2017-06-29 16:35:43 +00:00
# include "Marlin.h"
# include "Configuration.h"
# include "ConfigurationStore.h"
# include "language_all.h"
# include "mesh_bed_calibration.h"
# include "mesh_bed_leveling.h"
# include "stepper.h"
# include "ultralcd.h"
uint8_t world2machine_correction_mode ;
float world2machine_rotation_and_skew [ 2 ] [ 2 ] ;
float world2machine_rotation_and_skew_inv [ 2 ] [ 2 ] ;
float world2machine_shift [ 2 ] ;
// Weight of the Y coordinate for the least squares fitting of the bed induction sensor targets.
// Only used for the first row of the points, which may not befully in reach of the sensor.
# define WEIGHT_FIRST_ROW_X_HIGH (1.f)
# define WEIGHT_FIRST_ROW_X_LOW (0.35f)
# define WEIGHT_FIRST_ROW_Y_HIGH (0.3f)
# define WEIGHT_FIRST_ROW_Y_LOW (0.0f)
2017-08-17 13:23:34 +00:00
# define BED_ZERO_REF_X (- 22.f + X_PROBE_OFFSET_FROM_EXTRUDER) // -22 + 23 = 1
2017-11-22 18:13:34 +00:00
# define BED_ZERO_REF_Y (- 0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER) // -0.6 + 5 = 4.4
2017-06-29 16:35:43 +00:00
// Scaling of the real machine axes against the programmed dimensions in the firmware.
// The correction is tiny, here around 0.5mm on 250mm length.
//#define MACHINE_AXIS_SCALE_X ((250.f - 0.5f) / 250.f)
//#define MACHINE_AXIS_SCALE_Y ((250.f - 0.5f) / 250.f)
# define MACHINE_AXIS_SCALE_X 1.f
# define MACHINE_AXIS_SCALE_Y 1.f
# define BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN (0.8f)
# define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X (0.8f)
# define BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y (1.5f)
# define MIN_BED_SENSOR_POINT_RESPONSE_DMR (2.0f)
//#define Y_MIN_POS_FOR_BED_CALIBRATION (MANUAL_Y_HOME_POS-0.2f)
# define Y_MIN_POS_FOR_BED_CALIBRATION (Y_MIN_POS)
// Distances toward the print bed edge may not be accurate.
# define Y_MIN_POS_CALIBRATION_POINT_ACCURATE (Y_MIN_POS + 3.f)
// When the measured point center is out of reach of the sensor, Y coordinate will be ignored
// by the Least Squares fitting and the X coordinate will be weighted low.
# define Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH (Y_MIN_POS - 0.5f)
// 0.12 degrees equals to an offset of 0.5mm on 250mm length.
const float bed_skew_angle_mild = ( 0.12f * M_PI / 180.f ) ;
// 0.25 degrees equals to an offset of 1.1mm on 250mm length.
const float bed_skew_angle_extreme = ( 0.25f * M_PI / 180.f ) ;
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are ordered in a zig-zag fashion to speed up the calibration.
2017-09-21 13:20:02 +00:00
# ifdef HEATBED_V2
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are the following: center front, center right, center rear, center left.
const float bed_ref_points_4 [ ] PROGMEM = {
2018-02-19 10:38:52 +00:00
13.f - BED_ZERO_REF_X , 10.4f - 4.f - BED_ZERO_REF_Y ,
221.f - BED_ZERO_REF_X , 10.4f - 4.f - BED_ZERO_REF_Y ,
221.f - BED_ZERO_REF_X , 202.4f - 4.f - BED_ZERO_REF_Y ,
13.f - BED_ZERO_REF_X , 202.4f - 4.f - BED_ZERO_REF_Y
2017-09-21 13:20:02 +00:00
} ;
const float bed_ref_points [ ] PROGMEM = {
2017-11-22 18:13:34 +00:00
13.f - BED_ZERO_REF_X , 10.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 10.4f - BED_ZERO_REF_Y ,
216.f - BED_ZERO_REF_X , 10.4f - BED_ZERO_REF_Y ,
2017-09-21 13:20:02 +00:00
2017-11-22 18:13:34 +00:00
216.f - BED_ZERO_REF_X , 106.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 106.4f - BED_ZERO_REF_Y ,
13.f - BED_ZERO_REF_X , 106.4f - BED_ZERO_REF_Y ,
2017-09-21 13:20:02 +00:00
2017-11-22 18:13:34 +00:00
13.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y ,
216.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y
2017-09-21 13:20:02 +00:00
} ;
# else
// Positions of the bed reference points in the machine coordinates, referenced to the P.I.N.D.A sensor.
// The points are the following: center front, center right, center rear, center left.
const float bed_ref_points_4 [ ] PROGMEM = {
115.f - BED_ZERO_REF_X , 8.4f - BED_ZERO_REF_Y ,
216.f - BED_ZERO_REF_X , 104.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y ,
13.f - BED_ZERO_REF_X , 104.4f - BED_ZERO_REF_Y
} ;
2017-06-29 16:35:43 +00:00
const float bed_ref_points [ ] PROGMEM = {
2017-07-06 18:40:56 +00:00
13.f - BED_ZERO_REF_X , 8.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 8.4f - BED_ZERO_REF_Y ,
216.f - BED_ZERO_REF_X , 8.4f - BED_ZERO_REF_Y ,
2017-06-29 16:35:43 +00:00
216.f - BED_ZERO_REF_X , 104.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 104.4f - BED_ZERO_REF_Y ,
13.f - BED_ZERO_REF_X , 104.4f - BED_ZERO_REF_Y ,
13.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y ,
115.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y ,
216.f - BED_ZERO_REF_X , 202.4f - BED_ZERO_REF_Y
} ;
2017-09-21 13:20:02 +00:00
# endif //not HEATBED_V2
2017-06-29 16:35:43 +00:00
static inline float sqr ( float x ) { return x * x ; }
2018-03-04 23:17:43 +00:00
# ifdef HEATBED_V2
static inline bool point_on_1st_row ( const uint8_t i )
{
return false ;
}
# else //HEATBED_V2
2017-10-27 14:12:37 +00:00
static inline bool point_on_1st_row ( const uint8_t i )
2017-06-29 16:35:43 +00:00
{
2018-03-04 23:17:43 +00:00
return ( i < 3 ) ;
2017-06-29 16:35:43 +00:00
}
2018-03-04 23:17:43 +00:00
# endif //HEATBED_V2
2017-06-29 16:35:43 +00:00
// Weight of a point coordinate in a least squares optimization.
// The first row of points may not be fully reachable
// and the y values may be shortened a bit by the bed carriage
// pulling the belt up.
static inline float point_weight_x ( const uint8_t i , const uint8_t npts , const float & y )
{
float w = 1.f ;
2017-10-27 14:12:37 +00:00
if ( point_on_1st_row ( i ) ) {
2017-06-29 16:35:43 +00:00
if ( y > = Y_MIN_POS_CALIBRATION_POINT_ACCURATE ) {
w = WEIGHT_FIRST_ROW_X_HIGH ;
} else if ( y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) {
// If the point is fully outside, give it some weight.
w = WEIGHT_FIRST_ROW_X_LOW ;
} else {
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
float t = ( y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) / ( Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) ;
w = ( 1.f - t ) * WEIGHT_FIRST_ROW_X_LOW + t * WEIGHT_FIRST_ROW_X_HIGH ;
}
}
return w ;
}
// Weight of a point coordinate in a least squares optimization.
// The first row of points may not be fully reachable
// and the y values may be shortened a bit by the bed carriage
// pulling the belt up.
static inline float point_weight_y ( const uint8_t i , const uint8_t npts , const float & y )
{
float w = 1.f ;
2017-10-27 14:12:37 +00:00
if ( point_on_1st_row ( i ) ) {
2017-06-29 16:35:43 +00:00
if ( y > = Y_MIN_POS_CALIBRATION_POINT_ACCURATE ) {
w = WEIGHT_FIRST_ROW_Y_HIGH ;
} else if ( y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) {
// If the point is fully outside, give it some weight.
w = WEIGHT_FIRST_ROW_Y_LOW ;
} else {
// Linearly interpolate the weight from 1 to WEIGHT_FIRST_ROW_X.
float t = ( y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) / ( Y_MIN_POS_CALIBRATION_POINT_ACCURATE - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) ;
w = ( 1.f - t ) * WEIGHT_FIRST_ROW_Y_LOW + t * WEIGHT_FIRST_ROW_Y_HIGH ;
}
}
return w ;
}
// Non-Linear Least Squares fitting of the bed to the measured induction points
// using the Gauss-Newton method.
// This method will maintain a unity length of the machine axes,
// which is the correct approach if the sensor points are not measured precisely.
BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS (
// Matrix of maximum 9 2D points (18 floats)
const float * measured_pts ,
uint8_t npts ,
const float * true_pts ,
// Resulting correction matrix.
float * vec_x ,
float * vec_y ,
float * cntr ,
// Temporary values, 49-18-(2*3)=25 floats
// , float *temp
int8_t verbosity_level
)
{
2017-10-27 14:12:37 +00:00
float angleDiff ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) {
SERIAL_ECHOLNPGM ( " calculate machine skew and offset LS " ) ;
// Show the initial state, before the fitting.
SERIAL_ECHOPGM ( " X vector, initial: " ) ;
MYSERIAL . print ( vec_x [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_x [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Y vector, initial: " ) ;
MYSERIAL . print ( vec_y [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_y [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " center, initial: " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( cntr [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
for ( uint8_t i = 0 ; i < npts ; + + i ) {
SERIAL_ECHOPGM ( " point # " ) ;
MYSERIAL . print ( int ( i ) ) ;
SERIAL_ECHOPGM ( " measured: ( " ) ;
MYSERIAL . print ( measured_pts [ i * 2 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( measured_pts [ i * 2 + 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " ); target: ( " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 ) , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 + 1 ) , 5 ) ;
SERIAL_ECHOPGM ( " ), error: " ) ;
MYSERIAL . print ( sqrt (
sqr ( pgm_read_float ( true_pts + i * 2 ) - measured_pts [ i * 2 ] ) +
sqr ( pgm_read_float ( true_pts + i * 2 + 1 ) - measured_pts [ i * 2 + 1 ] ) ) , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
delay_keep_alive ( 100 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Run some iterations of the Gauss-Newton method of non-linear least squares.
// Initial set of parameters:
// X,Y offset
cntr [ 0 ] = 0.f ;
cntr [ 1 ] = 0.f ;
// Rotation of the machine X axis from the bed X axis.
float a1 = 0 ;
// Rotation of the machine Y axis from the bed Y axis.
float a2 = 0 ;
for ( int8_t iter = 0 ; iter < 100 ; + + iter ) {
float c1 = cos ( a1 ) * MACHINE_AXIS_SCALE_X ;
float s1 = sin ( a1 ) * MACHINE_AXIS_SCALE_X ;
float c2 = cos ( a2 ) * MACHINE_AXIS_SCALE_Y ;
float s2 = sin ( a2 ) * MACHINE_AXIS_SCALE_Y ;
// Prepare the Normal equation for the Gauss-Newton method.
float A [ 4 ] [ 4 ] = { 0.f } ;
float b [ 4 ] = { 0.f } ;
float acc ;
2017-12-05 12:16:59 +00:00
delay_keep_alive ( 0 ) ; //manage heater, reset watchdog, manage inactivity
2017-06-29 16:35:43 +00:00
for ( uint8_t r = 0 ; r < 4 ; + + r ) {
for ( uint8_t c = 0 ; c < 4 ; + + c ) {
acc = 0 ;
// J^T times J
for ( uint8_t i = 0 ; i < npts ; + + i ) {
// First for the residuum in the x axis:
if ( r ! = 1 & & c ! = 1 ) {
float a =
( r = = 0 ) ? 1.f :
( ( r = = 2 ) ? ( - s1 * measured_pts [ 2 * i ] ) :
( - c2 * measured_pts [ 2 * i + 1 ] ) ) ;
float b =
( c = = 0 ) ? 1.f :
( ( c = = 2 ) ? ( - s1 * measured_pts [ 2 * i ] ) :
( - c2 * measured_pts [ 2 * i + 1 ] ) ) ;
float w = point_weight_x ( i , npts , measured_pts [ 2 * i + 1 ] ) ;
acc + = a * b * w ;
}
// Second for the residuum in the y axis.
// The first row of the points have a low weight, because their position may not be known
// with a sufficient accuracy.
if ( r ! = 0 & & c ! = 0 ) {
float a =
( r = = 1 ) ? 1.f :
( ( r = = 2 ) ? ( c1 * measured_pts [ 2 * i ] ) :
( - s2 * measured_pts [ 2 * i + 1 ] ) ) ;
float b =
( c = = 1 ) ? 1.f :
( ( c = = 2 ) ? ( c1 * measured_pts [ 2 * i ] ) :
( - s2 * measured_pts [ 2 * i + 1 ] ) ) ;
float w = point_weight_y ( i , npts , measured_pts [ 2 * i + 1 ] ) ;
acc + = a * b * w ;
}
}
A [ r ] [ c ] = acc ;
}
// J^T times f(x)
acc = 0.f ;
for ( uint8_t i = 0 ; i < npts ; + + i ) {
{
float j =
( r = = 0 ) ? 1.f :
( ( r = = 1 ) ? 0.f :
( ( r = = 2 ) ? ( - s1 * measured_pts [ 2 * i ] ) :
( - c2 * measured_pts [ 2 * i + 1 ] ) ) ) ;
float fx = c1 * measured_pts [ 2 * i ] - s2 * measured_pts [ 2 * i + 1 ] + cntr [ 0 ] - pgm_read_float ( true_pts + i * 2 ) ;
float w = point_weight_x ( i , npts , measured_pts [ 2 * i + 1 ] ) ;
acc + = j * fx * w ;
}
{
float j =
( r = = 0 ) ? 0.f :
( ( r = = 1 ) ? 1.f :
( ( r = = 2 ) ? ( c1 * measured_pts [ 2 * i ] ) :
( - s2 * measured_pts [ 2 * i + 1 ] ) ) ) ;
float fy = s1 * measured_pts [ 2 * i ] + c2 * measured_pts [ 2 * i + 1 ] + cntr [ 1 ] - pgm_read_float ( true_pts + i * 2 + 1 ) ;
float w = point_weight_y ( i , npts , measured_pts [ 2 * i + 1 ] ) ;
acc + = j * fy * w ;
}
}
b [ r ] = - acc ;
}
// Solve for h by a Gauss iteration method.
float h [ 4 ] = { 0.f } ;
for ( uint8_t gauss_iter = 0 ; gauss_iter < 100 ; + + gauss_iter ) {
h [ 0 ] = ( b [ 0 ] - A [ 0 ] [ 1 ] * h [ 1 ] - A [ 0 ] [ 2 ] * h [ 2 ] - A [ 0 ] [ 3 ] * h [ 3 ] ) / A [ 0 ] [ 0 ] ;
h [ 1 ] = ( b [ 1 ] - A [ 1 ] [ 0 ] * h [ 0 ] - A [ 1 ] [ 2 ] * h [ 2 ] - A [ 1 ] [ 3 ] * h [ 3 ] ) / A [ 1 ] [ 1 ] ;
h [ 2 ] = ( b [ 2 ] - A [ 2 ] [ 0 ] * h [ 0 ] - A [ 2 ] [ 1 ] * h [ 1 ] - A [ 2 ] [ 3 ] * h [ 3 ] ) / A [ 2 ] [ 2 ] ;
h [ 3 ] = ( b [ 3 ] - A [ 3 ] [ 0 ] * h [ 0 ] - A [ 3 ] [ 1 ] * h [ 1 ] - A [ 3 ] [ 2 ] * h [ 2 ] ) / A [ 3 ] [ 3 ] ;
}
// and update the current position with h.
// It may be better to use the Levenberg-Marquart method here,
// but because we are very close to the solution alread,
// the simple Gauss-Newton non-linear Least Squares method works well enough.
cntr [ 0 ] + = h [ 0 ] ;
cntr [ 1 ] + = h [ 1 ] ;
a1 + = h [ 2 ] ;
a2 + = h [ 3 ] ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " iteration: " ) ;
MYSERIAL . print ( int ( iter ) ) ;
SERIAL_ECHOPGM ( " ; correction vector: " ) ;
MYSERIAL . print ( h [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( h [ 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( h [ 2 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( h [ 3 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " corrected x/y: " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " corrected angles: " ) ;
MYSERIAL . print ( 180.f * a1 / M_PI , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( 180.f * a2 / M_PI , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
vec_x [ 0 ] = cos ( a1 ) * MACHINE_AXIS_SCALE_X ;
vec_x [ 1 ] = sin ( a1 ) * MACHINE_AXIS_SCALE_X ;
vec_y [ 0 ] = - sin ( a2 ) * MACHINE_AXIS_SCALE_Y ;
vec_y [ 1 ] = cos ( a2 ) * MACHINE_AXIS_SCALE_Y ;
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT ;
{
angleDiff = fabs ( a2 - a1 ) ;
2017-10-27 14:12:37 +00:00
eeprom_update_float ( ( float * ) ( EEPROM_XYZ_CAL_SKEW ) , angleDiff ) ; //storing xyz cal. skew to be able to show in support menu later
2017-06-29 16:35:43 +00:00
if ( angleDiff > bed_skew_angle_mild )
result = ( angleDiff > bed_skew_angle_extreme ) ?
BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME :
BED_SKEW_OFFSET_DETECTION_SKEW_MILD ;
if ( fabs ( a1 ) > bed_skew_angle_extreme | |
fabs ( a2 ) > bed_skew_angle_extreme )
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME ;
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 1 ) {
SERIAL_ECHOPGM ( " correction angles: " ) ;
MYSERIAL . print ( 180.f * a1 / M_PI , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( 180.f * a2 / M_PI , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
if ( verbosity_level > = 10 ) {
// Show the adjusted state, before the fitting.
