Prusa-Firmware/Firmware/Dcodes.cpp

679 lines
16 KiB
C++
Raw Normal View History

#include "Dcodes.h"
2018-07-26 11:20:35 +00:00
//#include "Marlin.h"
#include "language.h"
#include "cmdqueue.h"
2018-07-26 11:20:35 +00:00
#include <stdio.h>
#include <avr/pgmspace.h>
2018-07-26 11:20:35 +00:00
#define DBG(args...) printf_P(args)
inline void print_hex_nibble(uint8_t val)
{
putchar((val > 9)?(val - 10 + 'a'):(val + '0'));
}
void print_hex_byte(uint8_t val)
{
print_hex_nibble(val >> 4);
print_hex_nibble(val & 15);
}
void print_hex_word(uint16_t val)
{
print_hex_byte(val >> 8);
print_hex_byte(val & 255);
}
2018-07-26 11:20:35 +00:00
void print_eeprom(uint16_t address, uint16_t count, uint8_t countperline = 16)
{
while (count)
{
print_hex_word(address);
putchar(' ');
uint8_t count_line = countperline;
while (count && count_line)
{
putchar(' ');
2018-07-26 11:20:35 +00:00
print_hex_byte(eeprom_read_byte((uint8_t*)address++));
count_line--;
count--;
}
putchar('\n');
}
}
int parse_hex(char* hex, uint8_t* data, int count)
{
int parsed = 0;
while (*hex)
{
if (count && (parsed >= count)) break;
char c = *(hex++);
if (c == ' ') continue;
if (c == '\n') break;
uint8_t val = 0x00;
if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);
else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);
else return -parsed;
c = *(hex++);
if ((c >= '0') && (c <= '9')) val |= (c - '0');
else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);
else return -parsed;
data[parsed] = val;
parsed++;
}
return parsed;
}
2018-07-26 11:20:35 +00:00
void print_mem(uint32_t address, uint16_t count, uint8_t type, uint8_t countperline = 16)
{
while (count)
{
if (type == 2)
print_hex_nibble(address >> 16);
print_hex_word(address);
putchar(' ');
uint8_t count_line = countperline;
while (count && count_line)
{
uint8_t data = 0;
switch (type)
{
case 0: data = *((uint8_t*)address++); break;
case 1: data = eeprom_read_byte((uint8_t*)address++); break;
case 2: data = pgm_read_byte_far((uint8_t*)address++); break;
}
putchar(' ');
print_hex_byte(data);
count_line--;
count--;
}
putchar('\n');
}
}
#ifdef DEBUG_DCODE3
#define EEPROM_SIZE 0x1000
void dcode_3()
{
DBG(_N("D3 - Read/Write EEPROM\n"));
uint16_t address = 0x0000; //default 0x0000
uint16_t count = EEPROM_SIZE; //default 0x1000 (entire eeprom)
if (code_seen('A')) // Address (0x0000-0x0fff)
address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
if (code_seen('C')) // Count (0x0001-0x1000)
count = (int)code_value();
address &= 0x1fff;
if (count > EEPROM_SIZE) count = EEPROM_SIZE;
if ((address + count) > EEPROM_SIZE) count = EEPROM_SIZE - address;
if (code_seen('X')) // Data
{
uint8_t data[16];
count = parse_hex(strchr_pointer + 1, data, 16);
if (count > 0)
{
for (uint16_t i = 0; i < count; i++)
2018-07-26 11:20:35 +00:00
eeprom_write_byte((uint8_t*)(address + i), data[i]);
printf_P(_N("%d bytes written to EEPROM at address 0x%04x"), count, address);
putchar('\n');
}
else
count = 0;
}
print_mem(address, count, 1);
/* while (count)
{
print_hex_word(address);
putchar(' ');
uint8_t countperline = 16;
while (count && countperline)
{
uint8_t data = eeprom_read_byte((uint8_t*)address++);
putchar(' ');
print_hex_byte(data);
countperline--;
count--;
}
putchar('\n');
}*/
}
#endif //DEBUG_DCODE3
#ifdef DEBUG_DCODES
#include "ConfigurationStore.h"
#include "cmdqueue.h"
#include "pat9125.h"
#include "adc.h"
#include "temperature.h"
#include <avr/wdt.h>
#define FLASHSIZE 0x40000
#define RAMSIZE 0x2000
#define boot_src_addr (*((uint32_t*)(RAMSIZE - 16)))
#define boot_dst_addr (*((uint32_t*)(RAMSIZE - 12)))
#define boot_copy_size (*((uint16_t*)(RAMSIZE - 8)))
#define boot_reserved (*((uint8_t*)(RAMSIZE - 6)))
#define boot_app_flags (*((uint8_t*)(RAMSIZE - 5)))
#define boot_app_magic (*((uint32_t*)(RAMSIZE - 4)))
#define BOOT_APP_FLG_ERASE 0x01
#define BOOT_APP_FLG_COPY 0x02
#define BOOT_APP_FLG_FLASH 0x04
extern uint8_t fsensor_log;
extern float current_temperature_pinda;
extern float axis_steps_per_unit[NUM_AXIS];
//#define LOG(args...) printf(args)
#define LOG(args...)
