ECHO(bufindr);
SERIAL_ECHOPGM(", bufindw ");
SERIAL_ECHO(bufindw);
SERIAL_ECHOPGM(", serial_count ");
SERIAL_ECHO(serial_count);
SERIAL_ECHOPGM(" new command on the top: ");
SERIAL_ECHO(cmdbuffer+bufindr+1);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
}
return true;
}
return false;
}
void cmdqueue_reset()
{
while (cmdqueue_pop_front()) ;
}
// How long a string could be pushed to the front of the command queue?
// If yes, adjust bufindr to the new position, where the new command could be enqued.
// len_asked does not contain the zero terminator size.
bool cmdqueue_could_enqueue_front(int len_asked)
{
// MAX_CMD_SIZE has to accommodate the zero terminator.
if (len_asked >= MAX_CMD_SIZE)
return false;
// Remove the currently processed command from the queue.
if (! cmdbuffer_front_already_processed) {
cmdqueue_pop_front();
cmdbuffer_front_already_processed = true;
}
if (bufindr == bufindw && buflen > 0)
// Full buffer.
return false;
// Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
if (bufindw < bufindr) {
int bufindr_new = bufindr - len_asked - 2;
// Simple case. There is a contiguous space between the write buffer and the read buffer.
if (endw <= bufindr_new) {
bufindr = bufindr_new;
return true;
}
} else {
// Otherwise the free space is split between the start and end.
if (len_asked + 2 <= bufindr) {
// Could fit at the start.
bufindr -= len_asked + 2;
return true;
}
int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
if (endw <= bufindr_new) {
memset(cmdbuffer, 0, bufindr);
bufindr = bufindr_new;
return true;
}
}
return false;
}
// Could one enqueue a command of lenthg len_asked into the buffer,
// while leaving CMDBUFFER_RESERVE_FRONT at the start?
// If yes, adjust bufindw to the new position, where the new command could be enqued.
// len_asked does not contain the zero terminator size.
bool cmdqueue_could_enqueue_back(int len_asked)
{
// MAX_CMD_SIZE has to accommodate the zero terminator.
if (len_asked >= MAX_CMD_SIZE)
return false;
if (bufindr == bufindw && buflen > 0)
// Full buffer.
return false;
if (serial_count > 0) {
// If there is some data stored starting at bufindw, len_asked is certainly smaller than
// the allocated data buffer. Try to reserve a new buffer and to move the already received
// serial data.
// How much memory to reserve for the commands pushed to the front?
// End of the queue, when pushing to the end.
int endw = bufindw + len_asked + 2;
if (bufindw < bufindr)
// Simple case. There is a contiguous space between the write buffer and the read buffer.
return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
// Otherwise the free space is split between the start and end.
if (// Could one fit to the end, including the reserve?
endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
// Could one fit to the end, and the reserve to the start?
(endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
return true;
// Could one fit both to the start?
if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
// Mark the rest of the buffer as used.
memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
// and point to the start.
bufindw = 0;
return true;
}
} else {
// How much memory to reserve for the commands pushed to the front?
// End of the queue, when pushing to the end.
int endw = bufindw + len_asked + 2;
if (bufindw < bufindr)
// Simple case. There is a contiguous space between the write buffer and the read buffer.
return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
// Otherwise the free space is split between the start and end.
if (// Could one fit to the end, including the reserve?
endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
// Could one fit to the end, and the reserve to the start?
(endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
return true;
// Could one fit both to the start?
if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
// Mark the rest of the buffer as used.
memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
// and point to the start.
bufindw = 0;
return true;
}
}
return false;
}
#ifdef CMDBUFFER_DEBUG
static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
{
SERIAL_ECHOPGM("Entry nr: ");
SERIAL_ECHO(nr);
SERIAL_ECHOPGM(", type: ");
SERIAL_ECHO(int(*p));
SERIAL_ECHOPGM(", cmd: ");
SERIAL_ECHO(p+1);
SERIAL_ECHOLNPGM("");
}
static void cmdqueue_dump_to_serial()
{
if (buflen == 0) {
SERIAL_ECHOLNPGM("The command buffer is empty.");
} else {
SERIAL_ECHOPGM("Content of the buffer: entries ");
SERIAL_ECHO(buflen);
SERIAL_ECHOPGM(", indr ");
SERIAL_ECHO(bufindr);
SERIAL_ECHOPGM(", indw ");
SERIAL_ECHO(bufindw);
SERIAL_ECHOLNPGM("");
int nr = 0;
if (bufindr < bufindw) {
for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
cmdqueue_dump_to_serial_single_line(nr, p);
// Skip the command.
for (++p; *p != 0; ++ p);
// Skip the gaps.
for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
}
} else {
for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
cmdqueue_dump_to_serial_single_line(nr, p);
// Skip the command.
for (++p; *p != 0; ++ p);
// Skip the gaps.
for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
}
for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
cmdqueue_dump_to_serial_single_line(nr, p);
// Skip the command.
for (++p; *p != 0; ++ p);
// Skip the gaps.
for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
}
}
SERIAL_ECHOLNPGM("End of the buffer.");
}
}
#endif /* CMDBUFFER_DEBUG */
//adds an command to the main command buffer
//thats really done in a non-safe way.
//needs overworking someday
// Currently the maximum length of a command piped through this function is around 20 characters
void enquecommand(const char *cmd, bool from_progmem)
{
int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
// Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
// If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
if (cmdqueue_could_enqueue_back(len)) {
// This is dangerous if a mixing of serial and this happens
// This may easily be tested: If serial_count > 0, we have a problem.
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
if (from_progmem)
strcpy_P(cmdbuffer + bufindw + 1, cmd);
else
strcpy(cmdbuffer + bufindw + 1, cmd);
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_Enqueing);
SERIAL_ECHO(cmdbuffer + bufindw + 1);
SERIAL_ECHOLNPGM("\"");
bufindw += len + 2;
if (bufindw == sizeof(cmdbuffer))
bufindw = 0;
++ buflen;
#ifdef CMDBUFFER_DEBUG
cmdqueue_dump_to_serial();
#endif /* CMDBUFFER_DEBUG */
} else {
SERIAL_ERROR_START;
SERIAL_ECHORPGM(MSG_Enqueing);
if (from_progmem)
SERIAL_PROTOCOLRPGM(cmd);
else
SERIAL_ECHO(cmd);
SERIAL_ECHOLNPGM("\" failed: Buffer full!");
#ifdef CMDBUFFER_DEBUG
cmdqueue_dump_to_serial();
#endif /* CMDBUFFER_DEBUG */
}
}
void enquecommand_front(const char *cmd, bool from_progmem)
{
int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
// Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
if (cmdqueue_could_enqueue_front(len)) {
cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
if (from_progmem)
strcpy_P(cmdbuffer + bufindr + 1, cmd);
else
strcpy(cmdbuffer + bufindr + 1, cmd);
++ buflen;
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Enqueing to the front: \"");
SERIAL_ECHO(cmdbuffer + bufindr + 1);
SERIAL_ECHOLNPGM("\"");
#ifdef CMDBUFFER_DEBUG
cmdqueue_dump_to_serial();
#endif /* CMDBUFFER_DEBUG */
} else {
SERIAL_ERROR_START;
SERIAL_ECHOPGM("Enqueing to the front: \"");
if (from_progmem)
SERIAL_PROTOCOLRPGM(cmd);
else
SERIAL_ECHO(cmd);
SERIAL_ECHOLNPGM("\" failed: Buffer full!");
#ifdef CMDBUFFER_DEBUG
cmdqueue_dump_to_serial();
#endif /* CMDBUFFER_DEBUG */
}
}
// Mark the command at the top of the command queue as new.