SERIAL_ECHOPGM ( " X vector new, inverted: " ) ;
MYSERIAL . print ( vec_x [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_x [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Y vector new, inverted: " ) ;
MYSERIAL . print ( vec_y [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_y [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " center new, inverted: " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( cntr [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
delay_keep_alive ( 100 ) ;
SERIAL_ECHOLNPGM ( " Error after correction: " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Measure the error after correction.
for ( uint8_t i = 0 ; i < npts ; + + i ) {
float x = vec_x [ 0 ] * measured_pts [ i * 2 ] + vec_y [ 0 ] * measured_pts [ i * 2 + 1 ] + cntr [ 0 ] ;
float y = vec_x [ 1 ] * measured_pts [ i * 2 ] + vec_y [ 1 ] * measured_pts [ i * 2 + 1 ] + cntr [ 1 ] ;
float errX = sqr ( pgm_read_float ( true_pts + i * 2 ) - x ) ;
float errY = sqr ( pgm_read_float ( true_pts + i * 2 + 1 ) - y ) ;
float err = sqrt ( errX + errY ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) {
SERIAL_ECHOPGM ( " point # " ) ;
MYSERIAL . print ( int ( i ) ) ;
SERIAL_ECHOLNPGM ( " : " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
2017-10-27 14:12:37 +00:00
if ( point_on_1st_row ( i ) ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOPGM ( " Point on first row " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
float w = point_weight_y ( i , npts , measured_pts [ 2 * i + 1 ] ) ;
if ( sqrt ( errX ) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X | |
( w ! = 0.f & & sqrt ( errY ) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y ) ) {
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " , weigth Y: " ) ;
MYSERIAL . print ( w ) ;
if ( sqrt ( errX ) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ) SERIAL_ECHOPGM ( " , error X > max. error X " ) ;
if ( w ! = 0.f & & sqrt ( errY ) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y ) SERIAL_ECHOPGM ( " , error Y > max. error Y " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
}
else {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOPGM ( " Point not on first row " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN ) {
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOPGM ( " , error > max. error euclidian " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " measured: ( " ) ;
MYSERIAL . print ( measured_pts [ i * 2 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( measured_pts [ i * 2 + 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " ); corrected: ( " ) ;
MYSERIAL . print ( x , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( y , 5 ) ;
SERIAL_ECHOPGM ( " ); target: ( " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 ) , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 + 1 ) , 5 ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
SERIAL_ECHOPGM ( " error: " ) ;
MYSERIAL . print ( err ) ;
SERIAL_ECHOPGM ( " , error X: " ) ;
MYSERIAL . print ( sqrt ( errX ) ) ;
SERIAL_ECHOPGM ( " , error Y: " ) ;
MYSERIAL . print ( sqrt ( errY ) ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " Max. errors: " ) ;
SERIAL_ECHOPGM ( " Max. error X: " ) ;
MYSERIAL . println ( BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ) ;
SERIAL_ECHOPGM ( " Max. error Y: " ) ;
MYSERIAL . println ( BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y ) ;
SERIAL_ECHOPGM ( " Max. error euclidian: " ) ;
MYSERIAL . println ( BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
#if 0
if ( result = = BED_SKEW_OFFSET_DETECTION_PERFECT & & fabs ( a1 ) < bed_skew_angle_mild & & fabs ( a2 ) < bed_skew_angle_mild ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > 0 )
2017-06-29 16:35:43 +00:00
SERIAL_ECHOLNPGM ( " Very little skew detected. Disabling skew correction. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Just disable the skew correction.
vec_x [ 0 ] = MACHINE_AXIS_SCALE_X ;
vec_x [ 1 ] = 0.f ;
vec_y [ 0 ] = 0.f ;
vec_y [ 1 ] = MACHINE_AXIS_SCALE_Y ;
}
# else
if ( result = = BED_SKEW_OFFSET_DETECTION_PERFECT ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > 0 )
2017-06-29 16:35:43 +00:00
SERIAL_ECHOLNPGM ( " Very little skew detected. Orthogonalizing the axes. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
// Orthogonalize the axes.
2017-06-29 16:35:43 +00:00
a1 = 0.5f * ( a1 + a2 ) ;
vec_x [ 0 ] = cos ( a1 ) * MACHINE_AXIS_SCALE_X ;
vec_x [ 1 ] = sin ( a1 ) * MACHINE_AXIS_SCALE_X ;
vec_y [ 0 ] = - sin ( a1 ) * MACHINE_AXIS_SCALE_Y ;
vec_y [ 1 ] = cos ( a1 ) * MACHINE_AXIS_SCALE_Y ;
// Refresh the offset.
cntr [ 0 ] = 0.f ;
cntr [ 1 ] = 0.f ;
float wx = 0.f ;
float wy = 0.f ;
for ( int8_t i = 0 ; i < npts ; + + i ) {
float x = vec_x [ 0 ] * measured_pts [ i * 2 ] + vec_y [ 0 ] * measured_pts [ i * 2 + 1 ] ;
float y = vec_x [ 1 ] * measured_pts [ i * 2 ] + vec_y [ 1 ] * measured_pts [ i * 2 + 1 ] ;
float w = point_weight_x ( i , npts , y ) ;
cntr [ 0 ] + = w * ( pgm_read_float ( true_pts + i * 2 ) - x ) ;
wx + = w ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
MYSERIAL . print ( i ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " Weight_x: " ) ;
MYSERIAL . print ( w ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " cntr[0]: " ) ;
MYSERIAL . print ( cntr [ 0 ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " wx: " ) ;
MYSERIAL . print ( wx ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
w = point_weight_y ( i , npts , y ) ;
cntr [ 1 ] + = w * ( pgm_read_float ( true_pts + i * 2 + 1 ) - y ) ;
wy + = w ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " Weight_y: " ) ;
MYSERIAL . print ( w ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " cntr[1]: " ) ;
MYSERIAL . print ( cntr [ 1 ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " wy: " ) ;
MYSERIAL . print ( wy ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
cntr [ 0 ] / = wx ;
cntr [ 1 ] / = wy ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " Final cntr values: " ) ;
SERIAL_ECHOLNPGM ( " cntr[0]: " ) ;
MYSERIAL . print ( cntr [ 0 ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " cntr[1]: " ) ;
MYSERIAL . print ( cntr [ 1 ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
# endif
// Invert the transformation matrix made of vec_x, vec_y and cntr.
{
float d = vec_x [ 0 ] * vec_y [ 1 ] - vec_x [ 1 ] * vec_y [ 0 ] ;
float Ainv [ 2 ] [ 2 ] = {
{ vec_y [ 1 ] / d , - vec_y [ 0 ] / d } ,
{ - vec_x [ 1 ] / d , vec_x [ 0 ] / d }
} ;
float cntrInv [ 2 ] = {
- Ainv [ 0 ] [ 0 ] * cntr [ 0 ] - Ainv [ 0 ] [ 1 ] * cntr [ 1 ] ,
- Ainv [ 1 ] [ 0 ] * cntr [ 0 ] - Ainv [ 1 ] [ 1 ] * cntr [ 1 ]
} ;
vec_x [ 0 ] = Ainv [ 0 ] [ 0 ] ;
vec_x [ 1 ] = Ainv [ 1 ] [ 0 ] ;
vec_y [ 0 ] = Ainv [ 0 ] [ 1 ] ;
vec_y [ 1 ] = Ainv [ 1 ] [ 1 ] ;
cntr [ 0 ] = cntrInv [ 0 ] ;
cntr [ 1 ] = cntrInv [ 1 ] ;
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 1 ) {
// Show the adjusted state, before the fitting.
