Prusa-Firmware/Firmware/Dcodes.cpp

929 lines
25 KiB
C++
Raw Normal View History

#include "Dcodes.h"
#include "Marlin.h"
2020-03-30 12:42:30 +00:00
#include "Configuration.h"
2018-07-26 11:20:35 +00:00
#include "language.h"
#include "cmdqueue.h"
2018-07-26 11:20:35 +00:00
#include <stdio.h>
#include <avr/pgmspace.h>
#define SHOW_TEMP_ADC_VALUES
#include "temperature.h"
2018-07-26 11:20:35 +00:00
#define DBG(args...) printf_P(args)
inline void print_hex_nibble(uint8_t val)
{
putchar((val > 9)?(val - 10 + 'a'):(val + '0'));
}
void print_hex_byte(uint8_t val)
{
print_hex_nibble(val >> 4);
print_hex_nibble(val & 15);
}
// debug range address type (fits all SRAM/PROGMEM/XFLASH memory ranges)
#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
#include "xflash.h"
#include "xflash_layout.h"
#define DADDR_SIZE 32
typedef uint32_t daddr_t; // XFLASH requires 24 bits
#else
#define DADDR_SIZE 16
typedef uint16_t daddr_t;
#endif
void print_hex_word(daddr_t val)
{
#if DADDR_SIZE > 16
print_hex_byte((val >> 16) & 0xFF);
#endif
print_hex_byte((val >> 8) & 0xFF);
print_hex_byte(val & 0xFF);
}
int parse_hex(char* hex, uint8_t* data, int count)
{
int parsed = 0;
while (*hex)
{
if (count && (parsed >= count)) break;
char c = *(hex++);
if (c == ' ') continue;
if (c == '\n') break;
uint8_t val = 0x00;
if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);
else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);
else return -parsed;
c = *(hex++);
if ((c >= '0') && (c <= '9')) val |= (c - '0');
else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);
else return -parsed;
data[parsed] = val;
parsed++;
}
return parsed;
}
2018-07-26 11:20:35 +00:00
enum class dcode_mem_t:uint8_t { sram, eeprom, progmem, xflash };
void print_mem(daddr_t address, daddr_t count, dcode_mem_t type, uint8_t countperline = 16)
2018-07-26 11:20:35 +00:00
{
#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
if(type == dcode_mem_t::xflash)
XFLASH_SPI_ENTER();
#endif
2018-07-26 11:20:35 +00:00
while (count)
{
print_hex_word(address);
putchar(' ');
uint8_t count_line = countperline;
while (count && count_line)
{
uint8_t data = 0;
switch (type)
{
case dcode_mem_t::sram: data = *((uint8_t*)address); break;
case dcode_mem_t::eeprom: data = eeprom_read_byte((uint8_t*)address); break;
case dcode_mem_t::progmem: break;
#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES)
case dcode_mem_t::xflash: xflash_rd_data(address, &data, 1); break;
#else
case dcode_mem_t::xflash: break;
#endif
2018-07-26 11:20:35 +00:00
}
++address;
2018-07-26 11:20:35 +00:00
putchar(' ');
print_hex_byte(data);
count_line--;
count--;
// sporadically call manage heaters to avoid wdt
if(!((uint16_t)count % 8192))
manage_heater();
2018-07-26 11:20:35 +00:00
}
putchar('\n');
}
}
// TODO: this only handles SRAM/EEPROM 16bit addresses
void write_mem(uint16_t address, uint16_t count, const uint8_t* data, const dcode_mem_t type)
{
for (uint16_t i = 0; i < count; i++)
{
switch (type)
{
case dcode_mem_t::sram: *((uint8_t*)address) = data[i]; break;
case dcode_mem_t::eeprom: eeprom_write_byte((uint8_t*)address, data[i]); break;
case dcode_mem_t::progmem: break;
case dcode_mem_t::xflash: break;
}
++address;
}
}
void dcode_core(daddr_t addr_start, const daddr_t addr_end, const dcode_mem_t type,
uint8_t dcode, const char* type_desc)
{
KEEPALIVE_STATE(NOT_BUSY);
DBG(_N("D%d - Read/Write %S\n"), dcode, type_desc);
daddr_t count = -1; // RW the entire space by default
if (code_seen('A'))
addr_start = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
if (code_seen('C'))
count = code_value_long();
if (addr_start > addr_end)
addr_start = addr_end;
if ((addr_start + count) > addr_end || (addr_start + count) < addr_start)
count = addr_end - addr_start;
if (code_seen('X'))
{
uint8_t data[16];
count = parse_hex(strchr_pointer + 1, data, 16);
write_mem(addr_start, count, data, type);
#if DADDR_SIZE > 16
DBG(_N("%u bytes written to %S at address 0x%08x\n"), count, type_desc, addr_start);
#else
DBG(_N("%lu bytes written to %S at address 0x%04lx\n"), count, type_desc, addr_start);
#endif
}
print_mem(addr_start, count, type);
}
#if defined DEBUG_DCODE3 || defined DEBUG_DCODES
2018-07-26 11:20:35 +00:00
#define EEPROM_SIZE 0x1000
/*!
### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
This command can be used without any additional parameters. It will read the entire eeprom.
#### Usage
D3 [ A | C | X ]
#### Parameters
- `A` - Address (x0000-x0fff)
- `C` - Count (1-4096)
- `X` - Data (hex)
#### Notes
- The hex address needs to be lowercase without the 0 before the x
- Count is decimal
- The hex data needs to be lowercase
*/
2019-12-04 13:21:43 +00:00
void dcode_3()
2018-07-26 11:20:35 +00:00
{
dcode_core(0, EEPROM_SIZE, dcode_mem_t::eeprom, 3, _N("EEPROM"));
2018-07-26 11:20:35 +00:00
}
#endif //DEBUG_DCODE3
#include "ConfigurationStore.h"
#include "cmdqueue.h"
#include "pat9125.h"
#include "adc.h"
#include "temperature.h"
#include <avr/wdt.h>
#include "bootapp.h"
2018-07-26 11:20:35 +00:00
#if 0
2018-07-26 11:20:35 +00:00
extern float current_temperature_pinda;
extern float axis_steps_per_unit[NUM_AXIS];
#define LOG(args...) printf(args)
#endif //0
2018-07-26 11:20:35 +00:00
#define LOG(args...)
/*!
*
### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">D-1: Endless Loop</a>
D-1
*
*/
void dcode__1()
{
DBG(_N("D-1 - Endless loop\n"));
// cli();
while (1);
}
#ifdef DEBUG_DCODES
/*!
### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
#### Usage
D0 [ B ]
#### Parameters
- `B` - Bootloader
*/
void dcode_0()
{
if (*(strchr_pointer + 1) == 0) return;
LOG("D0 - Reset\n");
if (code_seen('B')) //bootloader
{
2020-08-12 09:46:35 +00:00
softReset();
}
else //reset
{
#ifndef _NO_ASM
asm volatile("jmp 0x00000");
#endif //_NO_ASM
}
}
/*!
*
### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
D1
*
*/
void dcode_1()
{
LOG("D1 - Clear EEPROM and RESET\n");
cli();
for (int i = 0; i < 8192; i++)
eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);
2020-08-12 09:46:35 +00:00
softReset();
}
2021-05-22 13:03:26 +00:00
#endif
2021-05-22 13:03:26 +00:00
#if defined DEBUG_DCODE2 || defined DEBUG_DCODES
/*!
### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
This command can be used without any additional parameters. It will read the entire RAM.
#### Usage
D2 [ A | C | X ]
#### Parameters
- `A` - Address (x0000-x21ff)
- `C` - Count (1-8704)
- `X` - Data
#### Notes
- The hex address needs to be lowercase without the 0 before the x
- Count is decimal
- The hex data needs to be lowercase
*/
void dcode_2()
{
dcode_core(0x200, 0x2200, dcode_mem_t::sram, 2, _N("SRAM"));
}
2021-05-22 13:03:26 +00:00
#endif
2021-05-22 13:03:26 +00:00
#ifdef DEBUG_DCODES
/*!
### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
To read the digital value of a pin you need only to define the pin number.
#### Usage
D4 [ P | F | V ]
#### Parameters
- `P` - Pin (0-255)
- `F` - Function in/out (0/1)
- `V` - Value (0/1)
*/
void dcode_4()
{
LOG("D4 - Read/Write PIN\n");
if (code_seen('P')) // Pin (0-255)
{
int pin = (int)code_value();
if ((pin >= 0) && (pin <= 255))
{
if (code_seen('F')) // Function in/out (0/1)
{
int fnc = (int)code_value();
if (fnc == 0) pinMode(pin, INPUT);
else if (fnc == 1) pinMode(pin, OUTPUT);
}
if (code_seen('V')) // Value (0/1)
{
int val = (int)code_value();
if (val == 0) digitalWrite(pin, LOW);
else if (val == 1) digitalWrite(pin, HIGH);
}
else
{
int val = (digitalRead(pin) != LOW)?1:0;
printf("PIN%d=%d", pin, val);
}
}
}
}
#endif //DEBUG_DCODES
#if defined DEBUG_DCODE5 || defined DEBUG_DCODES
/*!
### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
This command can be used without any additional parameters. It will read the 1kb FLASH.
#### Usage
D5 [ A | C | X | E ]
#### Parameters
- `A` - Address (x00000-x3ffff)
- `C` - Count (1-8192)
- `X` - Data (hex)
- `E` - Erase
#### Notes
- The hex address needs to be lowercase without the 0 before the x
- Count is decimal
- The hex data needs to be lowercase
*/
void dcode_5()
{
puts_P(PSTR("D5 - Read/Write FLASH"));
uint32_t address = 0x0000; //default 0x0000
uint16_t count = 0x0400; //default 0x0400 (1kb block)
if (code_seen('A')) // Address (0x00000-0x3ffff)
address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();
if (code_seen('C')) // Count (0x0001-0x2000)
count = (int)code_value();
address &= 0x3ffff;
if (count > 0x2000) count = 0x2000;
if ((address + count) > 0x40000) count = 0x40000 - address;
bool bErase = false;
bool bCopy = false;
if (code_seen('E')) //Erase
bErase = true;
uint8_t data[16];
if (code_seen('X')) // Data
{
count = parse_hex(strchr_pointer + 1, data, 16);
if (count > 0) bCopy = true;
}
if (bErase || bCopy)
{
if (bErase)
{
printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address);
}
if (bCopy)
{
printf_P(PSTR("%d bytes will be written to FLASH at address %05x\n"), count, address);
}
cli();
boot_app_magic = 0x55aa55aa;
boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);
boot_copy_size = (uint16_t)count;
boot_dst_addr = (uint32_t)address;
boot_src_addr = (uint32_t)(&data);
bootapp_print_vars();
2020-08-12 09:46:35 +00:00
softReset();
}
while (count)
{
print_hex_nibble(address >> 16);
print_hex_word(address);
putchar(' ');
uint8_t countperline = 16;
while (count && countperline)
{
uint8_t data = pgm_read_byte_far((uint8_t*)address++);
putchar(' ');
print_hex_byte(data);
countperline--;
count--;
}
putchar('\n');
}
}
#endif //DEBUG_DCODE5
#if defined(XFLASH) && (defined DEBUG_DCODE6 || defined DEBUG_DCODES)
/*!
### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
2021-06-07 17:58:18 +00:00
This command can be used without any additional parameters. It will read the entire XFLASH.
#### Usage
D6 [ A | C | X ]
#### Parameters
- `A` - Address (x0000-x3ffff)
- `C` - Count (1-262144)
- `X` - Data
#### Notes
- The hex address needs to be lowercase without the 0 before the x
- Count is decimal
- The hex data needs to be lowercase
- Writing is currently not implemented
*/
void dcode_6()
{
dcode_core(0x0, XFLASH_SIZE, dcode_mem_t::xflash, 6, _N("XFLASH"));
}
#endif
#ifdef DEBUG_DCODES
/*!
### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
Reserved
*/
void dcode_7()
{
LOG("D7 - Read/Write Bootloader\n");
/*
cli();
boot_app_magic = 0x55aa55aa;
boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;
boot_copy_size = (uint16_t)0xc00;
boot_src_addr = (uint32_t)0x0003e400;
boot_dst_addr = (uint32_t)0x0003f400;
2020-08-12 09:46:35 +00:00
softReset();
*/
}
/*!
### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
#### Usage
D8 [ ? | ! | P | Z ]
#### Parameters
- `?` - Read PINDA temperature shift values
- `!` - Reset PINDA temperature shift values to default
- `P` - Pinda temperature [C]
- `Z` - Z Offset [mm]
*/
void dcode_8()
{
puts_P(PSTR("D8 - Read/Write PINDA"));
uint8_t cal_status = calibration_status_pinda();
float temp_pinda = current_temperature_pinda;
float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
{
printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);
for (uint8_t i = 0; i < 6; i++)
{
uint16_t offs = 0;
if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));
float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS];
offs = 1000 * foffs;
printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);
}
}
else if (strchr_pointer[1+1] == '!')
{
cal_status = 1;
eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
}
else
{
if (code_seen('P')) // Pinda temperature [C]
temp_pinda = code_value();
offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);
if (code_seen('Z')) // Z Offset [mm]
{
offset_z = code_value();
}
}
printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));
}
/*!
### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
#### Usage
D9 [ I | V ]
#### Parameters
- `I` - ADC channel index
- `0` - Heater 0 temperature
- `1` - Heater 1 temperature
- `2` - Bed temperature
- `3` - PINDA temperature
- `4` - PWR voltage
- `5` - Ambient temperature
- `6` - BED voltage
- `V` Value to be written as simulated
*/
const char* dcode_9_ADC_name(uint8_t i)
{
switch (i)
{
case 0: return PSTR("TEMP_HEATER0");
case 1: return PSTR("TEMP_HEATER1");
case 2: return PSTR("TEMP_BED");
case 3: return PSTR("TEMP_PINDA");
case 4: return PSTR("VOLT_PWR");
case 5: return PSTR("TEMP_AMBIENT");
case 6: return PSTR("VOLT_BED");
}
return 0;
}
#ifdef AMBIENT_THERMISTOR
extern int current_temperature_raw_ambient;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_PWR_PIN
extern int current_voltage_raw_pwr;
#endif //VOLT_PWR_PIN
#ifdef VOLT_BED_PIN
extern int current_voltage_raw_bed;
#endif //VOLT_BED_PIN
uint16_t dcode_9_ADC_val(uint8_t i)
{
switch (i)
{
case 0: return current_temperature_raw[0];
case 1: return 0;
case 2: return current_temperature_bed_raw;
case 3: return current_temperature_raw_pinda;
#ifdef VOLT_PWR_PIN
case 4: return current_voltage_raw_pwr;
#endif //VOLT_PWR_PIN
#ifdef AMBIENT_THERMISTOR
case 5: return current_temperature_raw_ambient;
#endif //AMBIENT_THERMISTOR
#ifdef VOLT_BED_PIN
case 6: return current_voltage_raw_bed;
#endif //VOLT_BED_PIN
}
return 0;
}
void dcode_9()
{
puts_P(PSTR("D9 - Read/Write ADC"));
if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))
{
for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)
printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));
}
else
{
uint8_t index = 0xff;
if (code_seen('I')) // index (index of used channel, not avr channel index)
index = code_value();
if (index < ADC_CHAN_CNT)
{
if (code_seen('V')) // value to be written as simulated
{
adc_sim_mask |= (1 << index);
adc_values[index] = (((int)code_value()) << 4);
printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);
}
}
}
}
/*!
### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
*/
void dcode_10()
{//Tell the printer that XYZ calibration went OK
LOG("D10 - XYZ calibration = OK\n");
calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
}
/*!
### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
2020-03-26 13:08:35 +00:00
Writes the current time in the log file.
*/
void dcode_12()
{//Time
LOG("D12 - Time\n");
}
#ifdef HEATBED_ANALYSIS
/*!
### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
This command will log data to SD card file "mesh.txt".
#### Usage
D80 [ E | F | G | H | I | J ]
#### Parameters
- `E` - Dimension X (default 40)
- `F` - Dimention Y (default 40)
- `G` - Points X (default 40)
- `H` - Points Y (default 40)
- `I` - Offset X (default 74)
- `J` - Offset Y (default 34)
*/
void dcode_80()
{
float dimension_x = 40;
float dimension_y = 40;
int points_x = 40;
int points_y = 40;
float offset_x = 74;
float offset_y = 33;
if (code_seen('E')) dimension_x = code_value();
if (code_seen('F')) dimension_y = code_value();
if (code_seen('G')) {points_x = code_value(); }
if (code_seen('H')) {points_y = code_value(); }
if (code_seen('I')) {offset_x = code_value(); }
if (code_seen('J')) {offset_y = code_value(); }
printf_P(PSTR("DIM X: %f\n"), dimension_x);
printf_P(PSTR("DIM Y: %f\n"), dimension_y);
printf_P(PSTR("POINTS X: %d\n"), points_x);
printf_P(PSTR("POINTS Y: %d\n"), points_y);
printf_P(PSTR("OFFSET X: %f\n"), offset_x);
printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
}
/*!
### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
This command will log data to SD card file "wldsd.txt".
#### Usage
D81 [ E | F | G | H | I | J ]
#### Parameters
- `E` - Dimension X (default 40)
- `F` - Dimention Y (default 40)
- `G` - Points X (default 40)
- `H` - Points Y (default 40)
- `I` - Offset X (default 74)
- `J` - Offset Y (default 34)
*/
void dcode_81()
{
float dimension_x = 40;
float dimension_y = 40;
int points_x = 40;
int points_y = 40;
float offset_x = 74;
float offset_y = 33;
if (code_seen('E')) dimension_x = code_value();
if (code_seen('F')) dimension_y = code_value();
if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
}
#endif //HEATBED_ANALYSIS
/*!
### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
*/
void dcode_106()
{
for (int i = 255; i > 0; i = i - 5) {
fanSpeed = i;
//delay_keep_alive(2000);
for (int j = 0; j < 100; j++) {
delay_keep_alive(100);
}
printf_P(_N("%d: %d\n"), i, fan_speed[1]);
}
}
#ifdef TMC2130
#include "planner.h"
#include "tmc2130.h"
extern void st_synchronize();
/*!
### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
@todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
#### Usage
D2130 [ Axis | Command | Subcommand | Value ]
#### Parameters
- Axis
- `X` - X stepper driver
- `Y` - Y stepper driver
- `Z` - Z stepper driver
- `E` - Extruder stepper driver
- Commands
- `0` - Current off
- `1` - Current on
- `+` - Single step
- `-` - Single step oposite direction
- `NNN` - Value sereval steps
- `?` - Read register
- Subcommands for read register
- `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF Chopper Configuration'
- `step` - Step
- `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
- `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
- `wave` - Microstep linearity compensation curve
- `!` - Set register
- Subcommands for set register
- `mres` - Micro step resolution
- `step` - Step
- `wave` - Microstep linearity compensation curve
- Values for set register
- `0, 180 --> 250` - Off
- `0.9 --> 1.25` - Valid values (recommended is 1.1)
- `@` - Home calibrate axis
Examples:
D2130E?wave
Print extruder microstep linearity compensation curve
D2130E!wave0
Disable extruder linearity compensation curve, (sine curve is used)
D2130E!wave220
(sin(x))^1.1 extruder microstep compensation curve used
Notes:
For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
*
*/
void dcode_2130()
{
puts_P(PSTR("D2130 - TMC2130"));
uint8_t axis = 0xff;
switch (strchr_pointer[1+4])
{
case 'X': axis = X_AXIS; break;
case 'Y': axis = Y_AXIS; break;
case 'Z': axis = Z_AXIS; break;
case 'E': axis = E_AXIS; break;
}
if (axis != 0xff)
{
char ch_axis = strchr_pointer[1+4];
if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }
else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }
else if (strchr_pointer[1+5] == '+')
{
if (strchr_pointer[1+6] == 0)
{
tmc2130_set_dir(axis, 0);
tmc2130_do_step(axis);
}
else
{
uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 0, 1000);
}
}
else if (strchr_pointer[1+5] == '-')
{
if (strchr_pointer[1+6] == 0)
{
tmc2130_set_dir(axis, 1);
tmc2130_do_step(axis);
}
else
{
uint8_t steps = atoi(strchr_pointer + 1 + 6);
tmc2130_do_steps(axis, steps, 1, 1000);
}
}
else if (strchr_pointer[1+5] == '?')