// Therefore it will not be removed from the queue.
void repeatcommand_front()
{
cmdbuffer_front_already_processed = true;
}
void setup_killpin()
{
#if defined(KILL_PIN) && KILL_PIN > -1
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN,HIGH);
#endif
}
// Set home pin
void setup_homepin(void)
{
#if defined(HOME_PIN) && HOME_PIN > -1
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN,HIGH);
#endif
}
void setup_photpin()
{
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
}
static void lcd_language_menu();
#ifdef MESH_BED_LEVELING
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
#endif
// "Setup" function is called by the Arduino framework on startup.
// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
// are initialized by the main() routine provided by the Arduino framework.
void setup()
{
setup_killpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
#if 0
SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
for (int i = 0; i < 4096; ++ i) {
int b = eeprom_read_byte((unsigned char*)i);
if (b != 255) {
SERIAL_ECHO(i);
SERIAL_ECHO(":");
SERIAL_ECHO(b);
SERIAL_ECHOLN("");
}
}
SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
#endif
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
MCUSR=0;
2016-05-31 12:08:04 +00:00
//SERIAL_ECHORPGM(MSG_MARLIN);
//SERIAL_ECHOLNRPGM(VERSION_STRING);
#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
SERIAL_ECHORPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
2016-05-31 12:08:04 +00:00
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings();
tp_init(); // Initialize temperature loop
plan_init(); // Initialize planner;
watchdog_init();
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
// Reset the machine correction matrix.
// It does not make sense to load the correction matrix until the machine is homed.
world2machine_reset();
lcd_init();
2016-07-20 13:02:52 +00:00
if (!READ(BTN_ENC))
{
_delay_ms(1000);
if (!READ(BTN_ENC))
{
SET_OUTPUT(BEEPER);
WRITE(BEEPER, HIGH);
// Force language selection at the next boot up.
lcd_force_language_selection();
// Force the "Follow calibration flow" message at the next boot up.
calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
farm_no = 0;
EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
farm_mode = false;
while (!READ(BTN_ENC));
WRITE(BEEPER, LOW);
2016-07-20 13:02:52 +00:00
#ifdef MESH_BED_LEVELING
_delay_ms(2000);
if (!READ(BTN_ENC))
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
_delay_ms(200);
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
int _z = 0;
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
2016-07-20 13:02:52 +00:00
EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
}
else
{
WRITE(BEEPER, HIGH);
_delay_ms(100);
WRITE(BEEPER, LOW);
}
#endif // mesh
2016-07-20 13:02:52 +00:00
}
}
else
{
_delay_ms(1000); // wait 1sec to display the splash screen
}
2016-07-20 13:02:52 +00:00
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#ifdef DIGIPOT_I2C
digipot_i2c_init();
#endif
setup_homepin();
2016-05-31 12:08:04 +00:00
#if defined(Z_AXIS_ALWAYS_ON)
enable_z();
#endif
2016-07-20 13:02:52 +00:00
EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
if (farm_no > 0)
{
farm_mode = true;
farm_no = farm_no;
prusa_statistics(8);
}
else
{
farm_mode = false;
farm_no = 0;
}
// Enable Toshiba FlashAir SD card / WiFi enahanced card.
card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
// but this times out if a blocking dialog is shown in setup().
card.initsd();
if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
// where all the EEPROM entries are set to 0x0ff.
// Once a firmware boots up, it forces at least a language selection, which changes
// EEPROM_LANG to number lower than 0x0ff.
// 1) Set a high power mode.
eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
}
2016-07-20 13:02:52 +00:00
// In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
// If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
// is being written into the EEPROM, so the update procedure will be triggered only once.
lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
if (lang_selected >= LANG_NUM){
lcd_mylang();
}
if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
// Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
lcd_update_enable(true);
} else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
lcd_update_enable(true);
} else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
// Show the message.
lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
lcd_update_enable(true);
}
// Store the currently running firmware into an eeprom,
// so the next time the firmware gets updated, it will know from which version it has been updated.
update_current_firmware_version_to_eeprom();
}
2016-12-14 13:38:36 +00:00
void trace();
#define CHUNK_SIZE 64 // bytes
#define SAFETY_MARGIN 1
char chunk[CHUNK_SIZE+SAFETY_MARGIN];
int chunkHead = 0;
int serial_read_stream() {
setTargetHotend(0, 0);
setTargetBed(0);
lcd_implementation_clear();
lcd_printPGM(PSTR(" Upload in progress"));
// first wait for how many bytes we will receive
uint32_t bytesToReceive;
// receive the four bytes
char bytesToReceiveBuffer[4];
for (int i=0; i<4; i++) {
int data;
while ((data = MYSERIAL.read()) == -1) {};
bytesToReceiveBuffer[i] = data;
}
// make it a uint32
memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
// we're ready, notify the sender
MYSERIAL.write('+');
// lock in the routine
uint32_t receivedBytes = 0;
while (prusa_sd_card_upload) {
int i;
for (i=0; i<CHUNK_SIZE; i++) {
int data;
// check if we're not done
if (receivedBytes == bytesToReceive) {
break;
}
// read the next byte
while ((data = MYSERIAL.read()) == -1) {};
receivedBytes++;
// save it to the chunk
chunk[i] = data;
}
// write the chunk to SD
card.write_command_no_newline(&chunk[0]);
// notify the sender we're ready for more data
MYSERIAL.write('+');
// for safety
manage_heater();
// check if we're done
if(receivedBytes == bytesToReceive) {
trace(); // beep
card.closefile();
prusa_sd_card_upload = false;
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
return 0;
}
}
}
// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
// Before loop(), the setup() function is called by the main() routine.
void loop()
{
2016-05-31 12:08:04 +00:00
if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
{
is_usb_printing = true;
usb_printing_counter--;
_usb_timer = millis();
}
if (usb_printing_counter == 0)
{
is_usb_printing = false;
}
2016-12-14 13:38:36 +00:00
if (prusa_sd_card_upload)
{
//we read byte-by byte
serial_read_stream();
} else
{
get_command();
2016-05-31 12:08:04 +00:00
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if(buflen)
{
#ifdef SDSUPPORT
if(card.saving)
{
// Saving a G-code file onto an SD-card is in progress.
// Saving starts with M28, saving until M29 is seen.
if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
card.write_command(CMDBUFFER_CURRENT_STRING);
if(card.logging)
process_commands();
else
2016-05-31 12:08:04 +00:00
SERIAL_PROTOCOLLNRPGM(MSG_OK);
} else {
card.closefile();
SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
}
} else {
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
if (! cmdbuffer_front_already_processed)
cmdqueue_pop_front();
cmdbuffer_front_already_processed = false;
}
}
//check heater every n milliseconds
manage_heater();
manage_inactivity();
checkHitEndstops();
lcd_update();
}
void get_command()
{
// Test and reserve space for the new command string.
if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
return;
while (MYSERIAL.available() > 0) {
char serial_char = MYSERIAL.read();
TimeSent = millis();
TimeNow = millis();
if (serial_char < 0)
// Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
// and Marlin does not support such file names anyway.
// Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
// to a hang-up of the print process from an SD card.
continue;
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == ':' && comment_mode == false) ||
serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) { //if empty line
comment_mode = false; //for new command
return;
}
cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
if(!comment_mode){
comment_mode = false; //for new command
if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
{
// Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
// and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
gcode_N = (strtol(strchr_pointer+1, NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
// M110 - set current line number.
// Line numbers not sent in succession.
SERIAL_ERROR_START;
SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
{
byte checksum = 0;
char *p = cmdbuffer+bufindw+1;
while (p != strchr_pointer)
checksum = checksum^(*p++);
if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
SERIAL_ERROR_START;
SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
// If no errors, remove the checksum and continue parsing.
*strchr_pointer = 0;
}
else
{
SERIAL_ERROR_START;
SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
} // end of 'N' command
}
else // if we don't receive 'N' but still see '*'
{
if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
{
SERIAL_ERROR_START;
SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
serial_count = 0;
return;
}
} // end of '*' command
if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
if (! IS_SD_PRINTING) {
usb_printing_counter = 10;
is_usb_printing = true;
}
if (Stopped == true) {
int gcode = strtol(strchr_pointer+1, NULL, 10);
if (gcode >= 0 && gcode <= 3) {
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
LCD_MESSAGERPGM(MSG_STOPPED);
}
}
} // end of 'G' command
//If command was e-stop process now
if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
kill();
// Store the current line into buffer, move to the next line.
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Storing a command line to buffer: ");
SERIAL_ECHO(cmdbuffer+bufindw+1);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
if (bufindw == sizeof(cmdbuffer))
bufindw = 0;
++ buflen;
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("Number of commands in the buffer: ");
SERIAL_ECHO(buflen);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
} // end of 'not comment mode'
serial_count = 0; //clear buffer
// Don't call cmdqueue_could_enqueue_back if there are no characters waiting
// in the queue, as this function will reserve the memory.
if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
return;
} // end of "end of line" processing
else {
// Not an "end of line" symbol. Store the new character into a buffer.
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
}
} // end of serial line processing loop
if(farm_mode){
TimeNow = millis();
if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
cmdbuffer[bufindw+serial_count+1] = 0;
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
if (bufindw == sizeof(cmdbuffer))
bufindw = 0;
++ buflen;
serial_count = 0;
SERIAL_ECHOPGM("TIMEOUT:");
//memset(cmdbuffer, 0 , sizeof(cmdbuffer));
return;
}
}
#ifdef SDSUPPORT
if(!card.sdprinting || serial_count!=0){
// If there is a half filled buffer from serial line, wait until return before
// continuing with the serial line.
return;
}
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering=false;
if(buflen==0) stop_buffering=false;
// Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
while( !card.eof() && !stop_buffering) {
int16_t n=card.get();
char serial_char = (char)n;
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == '#' && comment_mode == false) ||
(serial_char == ':' && comment_mode == false) ||
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
{
if(card.eof()){
SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int hours, minutes;
minutes=(t/60)%60;
hours=t/60/60;
2016-05-31 12:08:04 +00:00
save_statistics(total_filament_used, t);
sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
card.printingHasFinished();
card.checkautostart(true);
2016-07-20 13:02:52 +00:00
if (farm_mode)
{
prusa_statistics(6);
lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
2016-07-20 13:02:52 +00:00
}
}
if(serial_char=='#')
stop_buffering=true;
if(!serial_count)
{
comment_mode = false; //for new command
return; //if empty line
}
cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
++ buflen;
bufindw += strlen(cmdbuffer+bufindw+1) + 2;
if (bufindw == sizeof(cmdbuffer))
bufindw = 0;
comment_mode = false; //for new command
serial_count = 0; //clear buffer
// The following line will reserve buffer space if available.
if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
return;
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
// Return True if a character was found
static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); } \
type array##_ext(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static void axis_is_at_home(int axis) {
current_position[axis] = base_home_pos(axis) + add_homing[axis];
min_pos[axis] = base_min_pos(axis) + add_homing[axis];
max_pos[axis] = base_max_pos(axis) + add_homing[axis];
}
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
static void setup_for_endstop_move(bool enable_endstops_now = true) {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(enable_endstops_now);
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
// corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = XY_TRAVEL_SPEED;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = oldFeedRate;
}
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
run_z_probe();
float measured_z = current_position[Z_AXIS];
SERIAL_PROTOCOLRPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x);
SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(measured_z);
SERIAL_PROTOCOLPGM("\n");
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir = home_dir(axis);
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]/2 ;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
}
}
void home_xy()
{
set_destination_to_current();
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
endstops_hit_on_purpose();
}
void refresh_cmd_timeout(void)
{
previous_millis_cmd = millis();
}
#ifdef FWRETRACT
void retract(bool retracting, bool swapretract = false) {
if(retracting && !retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
if (swapretract) {
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate*60;
retracted[active_extruder]=true;
prepare_move();
current_position[Z_AXIS]-=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
prepare_move();
feedrate = oldFeedrate;
} else if(!retracting && retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[Z_AXIS]+=retract_zlift;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
//prepare_move();
if (swapretract) {
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate*60;
retracted[active_extruder]=false;
prepare_move();
feedrate = oldFeedrate;
}
} //retract
#endif //FWRETRACT
2016-12-14 13:38:36 +00:00
void trace() {
tone(BEEPER, 440);
delay(25);
noTone(BEEPER);
delay(20);
}
void process_commands()
{
#ifdef FILAMENT_RUNOUT_SUPPORT
SET_INPUT(FR_SENS);
#endif
#ifdef CMDBUFFER_DEBUG
SERIAL_ECHOPGM("Processing a GCODE command: ");
SERIAL_ECHO(cmdbuffer+bufindr+1);
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("In cmdqueue: ");
SERIAL_ECHO(buflen);
SERIAL_ECHOLNPGM("");
#endif /* CMDBUFFER_DEBUG */
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp, y_tmp, z_tmp, real_z;
#endif
// PRUSA GCODES
if(code_seen("PRUSA")){
2016-12-14 13:38:36 +00:00
if (code_seen("fv")) {
// get file version
#ifdef SDSUPPORT
card.openFile(strchr_pointer + 3,true);
while (true) {
uint16_t readByte = card.get();
MYSERIAL.write(readByte);
if (readByte=='\n') {
break;
}
}
card.closefile();
#endif // SDSUPPORT
} else if (code_seen("M28")) {
trace();
prusa_sd_card_upload = true;
card.openFile(strchr_pointer+4,false);
} else if(code_seen("Fir")){
SERIAL_PROTOCOLLN(FW_version);
} else if(code_seen("Rev")){
SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
} else if(code_seen("Lang")) {
lcd_force_language_selection();
} else if(code_seen("Lz")) {
EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
2016-12-14 14:01:33 +00:00
2016-12-14 13:38:36 +00:00
} else if (code_seen("SERIAL LOW")) {
MYSERIAL.println("SERIAL LOW");
MYSERIAL.begin(BAUDRATE);
return;
} else if (code_seen("SERIAL HIGH")) {
MYSERIAL.println("SERIAL HIGH");
MYSERIAL.begin(1152000);
return;
2016-12-14 13:59:01 +00:00
} else if(code_seen("Beat")) {
// Kick farm link timer
kicktime = millis();
2016-12-14 14:01:33 +00:00
2016-12-14 13:38:36 +00:00
}
//else if (code_seen('Cal')) {
// lcd_calibration();
// }
}
2016-12-14 13:38:36 +00:00
else if (code_seen('^')) {
// nothing, this is a version line