SERIAL_ECHOPGM ( " X vector, adjusted: " ) ;
MYSERIAL . print ( vec_x [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_x [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Y vector, adjusted: " ) ;
MYSERIAL . print ( vec_y [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( vec_y [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " center, adjusted: " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( cntr [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
delay_keep_alive ( 100 ) ;
}
if ( verbosity_level > = 2 ) {
SERIAL_ECHOLNPGM ( " Difference after correction: " ) ;
for ( uint8_t i = 0 ; i < npts ; + + i ) {
float x = vec_x [ 0 ] * pgm_read_float ( true_pts + i * 2 ) + vec_y [ 0 ] * pgm_read_float ( true_pts + i * 2 + 1 ) + cntr [ 0 ] ;
float y = vec_x [ 1 ] * pgm_read_float ( true_pts + i * 2 ) + vec_y [ 1 ] * pgm_read_float ( true_pts + i * 2 + 1 ) + cntr [ 1 ] ;
SERIAL_ECHOPGM ( " point # " ) ;
MYSERIAL . print ( int ( i ) ) ;
SERIAL_ECHOPGM ( " measured: ( " ) ;
MYSERIAL . print ( measured_pts [ i * 2 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( measured_pts [ i * 2 + 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " ); measured-corrected: ( " ) ;
MYSERIAL . print ( x , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( y , 5 ) ;
SERIAL_ECHOPGM ( " ); target: ( " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 ) , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( pgm_read_float ( true_pts + i * 2 + 1 ) , 5 ) ;
SERIAL_ECHOPGM ( " ), error: " ) ;
MYSERIAL . print ( sqrt ( sqr ( measured_pts [ i * 2 ] - x ) + sqr ( measured_pts [ i * 2 + 1 ] - y ) ) ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " Calculate offset and skew returning result: " ) ;
MYSERIAL . print ( int ( result ) ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
delay_keep_alive ( 100 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
return result ;
}
void reset_bed_offset_and_skew ( )
{
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_CENTER + 0 ) , 0x0FFFFFFFF ) ;
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_CENTER + 4 ) , 0x0FFFFFFFF ) ;
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_VEC_X + 0 ) , 0x0FFFFFFFF ) ;
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_VEC_X + 4 ) , 0x0FFFFFFFF ) ;
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 0 ) , 0x0FFFFFFFF ) ;
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 4 ) , 0x0FFFFFFFF ) ;
// Reset the 8 16bit offsets.
for ( int8_t i = 0 ; i < 4 ; + + i )
eeprom_update_dword ( ( uint32_t * ) ( EEPROM_BED_CALIBRATION_Z_JITTER + i * 4 ) , 0x0FFFFFFFF ) ;
}
bool is_bed_z_jitter_data_valid ( )
// offsets of the Z heiths of the calibration points from the first point are saved as 16bit signed int, scaled to tenths of microns
{
for ( int8_t i = 0 ; i < 8 ; + + i )
if ( eeprom_read_word ( ( uint16_t * ) ( EEPROM_BED_CALIBRATION_Z_JITTER + i * 2 ) ) = = 0x0FFFF )
return false ;
return true ;
}
static void world2machine_update ( const float vec_x [ 2 ] , const float vec_y [ 2 ] , const float cntr [ 2 ] )
{
world2machine_rotation_and_skew [ 0 ] [ 0 ] = vec_x [ 0 ] ;
world2machine_rotation_and_skew [ 1 ] [ 0 ] = vec_x [ 1 ] ;
world2machine_rotation_and_skew [ 0 ] [ 1 ] = vec_y [ 0 ] ;
world2machine_rotation_and_skew [ 1 ] [ 1 ] = vec_y [ 1 ] ;
world2machine_shift [ 0 ] = cntr [ 0 ] ;
world2machine_shift [ 1 ] = cntr [ 1 ] ;
// No correction.
world2machine_correction_mode = WORLD2MACHINE_CORRECTION_NONE ;
if ( world2machine_shift [ 0 ] ! = 0.f | | world2machine_shift [ 1 ] ! = 0.f )
// Shift correction.
world2machine_correction_mode | = WORLD2MACHINE_CORRECTION_SHIFT ;
if ( world2machine_rotation_and_skew [ 0 ] [ 0 ] ! = 1.f | | world2machine_rotation_and_skew [ 0 ] [ 1 ] ! = 0.f | |
world2machine_rotation_and_skew [ 1 ] [ 0 ] ! = 0.f | | world2machine_rotation_and_skew [ 1 ] [ 1 ] ! = 1.f ) {
// Rotation & skew correction.
world2machine_correction_mode | = WORLD2MACHINE_CORRECTION_SKEW ;
// Invert the world2machine matrix.
float d = world2machine_rotation_and_skew [ 0 ] [ 0 ] * world2machine_rotation_and_skew [ 1 ] [ 1 ] - world2machine_rotation_and_skew [ 1 ] [ 0 ] * world2machine_rotation_and_skew [ 0 ] [ 1 ] ;
world2machine_rotation_and_skew_inv [ 0 ] [ 0 ] = world2machine_rotation_and_skew [ 1 ] [ 1 ] / d ;
world2machine_rotation_and_skew_inv [ 0 ] [ 1 ] = - world2machine_rotation_and_skew [ 0 ] [ 1 ] / d ;
world2machine_rotation_and_skew_inv [ 1 ] [ 0 ] = - world2machine_rotation_and_skew [ 1 ] [ 0 ] / d ;
world2machine_rotation_and_skew_inv [ 1 ] [ 1 ] = world2machine_rotation_and_skew [ 0 ] [ 0 ] / d ;
} else {
world2machine_rotation_and_skew_inv [ 0 ] [ 0 ] = 1.f ;
world2machine_rotation_and_skew_inv [ 0 ] [ 1 ] = 0.f ;
world2machine_rotation_and_skew_inv [ 1 ] [ 0 ] = 0.f ;
world2machine_rotation_and_skew_inv [ 1 ] [ 1 ] = 1.f ;
}
}
void world2machine_reset ( )
{
const float vx [ ] = { 1.f , 0.f } ;
const float vy [ ] = { 0.f , 1.f } ;
const float cntr [ ] = { 0.f , 0.f } ;
world2machine_update ( vx , vy , cntr ) ;
}
void world2machine_revert_to_uncorrected ( )
{
if ( world2machine_correction_mode ! = WORLD2MACHINE_CORRECTION_NONE ) {
// Reset the machine correction matrix.
const float vx [ ] = { 1.f , 0.f } ;
const float vy [ ] = { 0.f , 1.f } ;
const float cntr [ ] = { 0.f , 0.f } ;
world2machine_update ( vx , vy , cntr ) ;
// Wait for the motors to stop and update the current position with the absolute values.
st_synchronize ( ) ;
current_position [ X_AXIS ] = st_get_position_mm ( X_AXIS ) ;
current_position [ Y_AXIS ] = st_get_position_mm ( Y_AXIS ) ;
}
}
static inline bool vec_undef ( const float v [ 2 ] )
{
const uint32_t * vx = ( const uint32_t * ) v ;
return vx [ 0 ] = = 0x0FFFFFFFF | | vx [ 1 ] = = 0x0FFFFFFFF ;
}
void world2machine_initialize ( )
{
//SERIAL_ECHOLNPGM("world2machine_initialize");
float cntr [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 4 ) )
} ;
float vec_x [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 4 ) )
} ;
float vec_y [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 4 ) )
} ;
bool reset = false ;
if ( vec_undef ( cntr ) | | vec_undef ( vec_x ) | | vec_undef ( vec_y ) ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("Undefined bed correction matrix.");
2017-06-29 16:35:43 +00:00
reset = true ;
}
else {
// Length of the vec_x shall be close to unity.
float l = sqrt ( vec_x [ 0 ] * vec_x [ 0 ] + vec_x [ 1 ] * vec_x [ 1 ] ) ;
if ( l < 0.9 | | l > 1.1 ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("X vector length:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the X vector out of range.");
2017-06-29 16:35:43 +00:00
reset = true ;
}
// Length of the vec_y shall be close to unity.
l = sqrt ( vec_y [ 0 ] * vec_y [ 0 ] + vec_y [ 1 ] * vec_y [ 1 ] ) ;
if ( l < 0.9 | | l > 1.1 ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("Y vector length:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Length of the Y vector out of range.");
2017-06-29 16:35:43 +00:00
reset = true ;
}
// Correction of the zero point shall be reasonably small.
l = sqrt ( cntr [ 0 ] * cntr [ 0 ] + cntr [ 1 ] * cntr [ 1 ] ) ;
if ( l > 15.f ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("Zero point correction:");
// MYSERIAL.println(l);
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Shift out of range.");
2017-06-29 16:35:43 +00:00
reset = true ;
}
// vec_x and vec_y shall be nearly perpendicular.
l = vec_x [ 0 ] * vec_y [ 0 ] + vec_x [ 1 ] * vec_y [ 1 ] ;
if ( fabs ( l ) > 0.1f ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. X/Y axes are far from being perpendicular.");
2017-06-29 16:35:43 +00:00
reset = true ;
}
}
if ( reset ) {
2017-12-27 19:29:24 +00:00
// SERIAL_ECHOLNPGM("Invalid bed correction matrix. Resetting to identity.");
2017-06-29 16:35:43 +00:00
reset_bed_offset_and_skew ( ) ;
world2machine_reset ( ) ;
} else {
world2machine_update ( vec_x , vec_y , cntr ) ;
/*
SERIAL_ECHOPGM ( " world2machine_initialize() loaded: " ) ;
MYSERIAL . print ( world2machine_rotation_and_skew [ 0 ] [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( world2machine_rotation_and_skew [ 0 ] [ 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( world2machine_rotation_and_skew [ 1 ] [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( world2machine_rotation_and_skew [ 1 ] [ 1 ] , 5 ) ;
SERIAL_ECHOPGM ( " , offset " ) ;
MYSERIAL . print ( world2machine_shift [ 0 ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( world2machine_shift [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
*/
}
}
// When switching from absolute to corrected coordinates,
// this will get the absolute coordinates from the servos,
// applies the inverse world2machine transformation
// and stores the result into current_position[x,y].