void dcode__1()
{
printf("D-1 - Endless loop\n");
cli();
while (1);
}
void dcode_0()
{
if (*(strchr_pointer + 1) == 0) return;
LOG("D0 - Reset\n");
if (code_seen('B')) //bootloader
{
cli();
wdt_enable(WDTO_15MS);
while(1);
}
else //reset
{
#ifndef _NO_ASM
asm volatile("jmp 0x00000");
#endif //_NO_ASM
}
}
void dcode_1()
{
LOG("D1 - Clear EEPROM and RESET\n");
cli();
for (int i = 0; i < 8192; i++)
eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);
wdt_enable(WDTO_15MS);
while(1);
}
void dcode_2()
{
LOG("D2 - Read/Write RAM\n");
uint16_t address = 0x0000; //default 0x0000
uint16_t count = 0x2000; //default 0x2000 (entire ram)
if (code_seen('A')) // Address (0x0000-0x1fff)
address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
if (code_seen('C')) // Count (0x0001-0x2000)
count = (int)code_value();
address &= 0x1fff;
if (count > 0x2000) count = 0x2000;
if ((address + count) > 0x2000) count = 0x2000 - address;
if (code_seen('X')) // Data
{
uint8_t data[16];
count = parse_hex(strchr_pointer + 1, data, 16);
if (count > 0)
{
for (int i = 0; i < count; i++)
*((uint8_t*)(address + i)) = data[i];
LOG("%d bytes written to RAM at address %04x", count, address);
}
else
count = 0;
}
print_mem(address, count, 0);
/* while (count)
{
print_hex_word(address);
putchar(' ');
uint8_t countperline = 16;
while (count && countperline)
{
uint8_t data = *((uint8_t*)address++);
putchar(' ');
print_hex_byte(data);
countperline--;
count--;
}
putchar('\n');
}*/
}
void dcode_4()
{
LOG("D4 - Read/Write PIN\n");
if (code_seen('P')) // Pin (0-255)
{
int pin = (int)code_value();
if ((pin >= 0) && (pin <= 255))
{
if (code_seen('F')) // Function in/out (0/1)
{
int fnc = (int)code_value();
if (fnc == 0) pinMode(pin, INPUT);
else if (fnc == 1) pinMode(pin, OUTPUT);
}
if (code_seen('V')) // Value (0/1)
{
int val = (int)code_value();
if (val == 0) digitalWrite(pin, LOW);
else if (val == 1) digitalWrite(pin, HIGH);
}
else
{
int val = (digitalRead(pin) != LOW)?1:0;
printf("PIN%d=%d", pin, val);
}
}
}
}
/*
void dcode_5()
{
LOG("D5 - Read/Write FLASH\n");
uint32_t address = 0x0000; //default 0x0000
uint16_t count = 0x0400; //default 0x0400 (1kb block)
if (code_seen('A')) // Address (0x00000-0x3ffff)
address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
if (code_seen('C')) // Count (0x0001-0x2000)
count = (int)code_value();
address &= 0x3ffff;
if (count > 0x2000) count = 0x2000;
if ((address + count) > 0x40000) count = 0x40000 - address;
bool bErase = false;
bool bCopy = false;
if (code_seen('E')) //Erase
bErase = true;
uint8_t data[16];
if (code_seen('X')) // Data
{
count = parse_hex(strchr_pointer + 1, data, 16);
if (count > 0) bCopy = true;
}
if (bErase || bCopy)
{
if (bErase)
{
LOG(count, DEC);
LOG(" bytes of FLASH at address ");
print_hex_word(address);
putchar(" will be erased\n");
}
if (bCopy)
{
LOG(count, DEC);
LOG(" bytes will be written to FLASH at address ");
print_hex_word(address);
putchar('\n');
}
cli();
boot_app_magic = 0x55aa55aa;
boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);
boot_copy_size = (uint16_t)count;
boot_dst_addr = (uint32_t)address;
boot_src_addr = (uint32_t)(&data);
wdt_enable(WDTO_15MS);
while(1);
}
while (count)
{
print_hex_nibble(address >> 16);
print_hex_word(address);
putchar(' ');
uint8_t countperline = 16;
while (count && countperline)
{
uint8_t data = pgm_read_byte_far((uint8_t*)address++);
putchar(' ');
print_hex_byte(data);
countperline--;
count--;
}
putchar('\n');
}
}
*/
void dcode_6()
{
LOG("D6 - Read/Write external FLASH\n");
}
void dcode_7()
{
LOG("D7 - Read/Write Bootloader\n");
/*
cli();