{
if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);
else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);
else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));
else if (strcmp(strchr_pointer + 7, "mscuract") == 0)
{
uint32_t val = tmc2130_rd_MSCURACT(axis);
int curA = (val & 0xff);
int curB = ((val >> 16) & 0xff);
if ((val << 7) & 0x8000) curA -= 256;
if ((val >> 9) & 0x8000) curB -= 256;
printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);
}
else if (strcmp(strchr_pointer + 7, "wave") == 0)
{
tmc2130_get_wave(axis, 0, stdout);
}
}
else if (strchr_pointer[1+5] == '!')
{
if (strncmp(strchr_pointer + 7, "step", 4) == 0)
{
uint8_t step = atoi(strchr_pointer + 11);
uint16_t res = tmc2130_get_res(axis);
tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
}
else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)
{
uint8_t mres = strchr_pointer[11] - '0';
if (mres <= 8)
{
st_synchronize();
uint16_t res = tmc2130_get_res(axis);
uint16_t res_new = tmc2130_mres2usteps(mres);
tmc2130_set_res(axis, res_new);
if (res_new > res)
cs.axis_steps_per_unit[axis] *= (res_new / res);
else
cs.axis_steps_per_unit[axis] /= (res / res_new);
}
}
else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)
{
uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;
2018-03-22 18:53:58 +00:00
if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
tmc2130_set_wave(axis, 247, fac1000);
tmc2130_wave_fac[axis] = fac1000;
}
}
else if (strchr_pointer[1+5] == '@')
{
tmc2130_home_calibrate(axis);
}
}
}
#endif //TMC2130
#ifdef PAT9125
/*!
### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
#### Usage
D9125 [ ? | ! | R | X | Y | L ]
#### Parameters
- `?` - Print values
- `!` - Print values
- `R` - Resolution. Not active in code
- `X` - X values
- `Y` - Y values
- `L` - Activate filament sensor log
*/
void dcode_9125()
{
LOG("D9125 - PAT9125\n");
if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))
{
// printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);
printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
return;
}
if (strchr_pointer[1+4] == '!')
{
pat9125_update();
printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);
return;
}
2018-01-23 15:47:42 +00:00
/*
if (code_seen('R'))
{
unsigned char res = (int)code_value();
LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));
}
2018-01-23 15:47:42 +00:00
*/
if (code_seen('X'))
{
pat9125_x = (int)code_value();
LOG("pat9125_x=%d\n", pat9125_x);
}
if (code_seen('Y'))
{
pat9125_y = (int)code_value();
LOG("pat9125_y=%d\n", pat9125_y);
}
2020-03-30 13:50:50 +00:00
#ifdef DEBUG_FSENSOR_LOG
if (code_seen('L'))
{
fsensor_log = (int)code_value();
LOG("fsensor_log=%d\n", fsensor_log);
}
2020-03-30 13:50:50 +00:00
#endif //DEBUG_FSENSOR_LOG
}
#endif //PAT9125
2017-11-16 21:03:36 +00:00
#endif //DEBUG_DCODES