void world2machine_update_current ( )
{
float x = current_position [ X_AXIS ] - world2machine_shift [ 0 ] ;
float y = current_position [ Y_AXIS ] - world2machine_shift [ 1 ] ;
current_position [ X_AXIS ] = world2machine_rotation_and_skew_inv [ 0 ] [ 0 ] * x + world2machine_rotation_and_skew_inv [ 0 ] [ 1 ] * y ;
current_position [ Y_AXIS ] = world2machine_rotation_and_skew_inv [ 1 ] [ 0 ] * x + world2machine_rotation_and_skew_inv [ 1 ] [ 1 ] * y ;
}
static inline void go_xyz ( float x , float y , float z , float fr )
{
plan_buffer_line ( x , y , z , current_position [ E_AXIS ] , fr , active_extruder ) ;
st_synchronize ( ) ;
}
static inline void go_xy ( float x , float y , float fr )
{
plan_buffer_line ( x , y , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , fr , active_extruder ) ;
st_synchronize ( ) ;
}
static inline void go_to_current ( float fr )
{
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] , fr , active_extruder ) ;
st_synchronize ( ) ;
}
static inline void update_current_position_xyz ( )
{
current_position [ X_AXIS ] = st_get_position_mm ( X_AXIS ) ;
current_position [ Y_AXIS ] = st_get_position_mm ( Y_AXIS ) ;
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
plan_set_position ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , current_position [ E_AXIS ] ) ;
}
static inline void update_current_position_z ( )
{
current_position [ Z_AXIS ] = st_get_position_mm ( Z_AXIS ) ;
plan_set_z_position ( current_position [ Z_AXIS ] ) ;
}
// At the current position, find the Z stop.
inline bool find_bed_induction_sensor_point_z ( float minimum_z , uint8_t n_iter , int verbosity_level )
{
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) SERIAL_ECHOLNPGM ( " find bed induction sensor point z " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
bool endstops_enabled = enable_endstops ( true ) ;
2017-06-29 16:35:43 +00:00
bool endstop_z_enabled = enable_z_endstop ( false ) ;
float z = 0.f ;
endstop_z_hit_on_purpose ( ) ;
// move down until you find the bed
current_position [ Z_AXIS ] = minimum_z ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) )
goto error ;
for ( uint8_t i = 0 ; i < n_iter ; + + i ) {
// Move up the retract distance.
current_position [ Z_AXIS ] + = .5f ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
// Move back down slowly to find bed.
current_position [ Z_AXIS ] = minimum_z ;
go_to_current ( homing_feedrate [ Z_AXIS ] / ( 4 * 60 ) ) ;
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_z ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) )
goto error ;
// SERIAL_ECHOPGM("Bed find_bed_induction_sensor_point_z low, height: ");
// MYSERIAL.print(current_position[Z_AXIS], 5);
// SERIAL_ECHOLNPGM("");
z + = current_position [ Z_AXIS ] ;
}
current_position [ Z_AXIS ] = z ;
if ( n_iter > 1 )
current_position [ Z_AXIS ] / = float ( n_iter ) ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 3");
return true ;
error :
// SERIAL_ECHOLNPGM("find_bed_induction_sensor_point_z 4");
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
return false ;
}
// Search around the current_position[X,Y],
// look for the induction sensor response.
// Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
# define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
2018-02-22 09:38:46 +00:00
# define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (4.f)
2017-06-29 16:35:43 +00:00
# define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
2018-03-04 19:49:34 +00:00
# ifdef HEATBED_V2
2018-03-03 19:05:43 +00:00
# define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (2.f)
2018-03-06 10:51:31 +00:00
# define FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR (0.03f)
2018-03-04 19:49:34 +00:00
# else //HEATBED_V2
# define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
# endif //HEATBED_V2
2018-03-03 19:05:43 +00:00
2018-03-04 19:21:31 +00:00
# ifdef HEATBED_V2
2017-06-29 16:35:43 +00:00
inline bool find_bed_induction_sensor_point_xy ( int verbosity_level )
{
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2018-03-04 19:21:31 +00:00
if ( verbosity_level > = 10 ) MYSERIAL . println ( " find bed induction sensor point xy " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
float feedrate = homing_feedrate [ X_AXIS ] / 60.f ;
2018-03-04 19:21:31 +00:00
bool found = false ;
{
float x0 = current_position [ X_AXIS ] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS ;
float x1 = current_position [ X_AXIS ] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS ;
float y0 = current_position [ Y_AXIS ] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS ;
float y1 = current_position [ Y_AXIS ] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS ;
uint8_t nsteps_y ;
uint8_t i ;
2017-06-29 16:35:43 +00:00
if ( x0 < X_MIN_POS ) {
x0 = X_MIN_POS ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " X searching radius lower than X_MIN. Clamping was done. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
if ( x1 > X_MAX_POS ) {
x1 = X_MAX_POS ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " X searching radius higher than X_MAX. Clamping was done. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
if ( y0 < Y_MIN_POS_FOR_BED_CALIBRATION ) {
y0 = Y_MIN_POS_FOR_BED_CALIBRATION ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " Y searching radius lower than Y_MIN. Clamping was done. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
if ( y1 > Y_MAX_POS ) {
y1 = Y_MAX_POS ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " Y searching radius higher than X_MAX. Clamping was done. " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
2018-03-04 19:21:31 +00:00
nsteps_y = int ( ceil ( ( y1 - y0 ) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP ) ) ;
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
enable_endstops ( false ) ;
bool dir_positive = true ;
2018-03-03 19:05:43 +00:00
float z_error = 2 * FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP ;
float find_bed_induction_sensor_point_z_step = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP ;
float initial_z_position = current_position [ Z_AXIS ] ;
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
go_xyz ( x0 , y0 , current_position [ Z_AXIS ] , feedrate ) ;
// Continously lower the Z axis.
endstops_hit_on_purpose ( ) ;
enable_z_endstop ( true ) ;
2018-03-06 10:51:31 +00:00
bool direction = false ;
2018-03-04 19:21:31 +00:00
while ( current_position [ Z_AXIS ] > - 10.f & & z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR ) {
// Do nsteps_y zig-zag movements.
2018-03-06 10:51:31 +00:00
SERIAL_ECHOPGM ( " z_error: " ) ;
MYSERIAL . println ( z_error ) ;
current_position [ Y_AXIS ] = direction ? y1 : y0 ;
2018-03-03 19:05:43 +00:00
initial_z_position = current_position [ Z_AXIS ] ;
2018-03-06 10:51:31 +00:00
for ( i = 0 ; i < ( nsteps_y - 1 ) ; ( direction = = false ) ? ( current_position [ Y_AXIS ] + = ( y1 - y0 ) / float ( nsteps_y - 1 ) ) : ( current_position [ Y_AXIS ] - = ( y1 - y0 ) / float ( nsteps_y - 1 ) ) , + + i ) {
2018-03-04 19:21:31 +00:00
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position [ Z_AXIS ] - = find_bed_induction_sensor_point_z_step / float ( nsteps_y - 1 ) ;
go_xyz ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , feedrate ) ;
dir_positive = ! dir_positive ;
2018-03-03 19:05:43 +00:00
if ( endstop_z_hit_on_purpose ( ) ) {
update_current_position_xyz ( ) ;
2018-03-06 10:51:31 +00:00
z_error = initial_z_position - current_position [ Z_AXIS ] + find_bed_induction_sensor_point_z_step ;
2018-03-03 19:05:43 +00:00
if ( z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR ) {
find_bed_induction_sensor_point_z_step = z_error / 2 ;
current_position [ Z_AXIS ] + = z_error ;
enable_z_endstop ( false ) ;
2018-03-06 10:51:31 +00:00
( direction = = false ) ? go_xyz ( x0 , y0 , current_position [ Z_AXIS ] , feedrate ) : go_xyz ( x0 , y1 , current_position [ Z_AXIS ] , feedrate ) ;
2018-03-03 19:05:43 +00:00
enable_z_endstop ( true ) ;
}
goto endloop ;
}
2018-03-04 19:21:31 +00:00
}
2018-03-06 10:51:31 +00:00
for ( i = 0 ; i < ( nsteps_y - 1 ) ; ( direction = = false ) ? ( current_position [ Y_AXIS ] - = ( y1 - y0 ) / float ( nsteps_y - 1 ) ) : ( current_position [ Y_AXIS ] + = ( y1 - y0 ) / float ( nsteps_y - 1 ) ) , + + i ) {
2018-03-04 19:21:31 +00:00
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position [ Z_AXIS ] - = find_bed_induction_sensor_point_z_step / float ( nsteps_y - 1 ) ;
go_xyz ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , feedrate ) ;
dir_positive = ! dir_positive ;
2018-03-03 19:05:43 +00:00
if ( endstop_z_hit_on_purpose ( ) ) {
update_current_position_xyz ( ) ;
2018-03-06 10:51:31 +00:00
z_error = initial_z_position - current_position [ Z_AXIS ] ;
2018-03-03 19:05:43 +00:00
if ( z_error > FIND_BED_INDUCTION_SENSOR_POINT_MAX_Z_ERROR ) {
find_bed_induction_sensor_point_z_step = z_error / 2 ;
current_position [ Z_AXIS ] + = z_error ;
enable_z_endstop ( false ) ;
2018-03-06 10:51:31 +00:00
direction = ! direction ;
( direction = = false ) ? go_xyz ( x0 , y0 , current_position [ Z_AXIS ] , feedrate ) : go_xyz ( x0 , y1 , current_position [ Z_AXIS ] , feedrate ) ;
2018-03-03 19:05:43 +00:00
enable_z_endstop ( true ) ;
}
goto endloop ;
}
2018-03-04 19:21:31 +00:00
}
endloop : ;
}
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) {
SERIAL_ECHO ( " First hit " ) ;
SERIAL_ECHO ( " - X: " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] ) ;
SERIAL_ECHO ( " ; Y: " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] ) ;
SERIAL_ECHO ( " ; Z: " ) ;
MYSERIAL . println ( current_position [ Z_AXIS ] ) ;
}
# endif //SUPPORT_VERBOSITY
//lcd_show_fullscreen_message_and_wait_P(PSTR("First hit"));
//lcd_update_enable(true);
float init_x_position = current_position [ X_AXIS ] ;
float init_y_position = current_position [ Y_AXIS ] ;
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz ( ) ;
enable_z_endstop ( false ) ;
for ( int8_t iter = 0 ; iter < 2 ; + + iter ) {
/*SERIAL_ECHOPGM("iter: ");
MYSERIAL . println ( iter ) ;
SERIAL_ECHOPGM ( " 1 - current_position[Z_AXIS]: " ) ;
2018-03-03 19:05:43 +00:00
MYSERIAL . println ( current_position [ Z_AXIS ] ) ; */
2018-02-26 17:25:47 +00:00
2018-03-04 19:21:31 +00:00
// Slightly lower the Z axis to get a reliable trigger.