boot_app_magic = 0x55aa55aa;
boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;
boot_copy_size = (uint16_t)0xc00;
boot_src_addr = (uint32_t)0x0003e400;
boot_dst_addr = (uint32_t)0x0003f400;
wdt_enable(WDTO_15MS);
while(1);
*/
}
void dcode_8()
{
printf_P(PSTR("D8 - Read/Write PINDA\n"));
uint8_t cal_status = calibration_status_pinda();
float temp_pinda = current_temperature_pinda;
float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
{
printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);
for (uint8_t i = 0; i < 6; i++)
{
uint16_t offs = 0;
if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
float foffs = ((float)offs) / axis_steps_per_unit[Z_AXIS];
offs = 1000 * foffs;
printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);
}
}
else if (strchr_pointer[1+1] == '!')
{
cal_status = 1;
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
}
else
{
if (code_seen('P')) // Pinda temperature [C]
temp_pinda = code_value();
offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
if (code_seen('Z')) // Z Offset [mm]
{
offset_z = code_value();
}
}
printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));
}
const char* dcode_9_ADC_name(uint8_t i)
{
switch (i)
{
case 0: return PSTR("TEMP_HEATER0");
case 1: return PSTR("TEMP_HEATER1");
case 2: return PSTR("TEMP_BED");
case 3: return PSTR("TEMP_PINDA");
case 4: return PSTR("VOLT_PWR");
case 5: return PSTR("TEMP_AMBIENT");
case 6: return PSTR("VOLT_BED");
}
return 0;
}
extern int current_temperature_raw[EXTRUDERS];
extern int current_temperature_bed_raw;
extern int current_temperature_raw_pinda;
#ifdef AMBIENT_THERMISTOR
extern int current_temperature_raw_ambient;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
extern int current_voltage_raw_pwr;
#endif //VOLT_PWR_PIN
#ifdef VOLT_BED_PIN
extern int current_voltage_raw_bed;
#endif //VOLT_BED_PIN
uint16_t dcode_9_ADC_val(uint8_t i)
{
switch (i)
{
case 0: return current_temperature_raw[0];
case 1: return 0;
case 2: return current_temperature_bed_raw;
case 3: return current_temperature_raw_pinda;
#ifdef VOLT_PWR_PIN
case 4: return current_voltage_raw_pwr;
#endif //VOLT_PWR_PIN
#ifdef AMBIENT_THERMISTOR
case 5: return current_temperature_raw_ambient;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_BED_PIN
case 6: return current_voltage_raw_bed;
#endif //VOLT_BED_PIN
}
return 0;
}
void dcode_9()
{
printf_P(PSTR("D9 - Read/Write ADC\n"));
if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
{
for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)
printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));
}
else
{
uint8_t index = 0xff;
if (code_seen('I')) // index (index of used channel, not avr channel index)
index = code_value();
if (index < ADC_CHAN_CNT)
{
if (code_seen('V')) // value to be written as simulated
{
adc_sim_mask |= (1 << index);
adc_values[index] = (((int)code_value()) << 4);
printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);
}
}
}
}
void dcode_10()
{//Tell the printer that XYZ calibration went OK
LOG("D10 - XYZ calibration = OK\n");
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
}
void dcode_12()
{//Time
LOG("D12 - Time\n");
}
#ifdef TMC2130
#include "planner.h"
#include "tmc2130.h"
extern void st_synchronize();
2018-03-14 20:05:47 +00:00
/**
* @brief D2130 Trinamic stepper controller
* D2130<axis><command>[subcommand][value]
* * Axis
* * * 'X'
* * * 'Y'
* * * 'Z'
* * * 'E'
* * command
* * * '0' current off
* * * '1' current on
* * * '+' single step
* * * * value sereval steps
* * * '-' dtto oposite direction
* * * '?' read register
* * * * "mres"
* * * * "step"