} else if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
#ifdef FILAMENT_RUNOUT_SUPPORT
if(READ(FR_SENS)){
feedmultiplyBckp=feedmultiply;
float target[4];
float lastpos[4];
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//retract by E
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
//LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0;
int counterBeep = 0;
lcd_wait_interact();
while(!lcd_clicked()){
cnt++;
manage_heater();
manage_inactivity(true);
//lcd_update();
if(cnt==0)
{
#if BEEPER > 0
if (counterBeep== 500){
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep== 0){
WRITE(BEEPER,HIGH);
}
if (counterBeep== 20){
WRITE(BEEPER,LOW);
}
counterBeep++;
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
}
WRITE(BEEPER,LOW);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_change_fil_state = 0;
lcd_loading_filament();
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
lcd_change_fil_state = 0;
lcd_alright();
switch(lcd_change_fil_state){
case 2:
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_filament();
break;
case 3:
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_color();
break;
default:
lcd_change_success();
break;
}
}
target[E_AXIS]+= 5;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
//current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
//plan_set_e_position(current_position[E_AXIS]);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
plan_set_e_position(lastpos[E_AXIS]);
feedmultiply=feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
}
#endif
get_coordinates(); // For X Y Z E F
2016-05-31 12:08:04 +00:00
total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
#ifdef FWRETRACT
if(autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted);
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
}
break;
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(true);
}
break;
case 3: // G3 - CCW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(false);
}
break;
case 4: // G4 dwell
LCD_MESSAGERPGM(MSG_DWELL);
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
st_synchronize();
codenum += millis(); // keep track of when we started waiting
previous_millis_cmd = millis();
while(millis() < codenum) {
manage_heater();
manage_inactivity();
lcd_update();
}
break;
#ifdef FWRETRACT
case 10: // G10 retract
#if EXTRUDERS > 1
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
retract(true,retracted_swap[active_extruder]);
#else
retract(true);
#endif
break;
case 11: // G11 retract_recover
#if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]);
#else
retract(false);
#endif
break;
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
2016-05-31 12:08:04 +00:00
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
2016-07-20 13:02:52 +00:00
2016-05-31 12:08:04 +00:00
// For mesh bed leveling deactivate the matrix temporarily
#ifdef MESH_BED_LEVELING
mbl.active = 0;
#endif
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
babystep_undo();
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++)
destination[i] = current_position[i];
feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
homeaxis(Z_AXIS);
}
#endif
#ifdef QUICK_HOME
// In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
int x_axis_home_dir = home_dir(X_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate = homing_feedrate[Y_AXIS];
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
}
#endif /* QUICK_HOME */
2016-07-20 13:02:52 +00:00
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
homeaxis(X_AXIS);
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
homeaxis(Y_AXIS);
if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
#endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
#ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
{
homeaxis(X_AXIS);
homeaxis(Y_AXIS);
}
// 1st mesh bed leveling measurement point, corrected.
world2machine_initialize();
world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
world2machine_reset();
if (destination[Y_AXIS] < Y_MIN_POS)
destination[Y_AXIS] = Y_MIN_POS;
destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
feedrate = homing_feedrate[Z_AXIS]/10;
current_position[Z_AXIS] = 0;
enable_endstops(false);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
enable_endstops(true);
endstops_hit_on_purpose();
homeaxis(Z_AXIS);
#else // MESH_BED_LEVELING
homeaxis(Z_AXIS);
#endif // MESH_BED_LEVELING
}
#else // defined(Z_SAFE_HOMING): Z Safe mode activated.
if(home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED/60;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
homeaxis(Z_AXIS);
}
// Let's see if X and Y are homed and probe is inside bed area.
if(code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
homeaxis(Z_AXIS);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
} else {
LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
}
}
#endif // Z_SAFE_HOMING
#endif // Z_HOME_DIR < 0
if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
}
}
#ifdef ENABLE_AUTO_BED_LEVELING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
}
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
#ifndef MESH_BED_LEVELING
// If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
// Offer the user to load the baby step value, which has been adjusted at the previous print session.
if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
lcd_adjust_z();
#endif
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position to match the transformed coordinate system.
world2machine_update_current();
2016-05-31 12:08:04 +00:00
#ifdef MESH_BED_LEVELING
2016-07-20 13:02:52 +00:00
if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
{
}
else
{
st_synchronize();
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
// enquecommand_front_P((PSTR("G80")));
goto case_G80;
2016-05-31 12:08:04 +00:00
}
#endif
2016-07-20 13:02:52 +00:00
if (farm_mode) { prusa_statistics(20); };
break;
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
2016-05-31 12:08:04 +00:00
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
#endif
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int probePointCounter = 0;
bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
{
int xProbe, xInc;
if (zig)
{
xProbe = LEFT_PROBE_BED_POSITION;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
}
float measured_z = probe_pt(xProbe, yProbe, z_before);
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
}
clean_up_after_endstop_move();
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
// Probe at 3 arbitrary points
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // AUTO_BED_LEVELING_GRID
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move();
}
break;
#else
case 31: // dock the sled
dock_sled(true);
break;
case 32: // undock the sled
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
case 30: // G30 Single Z Probe
{
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
find_bed_induction_sensor_point_z(-10.f, 3);
SERIAL_PROTOCOLRPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
SERIAL_PROTOCOLPGM(" Y: ");
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM(" Z: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move();
}
break;
/**
* G80: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* The S0 report the points as below
*
* +----> X-axis
* |
* |
* v Y-axis
*
*/
case 80:
case_G80:
{
// Firstly check if we know where we are
if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
2016-05-31 12:08:04 +00:00
// We don't know where we are! HOME!
// Push the commands to the front of the message queue in the reverse order!
// There shall be always enough space reserved for these commands.
repeatcommand_front(); // repeat G80 with all its parameters
enquecommand_front_P((PSTR("G28 W0")));
break;
}
// Save custom message state, set a new custom message state to display: Calibrating point 9.
bool custom_message_old = custom_message;
unsigned int custom_message_type_old = custom_message_type;
unsigned int custom_message_state_old = custom_message_state;
custom_message = true;
custom_message_type = 1;
custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
lcd_update(1);
mbl.reset();
// Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
// consumed during the first movements following this statement.
babystep_undo();
// Cycle through all points and probe them
// First move up. During this first movement, the babystepping will be reverted.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
// The move to the first calibration point.
current_position[X_AXIS] = pgm_read_float(bed_ref_points);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
// Wait until the move is finished.
st_synchronize();
int mesh_point = 0;
int ix = 0;
int iy = 0;
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
bool has_z = is_bed_z_jitter_data_valid();
setup_for_endstop_move(false);
const char *kill_message = NULL;
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
// Get coords of a measuring point.
ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
float z0 = 0.f;
if (has_z && mesh_point > 0) {
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
#if 0
SERIAL_ECHOPGM("Bed leveling, point: ");
MYSERIAL.print(mesh_point);
SERIAL_ECHOPGM(", calibration z: ");
MYSERIAL.print(z0, 5);
SERIAL_ECHOLNPGM("");
#endif
}
// Move Z up to MESH_HOME_Z_SEARCH.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
// Move to XY position of the sensor point.
current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
st_synchronize();
// Go down until endstop is hit
const float Z_CALIBRATION_THRESHOLD = 1.f;
if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
break;
}
if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
break;
}
if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
break;
}
mbl.set_z(ix, iy, current_position[Z_AXIS]);
custom_message_state--;
mesh_point++;
lcd_update(1);
}
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
kill(kill_message);
}
clean_up_after_endstop_move();
// Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
babystep_apply();
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
for (uint8_t i = 0; i < 4; ++ i) {
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
long correction = 0;
if (code_seen(codes[i]))
correction = code_value_long();
else if (eeprom_bed_correction_valid) {
unsigned char *addr = (i < 2) ?
((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
correction = eeprom_read_int8(addr);
}
if (correction == 0)
continue;
float offset = float(correction) * 0.001f;
if (fabs(offset) > 0.101f) {
SERIAL_ERROR_START;
SERIAL_ECHOPGM("Excessive bed leveling correction: ");
SERIAL_ECHO(offset);
SERIAL_ECHOLNPGM(" microns");
} else {
switch (i) {
case 0:
for (uint8_t row = 0; row < 3; ++ row) {
mbl.z_values[row][1] += 0.5f * offset;
mbl.z_values[row][0] += offset;
}
break;
case 1:
for (uint8_t row = 0; row < 3; ++ row) {
mbl.z_values[row][1] += 0.5f * offset;
mbl.z_values[row][2] += offset;
}
break;
case 2:
for (uint8_t col = 0; col < 3; ++ col) {
mbl.z_values[1][col] += 0.5f * offset;
mbl.z_values[0][col] += offset;
}
break;
case 3:
for (uint8_t col = 0; col < 3; ++ col) {
mbl.z_values[1][col] += 0.5f * offset;
mbl.z_values[2][col] += offset;
}
break;
}
}
}
mbl.upsample_3x3();
mbl.active = 1;
go_home_with_z_lift();
// Restore custom message state
custom_message = custom_message_old;
custom_message_type = custom_message_type_old;
custom_message_state = custom_message_state_old;
lcd_update(1);
}
break;
/**
* G81: Print mesh bed leveling status and bed profile if activated
*/
case 81:
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPGM(",");
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_PROTOCOLPGM("\n");
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
#if 0
/**
* G82: Single Z probe at current location
*
* WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
*
*/
case 82:
SERIAL_PROTOCOLLNPGM("Finding bed ");
setup_for_endstop_move();
find_bed_induction_sensor_point_z();
clean_up_after_endstop_move();
SERIAL_PROTOCOLPGM("Bed found at: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
break;
2016-04-28 12:50:25 +00:00
/**
* G83: Prusa3D specific: Babystep in Z and store to EEPROM
2016-04-28 12:50:25 +00:00
*/
case 83:
{
int babystepz = code_seen('S') ? code_value() : 0;
int BabyPosition = code_seen('P') ? code_value() : 0;
if (babystepz != 0) {
//FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
// Is the axis indexed starting with zero or one?
2016-04-28 12:50:25 +00:00
if (BabyPosition > 4) {
SERIAL_PROTOCOLLNPGM("Index out of bounds");
}else{
// Save it to the eeprom
babystepLoadZ = babystepz;
EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
// adjust the Z
babystepsTodoZadd(babystepLoadZ);
2016-04-28 12:50:25 +00:00
}
}
}
break;
/**
* G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
2016-04-28 12:50:25 +00:00
*/
case 84:
babystepsTodoZsubtract(babystepLoadZ);
// babystepLoadZ = 0;
2016-04-28 12:50:25 +00:00
break;
/**
* G85: Prusa3D specific: Pick best babystep
2016-04-28 12:50:25 +00:00
*/
case 85:
lcd_pick_babystep();
break;
#endif
2016-04-28 12:50:25 +00:00
/**
* G86: Prusa3D specific: Disable babystep correction after home.
* This G-code will be performed at the start of a calibration script.
2016-04-28 12:50:25 +00:00
*/
case 86:
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
2016-04-28 12:50:25 +00:00
break;
2016-05-01 11:56:55 +00:00
/**
* G87: Prusa3D specific: Enable babystep correction after home
* This G-code will be performed at the end of a calibration script.
2016-05-01 11:56:55 +00:00
*/
case 87:
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
2016-05-01 11:56:55 +00:00
break;
2016-05-31 12:08:04 +00:00
/**
* G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
*/
case 88:
break;
2016-05-31 12:08:04 +00:00
#endif // ENABLE_MESH_BED_LEVELING
2016-04-28 12:50:25 +00:00
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
if(i == E_AXIS) {
current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]);
}
else {
current_position[i] = code_value()+add_homing[i];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
break;
2016-07-20 13:02:52 +00:00
case 98:
farm_no = 21;
EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
farm_mode = true;
break;
case 99:
farm_no = 0;
EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
farm_mode = false;
break;
}
} // end if(code_seen('G'))
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
{
char *src = strchr_pointer + 2;
codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0;
}
starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0') {
lcd_setstatus(src);
} else {
LCD_MESSAGERPGM(MSG_USERWAIT);
}
lcd_ignore_click();
st_synchronize();
previous_millis_cmd = millis();
if (codenum > 0){
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()){
manage_heater();
manage_inactivity();
lcd_update();
}
lcd_ignore_click(false);
}else{
if (!lcd_detected())
break;
while(!lcd_clicked()){
manage_heater();
manage_inactivity();
lcd_update();
}
}
if (IS_SD_PRINTING)
LCD_MESSAGERPGM(MSG_RESUMING);
else
LCD_MESSAGERPGM(WELCOME_MSG);
}
break;
#endif
case 17:
LCD_MESSAGERPGM(MSG_NO_MOVE);
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
break;
case 21: // M21 - init SD card
card.initsd();
break;
case 22: //M22 - release SD card
card.release();
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos)='\0';
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
card.startFileprint();
starttime=millis();
break;
case 25: //M25 - Pause SD print
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) {
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openFile(strchr_pointer+4,false);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
case 30: //M30 <filename> Delete File
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL)
*(starpos)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
card.startFileprint();
if(!call_procedure)
starttime=millis(); //procedure calls count as normal print time.
}
} break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer+5);
break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
break;
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
int pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value();
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
#if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
#endif
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
break;
case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
// Reset the skew and offset in both RAM and EEPROM.
reset_bed_offset_and_skew();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
break;
case 45: // M45: Prusa3D: bed skew and offset with manual Z up
{
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Reset the baby step value applied without moving the axes.
babystep_reset();
// Mark all axes as in a need for homing.
memset(axis_known_position, 0, sizeof(axis_known_position));
// Only Z calibration?
bool onlyZ = code_seen('Z');
// Let the user move the Z axes up to the end stoppers.
if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
refresh_cmd_timeout();
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
// Home in the XY plane.
set_destination_to_current();
setup_for_endstop_move();
home_xy();
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
if (onlyZ) {
clean_up_after_endstop_move();
// Z only calibration.