2018-03-04 22:49:54 +00:00
current_position [ Z_AXIS ] - = 0.1f ;
2018-03-04 19:21:31 +00:00
go_xyz ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , homing_feedrate [ Z_AXIS ] / ( 60 * 10 ) ) ;
SERIAL_ECHOPGM ( " 2 - current_position[Z_AXIS]: " ) ;
MYSERIAL . println ( current_position [ Z_AXIS ] ) ;
// Do nsteps_y zig-zag movements.
float a , b ;
float avg [ 2 ] = { 0 , 0 } ;
2018-03-05 17:09:48 +00:00
invert_z_endstop ( true ) ;
2018-03-04 19:21:31 +00:00
for ( int iteration = 0 ; iteration < 8 ; iteration + + ) {
2018-03-05 17:09:48 +00:00
found = false ;
2018-03-04 22:49:54 +00:00
enable_z_endstop ( true ) ;
2018-03-05 17:09:48 +00:00
go_xy ( init_x_position + 16.0f , current_position [ Y_AXIS ] , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search X span 0 - not found");
continue ;
}
// SERIAL_ECHOLN("Search X span 0 - found");
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
2018-03-04 22:49:54 +00:00
go_xy ( init_x_position , current_position [ Y_AXIS ] , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
enable_z_endstop ( true ) ;
2018-03-05 17:09:48 +00:00
go_xy ( init_x_position - 16.0f , current_position [ Y_AXIS ] , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search X span 1 - not found");
continue ;
}
// SERIAL_ECHOLN("Search X span 1 - found");
b = current_position [ X_AXIS ] ;
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ X_AXIS ] = 0.5f * ( a + b ) ;
2018-03-05 17:09:48 +00:00
go_xy ( current_position [ X_AXIS ] , init_y_position , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
found = true ;
// Search in the Y direction along a cross.
found = false ;
enable_z_endstop ( true ) ;
2018-03-05 17:09:48 +00:00
go_xy ( current_position [ X_AXIS ] , init_y_position + 16.0f , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
continue ;
}
// SERIAL_ECHOLN("Search Y2 span 0 - found");
a = current_position [ Y_AXIS ] ;
enable_z_endstop ( false ) ;
2018-03-04 22:49:54 +00:00
go_xy ( current_position [ X_AXIS ] , init_y_position , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
enable_z_endstop ( true ) ;
2018-03-05 17:09:48 +00:00
go_xy ( current_position [ X_AXIS ] , init_y_position - 16.0f , feedrate / 5 ) ;
2018-03-04 19:21:31 +00:00
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
continue ;
}
// SERIAL_ECHOLN("Search Y2 span 1 - found");
b = current_position [ Y_AXIS ] ;
// Go to the center.
2018-03-04 22:49:54 +00:00
enable_z_endstop ( false ) ;
2018-03-04 19:21:31 +00:00
current_position [ Y_AXIS ] = 0.5f * ( a + b ) ;
2018-03-04 22:49:54 +00:00
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , feedrate / 5 ) ;
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " ITERATION: " ) ;
MYSERIAL . println ( iteration ) ;
SERIAL_ECHOPGM ( " CURRENT POSITION X: " ) ;
MYSERIAL . println ( current_position [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " CURRENT POSITION Y: " ) ;
MYSERIAL . println ( current_position [ Y_AXIS ] ) ;
}
# endif //SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
2018-03-04 22:49:54 +00:00
if ( iteration > 0 ) {
// Average the last 7 measurements.
2018-03-04 19:21:31 +00:00
avg [ X_AXIS ] + = current_position [ X_AXIS ] ;
avg [ Y_AXIS ] + = current_position [ Y_AXIS ] ;
}
2018-03-03 19:05:43 +00:00
2018-03-04 22:49:54 +00:00
init_x_position = current_position [ X_AXIS ] ;
init_y_position = current_position [ Y_AXIS ] ;
2018-03-04 19:21:31 +00:00
found = true ;
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
}
2018-03-05 17:09:48 +00:00
invert_z_endstop ( false ) ;
2018-03-04 22:49:54 +00:00
avg [ X_AXIS ] * = ( 1.f / 7.f ) ;
avg [ Y_AXIS ] * = ( 1.f / 7.f ) ;
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
current_position [ X_AXIS ] = avg [ X_AXIS ] ;
current_position [ Y_AXIS ] = avg [ Y_AXIS ] ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " AVG CURRENT POSITION X: " ) ;
MYSERIAL . println ( current_position [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " AVG CURRENT POSITION Y: " ) ;
MYSERIAL . println ( current_position [ Y_AXIS ] ) ;
}
# endif // SUPPORT_VERBOSITY
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , feedrate ) ;
2018-03-04 23:17:43 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) {
lcd_show_fullscreen_message_and_wait_P ( PSTR ( " Final position " ) ) ;
lcd_update_enable ( true ) ;
}
# endif //SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
break ;
}
}
2018-03-05 17:09:48 +00:00
2018-03-04 19:21:31 +00:00
enable_z_endstop ( false ) ;
2018-03-05 17:09:48 +00:00
invert_z_endstop ( false ) ;
2018-03-04 19:21:31 +00:00
return found ;
2018-03-03 19:05:43 +00:00
2018-03-04 19:21:31 +00:00
}
# else //HEATBED_V2
inline bool find_bed_induction_sensor_point_xy ( int verbosity_level )
{
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 10 ) MYSERIAL . println ( " find bed induction sensor point xy " ) ;
# endif // SUPPORT_VERBOSITY
float feedrate = homing_feedrate [ X_AXIS ] / 60.f ;
bool found = false ;
{
float x0 = current_position [ X_AXIS ] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS ;
float x1 = current_position [ X_AXIS ] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS ;
float y0 = current_position [ Y_AXIS ] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS ;
float y1 = current_position [ Y_AXIS ] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS ;
uint8_t nsteps_y ;
uint8_t i ;
if ( x0 < X_MIN_POS ) {
x0 = X_MIN_POS ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " X searching radius lower than X_MIN. Clamping was done. " ) ;
# endif // SUPPORT_VERBOSITY
}
if ( x1 > X_MAX_POS ) {
x1 = X_MAX_POS ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " X searching radius higher than X_MAX. Clamping was done. " ) ;
# endif // SUPPORT_VERBOSITY
}
if ( y0 < Y_MIN_POS_FOR_BED_CALIBRATION ) {
y0 = Y_MIN_POS_FOR_BED_CALIBRATION ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " Y searching radius lower than Y_MIN. Clamping was done. " ) ;
# endif // SUPPORT_VERBOSITY
}
if ( y1 > Y_MAX_POS ) {
y1 = Y_MAX_POS ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 20 ) SERIAL_ECHOLNPGM ( " Y searching radius higher than X_MAX. Clamping was done. " ) ;
# endif // SUPPORT_VERBOSITY
}
nsteps_y = int ( ceil ( ( y1 - y0 ) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP ) ) ;
enable_endstops ( false ) ;
bool dir_positive = true ;
// go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
go_xyz ( x0 , y0 , current_position [ Z_AXIS ] , feedrate ) ;
// Continously lower the Z axis.