* * * * "mscnt"
* * * * "mscuract"
* * * * "wave"
* * * '!' set register
* * * * "mres"
* * * * "step"
* * * * "wave"
* * * * *0, 180..250 meaning: off, 0.9..1.25, recommended value is 1.1
* * * '@' home calibrate axis
*
* Example:
* D2130E?wave //print extruder microstep linearity compensation curve
* D2130E!wave0 //disable extruder linearity compensation curve, (sine curve is used)
* D2130E!wave220 // (sin(x))^1.1 extruder microstep compensation curve used
*/
void dcode_2130()
{
printf_P(PSTR("D2130 - TMC2130\n"));
uint8_t axis = 0xff;
switch (strchr_pointer[1+4])
{
case 'X': axis = X_AXIS; break;
case 'Y': axis = Y_AXIS; break;
case 'Z': axis = Z_AXIS; break;
case 'E': axis = E_AXIS; break;
}
if (axis != 0xff)
{
char ch_axis = strchr_pointer[1+4];
if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
else if (strchr_pointer[1+5] == '+')
{
if (strchr_pointer[1+6] == 0)
{
tmc2130_set_dir(axis, 0);
tmc2130_do_step(axis);
}
else
{
uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 0, 1000);
}
}
else if (strchr_pointer[1+5] == '-')
{
if (strchr_pointer[1+6] == 0)
{
tmc2130_set_dir(axis, 1);
tmc2130_do_step(axis);
}
else
{
uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 1, 1000);
}
}
else if (strchr_pointer[1+5] == '?')
{
if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);
else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
{
uint32_t val = tmc2130_rd_MSCURACT(axis);
int curA = (val & 0xff);
int curB = ((val >> 16) & 0xff);
if ((val << 7) & 0x8000) curA -= 256;
if ((val >> 9) & 0x8000) curB -= 256;
printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
}
else if (strcmp(strchr_pointer + 7, "wave") == 0)
{
tmc2130_get_wave(axis, 0, stdout);
}
}
else if (strchr_pointer[1+5] == '!')
{
if (strncmp(strchr_pointer + 7, "step", 4) == 0)
{
uint8_t step = atoi(strchr_pointer + 11);
uint16_t res = tmc2130_get_res(axis);
tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
}
else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)
{
uint8_t mres = strchr_pointer[11] - '0';
if ((mres >= 0) && (mres <= 8))
{
st_synchronize();
uint16_t res = tmc2130_get_res(axis);
uint16_t res_new = tmc2130_mres2usteps(mres);
tmc2130_set_res(axis, res_new);
if (res_new > res)
axis_steps_per_unit[axis] *= (res_new / res);
else
axis_steps_per_unit[axis] /= (res / res_new);
}
}
else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
{
uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;
2018-03-22 18:53:58 +00:00
if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
tmc2130_set_wave(axis, 247, fac1000);
tmc2130_wave_fac[axis] = fac1000;
}
}
else if (strchr_pointer[1+5] == '@')
{
tmc2130_home_calibrate(axis);
}
}
}
#endif //TMC2130
#ifdef PAT9125
void dcode_9125()
{
LOG("D9125 - PAT9125\n");
if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))
{
// printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);
printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
return;
}
if (strchr_pointer[1+4] == '!')
{
pat9125_update();
printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
return;
}
2018-01-23 15:47:42 +00:00
/*
if (code_seen('R'))
{
unsigned char res = (int)code_value();
LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));
}
2018-01-23 15:47:42 +00:00
*/
if (code_seen('X'))
{
pat9125_x = (int)code_value();
LOG("pat9125_x=%d\n", pat9125_x);
}
if (code_seen('Y'))
{
pat9125_y = (int)code_value();
LOG("pat9125_y=%d\n", pat9125_y);
}
if (code_seen('L'))
{
fsensor_log = (int)code_value();
LOG("fsensor_log=%d\n", fsensor_log);
}
}
#endif //PAT9125
2017-11-16 21:03:36 +00:00
#endif //DEBUG_DCODES