// Load the machine correction matrix
world2machine_initialize();
// and correct the current_position to match the transformed coordinate system.
world2machine_update_current();
//FIXME
bool result = sample_mesh_and_store_reference();
if (result) {
if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
// Shipped, the nozzle height has been set already. The user can start printing now.
calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
// babystep_apply();
}
} else {
// Reset the baby step value and the baby step applied flag.
calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
// Complete XYZ calibration.
BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
uint8_t point_too_far_mask = 0;
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
if (result >= 0) {
// Second half: The fine adjustment.
// Let the planner use the uncorrected coordinates.
mbl.reset();
world2machine_reset();
// Home in the XY plane.
setup_for_endstop_move();
home_xy();
result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
// if (result >= 0) babystep_apply();
}
lcd_bed_calibration_show_result(result, point_too_far_mask);
if (result >= 0) {
// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
}
}
} else {
// Timeouted.
}
lcd_update_enable(true);
break;
}
/*
case 46:
{
// M46: Prusa3D: Show the assigned IP address.
uint8_t ip[4];
bool hasIP = card.ToshibaFlashAir_GetIP(ip);
if (hasIP) {
SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
SERIAL_ECHO(int(ip[0]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[1]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[2]));
SERIAL_ECHOPGM(".");
SERIAL_ECHO(int(ip[3]));
SERIAL_ECHOLNPGM("");
} else {
SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
}
break;
}
*/
case 47:
// M47: Prusa3D: Show end stops dialog on the display.
lcd_diag_show_end_stops();
break;
#if 0
case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
{
// Disable the default update procedure of the display. We will do a modal dialog.
lcd_update_enable(false);
// Let the planner use the uncorrected coordinates.
mbl.reset();
// Reset world2machine_rotation_and_skew and world2machine_shift, therefore
// the planner will not perform any adjustments in the XY plane.
// Wait for the motors to stop and update the current position with the absolute values.
world2machine_revert_to_uncorrected();
// Move the print head close to the bed.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
// Home in the XY plane.
set_destination_to_current();
setup_for_endstop_move();
home_xy();
int8_t verbosity_level = 0;
if (code_seen('V')) {
// Just 'V' without a number counts as V1.
char c = strchr_pointer[1];
verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
}
bool success = scan_bed_induction_points(verbosity_level);
clean_up_after_endstop_move();
// Print head up.
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
st_synchronize();
lcd_update_enable(true);
break;
}
#endif
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif
double sum=0.0;
double mean=0.0;
double sigma=0.0;
double sample_set[50];
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level<0 || verbose_level>4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
goto Sigma_Exit;
}
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
}
if (code_seen('n')) {
n_samples = code_value();
if (n_samples<4 || n_samples>50 ) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
goto Sigma_Exit;
}
}
X_current = X_probe_location = st_get_position_mm(X_AXIS);
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
ext_position = st_get_position_mm(E_AXIS);
if (code_seen('X') || code_seen('x') ) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('Y') || code_seen('y') ) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('L') || code_seen('l') ) {
n_legs = code_value();
if ( n_legs==1 )
n_legs = 2;
if ( n_legs<0 || n_legs>15 ) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
goto Sigma_Exit;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS]/60,
active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
for( n=0; n<n_samples; n++) {
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
if ( n_legs) {
double radius=0.0, theta=0.0, x_sweep, y_sweep;
int rotational_direction, l;
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
for( l=0; l<n_legs-1; l++) {
if (rotational_direction==1)
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
else
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
if ( radius<0.0 )
radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius;
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
X_current = X_MIN_POS;
if ( X_current>X_MAX_POS)
X_current = X_MAX_POS;
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
Y_current = Y_MIN_POS;
if ( Y_current>Y_MAX_POS)
Y_current = Y_MAX_POS;
if (verbose_level>3 ) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM("");
}
do_blocking_move_to( X_current, Y_current, Z_current );
}
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
}
setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + sample_set[j];
}
mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
}
sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOL(" of ");
SERIAL_PROTOCOL(n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
}
if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
}
delay(1000);
clean_up_after_endstop_move();
// enable_endstops(true);
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM("\n");
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 104: // M104
if(setTargetedHotend(104)){
break;
}
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
setWatch();
break;
case 112: // M112 -Emergency Stop
kill();
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
if(setTargetedHotend(105)){
break;
}
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
}
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#ifdef SHOW_TEMP_ADC_VALUES
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
}
#endif
SERIAL_PROTOCOLLN("");
return;
break;
case 109:
{// M109 - Wait for extruder heater to reach target.
if(setTargetedHotend(109)){
break;
}
LCD_MESSAGERPGM(MSG_HEATING);
2016-05-31 12:08:04 +00:00
heating_status = 1;
2016-07-20 13:02:52 +00:00
if (farm_mode) { prusa_statistics(1); };
2016-05-31 12:08:04 +00:00
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
CooldownNoWait = false;
}
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif
setWatch();
codenum = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
#else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)tmp_extruder);
2016-05-31 12:08:04 +00:00
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
{
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN( codenum );
}
else
{
SERIAL_PROTOCOLLN( "?" );
}
#else
SERIAL_PROTOCOLLN("");
#endif
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
2016-05-31 12:08:04 +00:00
{
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
2016-05-31 12:08:04 +00:00
heating_status = 2;
2016-07-20 13:02:52 +00:00
if (farm_mode) { prusa_statistics(2); };
2016-05-31 12:08:04 +00:00
starttime=millis();
previous_millis_cmd = millis();
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGERPGM(MSG_BED_HEATING);
2016-05-31 12:08:04 +00:00
heating_status = 3;
2016-07-20 13:02:52 +00:00
if (farm_mode) { prusa_statistics(1); };
2016-05-31 12:08:04 +00:00
if (code_seen('S'))
{
setTargetBed(code_value());
CooldownNoWait = true;
2016-05-31 12:08:04 +00:00
}
else if (code_seen('R'))
{
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLLN("");
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
}
LCD_MESSAGERPGM(MSG_BED_DONE);
2016-05-31 12:08:04 +00:00
heating_status = 4;
previous_millis_cmd = millis();
#endif
break;
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
powersupply = true;
LCD_MESSAGERPGM(WELCOME_MSG);
lcd_update();
#endif
break;
#endif
case 81: // M81 - Turn off Power Supply
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait a little before to switch off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
powersupply = false;
2016-05-31 12:08:04 +00:00
LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
/*
MACHNAME = "Prusa i3"
MSGOFF = "Vypnuto"
"Prusai3"" ""vypnuto""."
"Prusa i3"" "MSG_ALL[lang_selected][50]"."
*/
lcd_update();
#endif
break;
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84: // M84
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else
{
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis)
{
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
}
else
{
st_synchronize();
if(code_seen('X')) disable_x();
if(code_seen('Y')) disable_y();
if(code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if(code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
}
#endif
}
}
break;
case 85: // M85
if(code_seen('S')) {
max_inactive_time = code_value() * 1000;
}
break;
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
if(i == 3) { // E
float value = code_value();
if(value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_jerk[E_AXIS] *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
}
break;
case 115: // M115
if (code_seen('V')) {
// Report the Prusa version number.
SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
} else if (code_seen('U')) {
// Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
// pause the print and ask the user to upgrade the firmware.
show_upgrade_dialog_if_version_newer(++ strchr_pointer);
} else {
SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
}
break;
case 117: // M117 display message
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;
case 114: // M114
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN("");
break;
case 120: // M120
enable_endstops(false) ;
break;
case 121: // M121
enable_endstops(true) ;
break;
case 119: // M119
SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
SERIAL_PROTOCOLLN("");
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_X_MIN);
if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_X_MAX);
if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
}else{
SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
}
SERIAL_PROTOCOLLN("");
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
}
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
break;
}
}
float area = .0;
if(code_seen('D')) {
float diameter = (float)code_value();
if (diameter == 0.0) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = false;
} else {
filament_size[tmp_extruder] = (float)code_value();
// make sure all extruders have some sane value for the filament size
filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
#if EXTRUDERS > 1
filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
#if EXTRUDERS > 2
filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
#endif
#endif
volumetric_enabled = true;
}
} else {
//reserved for setting filament diameter via UFID or filament measuring device
break;
}
calculate_volumetric_multipliers();
}
break;
case 201: // M201
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value();
if(code_seen('T')) mintravelfeedrate = code_value();
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
if(code_seen('E')) max_jerk[E_AXIS] = code_value();
}
break;
case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
}
break;
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if(code_seen('S'))
{
retract_length = code_value() ;
}
if(code_seen('F'))
{
retract_feedrate = code_value()/60 ;
}
if(code_seen('Z'))
{
retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
int t= code_value() ;
switch(t)
{
case 0:
{
autoretract_enabled=false;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
case 1:
{
autoretract_enabled=true;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
default:
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"");
}
}
}break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{
if(setTargetedHotend(218)){
break;
}
if(code_seen('X'))
{
extruder_offset[X_AXIS][tmp_extruder] = code_value();
}
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
{
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
}
SERIAL_ECHOLN("");
}break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
}
}
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
if(setTargetedHotend(221)){
break;
}
extruder_multiply[tmp_extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
int target = LOW;
st_synchronize();
pinMode(pin_number, INPUT);
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target){
manage_heater();
manage_inactivity();
lcd_update();
}
}
}
}
}
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
case 300: // M300
{
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
noTone(BEEPER);
#elif defined(ULTRALCD)
lcd_buzz(beepS, beepP);
#elif defined(LCD_USE_I2C_BUZZER)
lcd_buzz(beepP, beepS);
#endif
}
else
{
delay(beepP);
}
}
break;
#endif // M300
#ifdef PIDTEMP
case 301: // M301
{
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = scalePID_i(code_value());
if(code_seen('D')) Kd = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value();
#endif
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(Kd));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc);
#endif
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
if(code_seen('P')) bedKp = code_value();
if(code_seen('I')) bedKi = scalePID_i(code_value());
if(code_seen('D')) bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#ifdef CHDK
SET_OUTPUT(CHDK);
WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#else
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif
#endif //chdk end if
}
break;
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
{
if (code_seen('C')) {
lcd_setcontrast( ((int)code_value())&63 );
}
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN("");
}
break;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
}
break;
case 400: // M400 finish all moves
{
st_synchronize();
}
break;
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
{
#if (FILWIDTH_PIN > -1)
if(code_seen('N')) filament_width_nominal=code_value();
else{
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
#endif
}
break;
case 405: //M405 Turn on filament sensor for control
{
if(code_seen('D')) meas_delay_cm=code_value();
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
meas_delay_cm = MAX_MEASUREMENT_DELAY;
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
{
int temp_ratio = widthFil_to_size_ratio();
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
}
delay_index1=0;
delay_index2=0;
}
filament_sensor = true ;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply);
}
break;
case 406: //M406 Turn off filament sensor for control
{
filament_sensor = false ;
}
break;
case 407: //M407 Display measured filament diameter
{
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
break;
#endif
case 500: // M500 Store settings in EEPROM
{
Config_StoreSettings();
}
break;
case 501: // M501 Read settings from EEPROM
{
Config_RetrieveSettings();
}
break;
case 502: // M502 Revert to default settings
{
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
Config_PrintSettings();
}
break;
case 509: //M509 Force language selection
{
lcd_force_language_selection();
SERIAL_ECHO_START;
SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
}
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
{
float value;
if (code_seen('Z'))
{
value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
{
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
SERIAL_PROTOCOLLN("");
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHORPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_ECHORPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
SERIAL_PROTOCOLLN("");
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
SERIAL_ECHO(-zprobe_zoffset);
SERIAL_PROTOCOLLN("");
}
break;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
2016-05-31 12:08:04 +00:00
st_synchronize();
if (farm_mode)
{
prusa_statistics(22);
}
feedmultiplyBckp=feedmultiply;
int8_t TooLowZ = 0;
float target[4];
float lastpos[4];
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//Restract extruder
if(code_seen('E'))
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FIRSTRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//Lift Z
if(code_seen('Z'))
{
target[Z_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_ZADD
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
if(target[Z_AXIS] < 10){
target[Z_AXIS]+= 10 ;
TooLowZ = 1;
}else{
TooLowZ = 0;
}
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
//Move XY to side
if(code_seen('X'))
{
target[X_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_XPOS
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
#endif
}
if(code_seen('Y'))
{
target[Y_AXIS]= code_value();
}
else
{
#ifdef FILAMENTCHANGE_YPOS
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
// Unload filament
if(code_seen('L'))
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
//Wait for user to insert filament
uint8_t cnt=0;
int counterBeep = 0;
lcd_wait_interact();
while(!lcd_clicked()){
cnt++;
manage_heater();
manage_inactivity(true);
if(cnt==0)
{
#if BEEPER > 0
if (counterBeep== 500){
counterBeep = 0;
}
SET_OUTPUT(BEEPER);
if (counterBeep== 0){
WRITE(BEEPER,HIGH);
}
if (counterBeep== 20){
WRITE(BEEPER,LOW);
}
counterBeep++;
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
}
//Filament inserted
WRITE(BEEPER,LOW);
//Feed the filament to the end of nozzle quickly
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
//Extrude some filament
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
//Wait for user to check the state
lcd_change_fil_state = 0;
lcd_loading_filament();
while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
lcd_change_fil_state = 0;
lcd_alright();
switch(lcd_change_fil_state){
// Filament failed to load so load it again
case 2:
target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
lcd_loading_filament();
break;
// Filament loaded properly but color is not clear
case 3:
target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
lcd_loading_color();
break;
// Everything good
default:
lcd_change_success();
break;
}
}
//Not let's go back to print
//Feed a little of filament to stabilize pressure
target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
//Retract
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
//Move XY back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
//Move Z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
//Unretract
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
//Set E position to original
plan_set_e_position(lastpos[E_AXIS]);
//Recover feed rate
feedmultiply=feedmultiplyBckp;
char cmd[9];
sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
enquecommand(cmd);
}
break;
#endif //FILAMENTCHANGEENABLE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
if(code_seen('B')) digipot_current(4,code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if(code_seen('X')) digipot_current(0, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN
if(code_seen('Z')) digipot_current(1, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_E_PIN
if(code_seen('E')) digipot_current(2, code_value());
#endif
#ifdef DIGIPOT_I2C
// this one uses actual amps in floating point
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif
}
break;
case 908: // M908 Control digital trimpot directly.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
#endif
}
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) switch((int)code_value())
{
case 1:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
if(code_seen('B')) microstep_ms(4,code_value(),-1);
break;
case 2:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
if(code_seen('B')) microstep_ms(4,-1,code_value());
break;
}
microstep_readings();
#endif
}
break;
case 999: // M999: Restart after being stopped
Stopped = false;
lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
break;
}
} // end if(code_seen('M')) (end of M codes)
else if(code_seen('T'))
{
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO("T");
SERIAL_ECHO(tmp_extruder);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
else {
boolean make_move = false;
if(code_seen('F')) {
make_move = true;
next_feedrate = code_value();
if(next_feedrate > 0.0) {
feedrate = next_feedrate;
}
}
#if EXTRUDERS > 1
if(tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
// Offset extruder (only by XY)
int i;
for(i = 0; i < 2; i++) {
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
// Set the new active extruder and position
active_extruder = tmp_extruder;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Move to the old position if 'F' was in the parameters
if(make_move && Stopped == false) {
prepare_move();
}
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
} // end if(code_seen('T')) (end of T codes)
else
{
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
SERIAL_ECHOLNPGM("\"");
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLRPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend();
}
// Confirm the execution of a command, if sent from a serial line.