endstops_hit_on_purpose ( ) ;
enable_z_endstop ( true ) ;
while ( current_position [ Z_AXIS ] > - 10.f ) {
// Do nsteps_y zig-zag movements.
current_position [ Y_AXIS ] = y0 ;
for ( i = 0 ; i < nsteps_y ; current_position [ Y_AXIS ] + = ( y1 - y0 ) / float ( nsteps_y - 1 ) , + + i ) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position [ Z_AXIS ] - = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float ( nsteps_y ) ;
go_xyz ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , feedrate ) ;
dir_positive = ! dir_positive ;
if ( endstop_z_hit_on_purpose ( ) )
goto endloop ;
}
for ( i = 0 ; i < nsteps_y ; current_position [ Y_AXIS ] - = ( y1 - y0 ) / float ( nsteps_y - 1 ) , + + i ) {
// Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
current_position [ Z_AXIS ] - = FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float ( nsteps_y ) ;
go_xyz ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] , feedrate ) ;
dir_positive = ! dir_positive ;
if ( endstop_z_hit_on_purpose ( ) )
goto endloop ;
}
}
endloop :
// SERIAL_ECHOLN("First hit");
// we have to let the planner know where we are right now as it is not where we said to go.
update_current_position_xyz ( ) ;
// Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
for ( int8_t iter = 0 ; iter < 3 ; + + iter ) {
if ( iter > 0 ) {
// Slightly lower the Z axis to get a reliable trigger.
current_position [ Z_AXIS ] - = 0.02f ;
go_xyz ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , MESH_HOME_Z_SEARCH , homing_feedrate [ Z_AXIS ] / 60 ) ;
}
// Do nsteps_y zig-zag movements.
float a , b ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
current_position [ Y_AXIS ] = y0 ;
go_xy ( x0 , current_position [ Y_AXIS ] , feedrate ) ;
enable_z_endstop ( true ) ;
found = false ;
for ( i = 0 , dir_positive = true ; i < nsteps_y ; current_position [ Y_AXIS ] + = ( y1 - y0 ) / float ( nsteps_y - 1 ) , + + i , dir_positive = ! dir_positive ) {
go_xy ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , feedrate ) ;
if ( endstop_z_hit_on_purpose ( ) ) {
found = true ;
break ;
}
}
update_current_position_xyz ( ) ;
if ( ! found ) {
// SERIAL_ECHOLN("Search in Y - not found");
continue ;
}
// SERIAL_ECHOLN("Search in Y - found");
a = current_position [ Y_AXIS ] ;
enable_z_endstop ( false ) ;
current_position [ Y_AXIS ] = y1 ;
go_xy ( x0 , current_position [ Y_AXIS ] , feedrate ) ;
enable_z_endstop ( true ) ;
found = false ;
for ( i = 0 , dir_positive = true ; i < nsteps_y ; current_position [ Y_AXIS ] - = ( y1 - y0 ) / float ( nsteps_y - 1 ) , + + i , dir_positive = ! dir_positive ) {
go_xy ( dir_positive ? x1 : x0 , current_position [ Y_AXIS ] , feedrate ) ;
if ( endstop_z_hit_on_purpose ( ) ) {
found = true ;
break ;
}
}
update_current_position_xyz ( ) ;
if ( ! found ) {
// SERIAL_ECHOLN("Search in Y2 - not found");
continue ;
}
// SERIAL_ECHOLN("Search in Y2 - found");
b = current_position [ Y_AXIS ] ;
current_position [ Y_AXIS ] = 0.5f * ( a + b ) ;
// Search in the X direction along a cross.
found = false ;
enable_z_endstop ( false ) ;
go_xy ( x0 , current_position [ Y_AXIS ] , feedrate ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , current_position [ Y_AXIS ] , feedrate ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search X span 0 - not found");
continue ;
}
// SERIAL_ECHOLN("Search X span 0 - found");
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( x1 , current_position [ Y_AXIS ] , feedrate ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , current_position [ Y_AXIS ] , feedrate ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search X span 1 - not found");
continue ;
}
// SERIAL_ECHOLN("Search X span 1 - found");
b = current_position [ X_AXIS ] ;
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ X_AXIS ] = 0.5f * ( a + b ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , feedrate ) ;
found = true ;
# if 1
// Search in the Y direction along a cross.
found = false ;
enable_z_endstop ( false ) ;
go_xy ( current_position [ X_AXIS ] , y0 , feedrate ) ;
enable_z_endstop ( true ) ;
go_xy ( current_position [ X_AXIS ] , y1 , feedrate ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search Y2 span 0 - not found");
continue ;
}
// SERIAL_ECHOLN("Search Y2 span 0 - found");
a = current_position [ Y_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( current_position [ X_AXIS ] , y1 , feedrate ) ;
enable_z_endstop ( true ) ;
go_xy ( current_position [ X_AXIS ] , y0 , feedrate ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
// SERIAL_ECHOLN("Search Y2 span 1 - not found");
continue ;
}
// SERIAL_ECHOLN("Search Y2 span 1 - found");
b = current_position [ Y_AXIS ] ;
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ Y_AXIS ] = 0.5f * ( a + b ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , feedrate ) ;
found = true ;
2017-06-29 16:35:43 +00:00
# endif
2018-03-04 19:21:31 +00:00
break ;
}
}
2017-06-29 16:35:43 +00:00
2018-03-04 19:21:31 +00:00
enable_z_endstop ( false ) ;
return found ;
2017-06-29 16:35:43 +00:00
}
2018-03-04 19:21:31 +00:00
# endif //HEATBED_V2
2017-06-29 16:35:43 +00:00
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
inline bool improve_bed_induction_sensor_point ( )
{
static const float search_radius = 8.f ;
bool endstops_enabled = enable_endstops ( false ) ;
bool endstop_z_enabled = enable_z_endstop ( false ) ;
bool found = false ;
float feedrate = homing_feedrate [ X_AXIS ] / 60.f ;
float center_old_x = current_position [ X_AXIS ] ;
float center_old_y = current_position [ Y_AXIS ] ;
float center_x = 0.f ;
float center_y = 0.f ;
for ( uint8_t iter = 0 ; iter < 4 ; + + iter ) {
switch ( iter ) {
case 0 :
destination [ X_AXIS ] = center_old_x - search_radius * 0.707 ;
destination [ Y_AXIS ] = center_old_y - search_radius * 0.707 ;
break ;
case 1 :
destination [ X_AXIS ] = center_old_x + search_radius * 0.707 ;
destination [ Y_AXIS ] = center_old_y + search_radius * 0.707 ;
break ;
case 2 :
destination [ X_AXIS ] = center_old_x + search_radius * 0.707 ;
destination [ Y_AXIS ] = center_old_y - search_radius * 0.707 ;
break ;
case 3 :
default :
destination [ X_AXIS ] = center_old_x - search_radius * 0.707 ;
destination [ Y_AXIS ] = center_old_y + search_radius * 0.707 ;
break ;
}
// Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
float vx = destination [ X_AXIS ] - center_old_x ;
float vy = destination [ Y_AXIS ] - center_old_y ;
float l = sqrt ( vx * vx + vy * vy ) ;
float t ;
if ( destination [ X_AXIS ] < X_MIN_POS ) {
// Exiting the bed at xmin.
t = ( center_x - X_MIN_POS ) / l ;
destination [ X_AXIS ] = X_MIN_POS ;
destination [ Y_AXIS ] = center_old_y + t * vy ;
} else if ( destination [ X_AXIS ] > X_MAX_POS ) {
// Exiting the bed at xmax.
t = ( X_MAX_POS - center_x ) / l ;
destination [ X_AXIS ] = X_MAX_POS ;
destination [ Y_AXIS ] = center_old_y + t * vy ;
}
if ( destination [ Y_AXIS ] < Y_MIN_POS_FOR_BED_CALIBRATION ) {
// Exiting the bed at ymin.
t = ( center_y - Y_MIN_POS_FOR_BED_CALIBRATION ) / l ;
destination [ X_AXIS ] = center_old_x + t * vx ;
destination [ Y_AXIS ] = Y_MIN_POS_FOR_BED_CALIBRATION ;
} else if ( destination [ Y_AXIS ] > Y_MAX_POS ) {
// Exiting the bed at xmax.
t = ( Y_MAX_POS - center_y ) / l ;
destination [ X_AXIS ] = center_old_x + t * vx ;
destination [ Y_AXIS ] = Y_MAX_POS ;
}
// Move away from the measurement point.
enable_endstops ( false ) ;
go_xy ( destination [ X_AXIS ] , destination [ Y_AXIS ] , feedrate ) ;
// Move towards the measurement point, until the induction sensor triggers.
enable_endstops ( true ) ;
go_xy ( center_old_x , center_old_y , feedrate ) ;
update_current_position_xyz ( ) ;
// if (! endstop_z_hit_on_purpose()) return false;
center_x + = current_position [ X_AXIS ] ;
center_y + = current_position [ Y_AXIS ] ;
}
// Calculate the new center, move to the new center.
center_x / = 4.f ;
center_y / = 4.f ;
current_position [ X_AXIS ] = center_x ;
current_position [ Y_AXIS ] = center_y ;
enable_endstops ( false ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , feedrate ) ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
return found ;
}
static inline void debug_output_point ( const char * type , const float & x , const float & y , const float & z )
{
SERIAL_ECHOPGM ( " Measured " ) ;
SERIAL_ECHORPGM ( type ) ;
SERIAL_ECHOPGM ( " " ) ;
MYSERIAL . print ( x , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( y , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( z , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
// Search around the current_position[X,Y,Z].