// Execution of a command from a SD card will not be confirmed.
void ClearToSend()
{
previous_millis_cmd = millis();
if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
SERIAL_PROTOCOLLNRPGM(MSG_OK);
}
void get_coordinates()
{
bool seen[4]={false,false,false,false};
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i]))
{
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
seen[i]=true;
}
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_coordinates();
#ifdef SF_ARC_FIX
relative_mode=relative_mode_backup;
#endif
if(code_seen('I')) {
offset[0] = code_value();
}
else {
offset[0] = 0.0;
}
if(code_seen('J')) {
offset[1] = code_value();
}
else {
offset[1] = 0.0;
}
}
void clamp_to_software_endstops(float target[3])
{
world2machine_clamp(target[0], target[1]);
// Clamp the Z coordinate.
if (min_software_endstops) {
float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
#endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
}
if (max_software_endstops) {
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
#ifdef MESH_BED_LEVELING
void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
float dx = x - current_position[X_AXIS];
float dy = y - current_position[Y_AXIS];
float dz = z - current_position[Z_AXIS];
int n_segments = 0;
2016-05-31 12:08:04 +00:00
2016-03-25 14:56:51 +00:00
if (mbl.active) {
float len = abs(dx) + abs(dy);
if (len > 0)
// Split to 3cm segments or shorter.
n_segments = int(ceil(len / 30.f));
}
2016-03-25 14:56:51 +00:00
if (n_segments > 1) {
float de = e - current_position[E_AXIS];
for (int i = 1; i < n_segments; ++ i) {
float t = float(i) / float(n_segments);
plan_buffer_line(
current_position[X_AXIS] + t * dx,
current_position[Y_AXIS] + t * dy,
current_position[Z_AXIS] + t * dz,
current_position[E_AXIS] + t * de,
feed_rate, extruder);
}
}
2016-03-25 14:56:51 +00:00
// The rest of the path.
plan_buffer_line(x, y, z, e, feed_rate, extruder);
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
current_position[Z_AXIS] = z;
current_position[E_AXIS] = e;
}
#endif // MESH_BED_LEVELING
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
#endif
}
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
previous_millis_cmd = millis();
}
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
#if defined(FAN_PIN)
#if CONTROLLERFAN_PIN == FAN_PIN
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
#endif
#endif
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;
void controllerFan()
{
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = millis();
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
#if EXTRUDERS > 2
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| !READ(X2_ENABLE_PIN)
#endif
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
{
lastMotor = millis(); //... set time to NOW so the fan will turn on
}
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
digitalWrite(CONTROLLERFAN_PIN, 0);
analogWrite(CONTROLLERFAN_PIN, 0);
}
else
{
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
}
}
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if(millis() > stat_update) {
stat_update += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
max_temp = max(max_temp, degHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
max_temp = max(max_temp, degTargetBed());
max_temp = max(max_temp, degBed());
#endif
if((max_temp > 55.0) && (red_led == false)) {
digitalWrite(STAT_LED_RED, 1);
digitalWrite(STAT_LED_BLUE, 0);
red_led = true;
blue_led = false;
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
}
}
}
#endif
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
{
#if defined(KILL_PIN) && KILL_PIN > -1
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 10000;
#endif
if(buflen < (BUFSIZE-1)){
get_command();
}
if( (millis() - previous_millis_cmd) > max_inactive_time )
if(max_inactive_time)
kill();
if(stepper_inactive_time) {
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
{
if(blocks_queued() == false && ignore_stepper_queue == false) {
disable_x();
// SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
}
}
}
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
{
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if defined(KILL_PIN) && KILL_PIN > -1
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
if( 0 == READ(KILL_PIN) )
{
killCount++;
}
else if (killCount > 0)
{
killCount--;
}
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if ( killCount >= KILL_DELAY)
{
kill();
}
#endif
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
{
bool oldstatus=READ(E0_ENABLE_PIN);
enable_e0();
float oldepos=current_position[E_AXIS];
float oldedes=destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS]=oldepos;
destination[E_AXIS]=oldedes;
plan_set_e_position(oldepos);
previous_millis_cmd=millis();
st_synchronize();
WRITE(E0_ENABLE_PIN,oldstatus);
}
#endif
#ifdef TEMP_STAT_LEDS
handle_status_leds();
#endif
check_axes_activity();
}
void kill(const char *full_screen_message)
{
cli(); // Stop interrupts
disable_heater();
disable_x();
// SERIAL_ECHOLNPGM("kill - disable Y");
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
if (full_screen_message != NULL) {
SERIAL_ERRORLNRPGM(full_screen_message);
lcd_display_message_fullscreen_P(full_screen_message);
} else {
LCD_ALERTMESSAGERPGM(MSG_KILLED);
}
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for ( int i=5; i--; lcd_update())
{
delay(200);
}
cli(); // disable interrupts
suicide();
while(1) { /* Intentionally left empty */ } // Wait for reset
}
void Stop()
{
disable_heater();
if(Stopped == false) {
Stopped = true;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
LCD_MESSAGERPGM(MSG_STOPPED);
}
}
bool IsStopped() { return Stopped; };
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif //FAST_PWM_FAN
bool setTargetedHotend(int code){
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
switch(code){
case 104:
SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
break;
case 105:
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
break;
case 109:
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
break;
case 218:
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
break;
case 221:
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
break;
}
SERIAL_ECHOLN(tmp_extruder);
return true;
}
}
return false;
}
2016-05-31 12:08:04 +00:00
void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
{
if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
{
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
}
unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
total_filament_used = 0;
}
float calculate_volumetric_multiplier(float diameter) {
float area = .0;
float radius = .0;
radius = diameter * .5;
if (! volumetric_enabled || radius == 0) {
area = 1;
}
else {
area = M_PI * pow(radius, 2);
}
return 1.0 / area;
}
void calculate_volumetric_multipliers() {
volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
#if EXTRUDERS > 1
volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
#if EXTRUDERS > 2
volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
#endif
#endif
}
void delay_keep_alive(int ms)
{
for (;;) {
manage_heater();
// Manage inactivity, but don't disable steppers on timeout.
manage_inactivity(true);
lcd_update();
if (ms == 0)
break;
else if (ms >= 50) {
delay(50);
ms -= 50;
} else {
delay(ms);
ms = 0;
}
}
}