// It is expected, that the induction sensor is switched on at the current position.
// Look around this center point by painting a star around the point.
# define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
inline bool improve_bed_induction_sensor_point2 ( bool lift_z_on_min_y , int8_t verbosity_level )
{
float center_old_x = current_position [ X_AXIS ] ;
float center_old_y = current_position [ Y_AXIS ] ;
float a , b ;
bool point_small = false ;
enable_endstops ( false ) ;
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS ;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS ;
if ( x0 < X_MIN_POS )
x0 = X_MIN_POS ;
if ( x1 > X_MAX_POS )
x1 = X_MAX_POS ;
// Search in the X direction along a cross.
enable_z_endstop ( false ) ;
go_xy ( x0 , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ X_AXIS ] = center_old_x ;
goto canceled ;
}
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( x1 , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ X_AXIS ] = center_old_x ;
goto canceled ;
}
b = current_position [ X_AXIS ] ;
if ( b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
SERIAL_ECHOPGM ( " Point width too small: " ) ;
SERIAL_ECHO ( b - a ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
if ( b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
// Don't use the new X value.
current_position [ X_AXIS ] = center_old_x ;
goto canceled ;
} else {
// Use the new value, but force the Z axis to go a bit lower.
point_small = true ;
}
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
debug_output_point ( PSTR ( " left " ) , a , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
debug_output_point ( PSTR ( " right " ) , b , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ X_AXIS ] = 0.5f * ( a + b ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
}
{
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS ;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS ;
if ( y0 < Y_MIN_POS_FOR_BED_CALIBRATION )
y0 = Y_MIN_POS_FOR_BED_CALIBRATION ;
if ( y1 > Y_MAX_POS )
y1 = Y_MAX_POS ;
// Search in the Y direction along a cross.
enable_z_endstop ( false ) ;
go_xy ( current_position [ X_AXIS ] , y0 , homing_feedrate [ X_AXIS ] / 60.f ) ;
if ( lift_z_on_min_y ) {
// The first row of points are very close to the end stop.
// Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
go_xyz ( current_position [ X_AXIS ] , y0 , current_position [ Z_AXIS ] + 1.5f , homing_feedrate [ Z_AXIS ] / 60.f ) ;
// and go back.
go_xyz ( current_position [ X_AXIS ] , y0 , current_position [ Z_AXIS ] , homing_feedrate [ Z_AXIS ] / 60.f ) ;
}
if ( lift_z_on_min_y & & ( READ ( Z_MIN_PIN ) ^ Z_MIN_ENDSTOP_INVERTING ) = = 1 ) {
// Already triggering before we started the move.
// Shift the trigger point slightly outwards.
// a = current_position[Y_AXIS] - 1.5f;
a = current_position [ Y_AXIS ] ;
} else {
enable_z_endstop ( true ) ;
go_xy ( current_position [ X_AXIS ] , y1 , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
a = current_position [ Y_AXIS ] ;
}
enable_z_endstop ( false ) ;
go_xy ( current_position [ X_AXIS ] , y1 , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( current_position [ X_AXIS ] , y0 , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
b = current_position [ Y_AXIS ] ;
if ( b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 5 ) {
2017-06-29 16:35:43 +00:00
SERIAL_ECHOPGM ( " Point height too small: " ) ;
SERIAL_ECHO ( b - a ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
// Don't use the new Y value.
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
} else {
// Use the new value, but force the Z axis to go a bit lower.
point_small = true ;
}
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
debug_output_point ( PSTR ( " top " ) , current_position [ X_AXIS ] , a , current_position [ Z_AXIS ] ) ;
debug_output_point ( PSTR ( " bottom " ) , current_position [ X_AXIS ] , b , current_position [ Z_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ Y_AXIS ] = 0.5f * ( a + b ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
}
// If point is small but not too small, then force the Z axis to be lowered a bit,
// but use the new value. This is important when the initial position was off in one axis,
// for example if the initial calibration was shifted in the Y axis systematically.
// Then this first step will center.
return ! point_small ;
canceled :
// Go back to the center.
enable_z_endstop ( false ) ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
return false ;
}
// Searching the front points, where one cannot move the sensor head in front of the sensor point.
// Searching in a zig-zag movement in a plane for the maximum width of the response.
// This function may set the current_position[Y_AXIS] below Y_MIN_POS, if the function succeeded.
// If this function failed, the Y coordinate will never be outside the working space.
2018-02-26 17:25:47 +00:00
# define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS (8.f)
2017-06-29 16:35:43 +00:00
# define IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y (0.1f)
inline bool improve_bed_induction_sensor_point3 ( int verbosity_level )
{
float center_old_x = current_position [ X_AXIS ] ;
float center_old_y = current_position [ Y_AXIS ] ;
float a , b ;
bool result = true ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) MYSERIAL . println ( " Improve bed induction sensor point3 " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Was the sensor point detected too far in the minus Y axis?
// If yes, the center of the induction point cannot be reached by the machine.
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y = y0 ;
if ( x0 < X_MIN_POS )
x0 = X_MIN_POS ;
if ( x1 > X_MAX_POS )
x1 = X_MAX_POS ;
if ( y0 < Y_MIN_POS_FOR_BED_CALIBRATION )
y0 = Y_MIN_POS_FOR_BED_CALIBRATION ;
if ( y1 > Y_MAX_POS )
y1 = Y_MAX_POS ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " Initial position: " ) ;
SERIAL_ECHO ( center_old_x ) ;
SERIAL_ECHOPGM ( " , " ) ;
SERIAL_ECHO ( center_old_y ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Search in the positive Y direction, until a maximum diameter is found.
// (the next diameter is smaller than the current one.)
float dmax = 0.f ;
float xmax1 = 0.f ;
float xmax2 = 0.f ;
for ( y = y0 ; y < y1 ; y + = IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ) {
enable_z_endstop ( false ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
// SERIAL_PROTOCOLPGM("Failed 1\n");
// current_position[X_AXIS] = center_old_x;
// goto canceled;
}
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
// SERIAL_PROTOCOLPGM("Failed 2\n");
// current_position[X_AXIS] = center_old_x;
// goto canceled;
}
b = current_position [ X_AXIS ] ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
debug_output_point ( PSTR ( " left " ) , a , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
debug_output_point ( PSTR ( " right " ) , b , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
float d = b - a ;
if ( d > dmax ) {
xmax1 = 0.5f * ( a + b ) ;
dmax = d ;
} else if ( dmax > 0. ) {
y0 = y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ;
break ;
}
}
if ( dmax = = 0. ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > 0 )
SERIAL_PROTOCOLPGM ( " failed - not found \n " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
current_position [ X_AXIS ] = center_old_x ;
2017-06-29 16:35:43 +00:00
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
{
// Find the positive Y hit. This gives the extreme Y value for the search of the maximum diameter in the -Y direction.
enable_z_endstop ( false ) ;
go_xy ( xmax1 , y0 + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( xmax1 , max ( y0 - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS , Y_MIN_POS_FOR_BED_CALIBRATION ) , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 )
debug_output_point ( PSTR ( " top " ) , current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
y1 = current_position [ Y_AXIS ] ;
2017-06-29 16:35:43 +00:00
}
if ( y1 < = y0 ) {
// Either the induction sensor is too high, or the induction sensor target is out of reach.
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
// Search in the negative Y direction, until a maximum diameter is found.
dmax = 0.f ;
// if (y0 + 1.f < y1)
// y1 = y0 + 1.f;
for ( y = y1 ; y > = y0 ; y - = IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ) {
enable_z_endstop ( false ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
/*
current_position [ X_AXIS ] = center_old_x ;
SERIAL_PROTOCOLPGM ( " Failed 3 \n " ) ;
goto canceled ;
*/
}
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
/*
current_position [ X_AXIS ] = center_old_x ;
SERIAL_PROTOCOLPGM ( " Failed 4 \n " ) ;
goto canceled ;
*/
}
b = current_position [ X_AXIS ] ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
debug_output_point ( PSTR ( " left " ) , a , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
debug_output_point ( PSTR ( " right " ) , b , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
float d = b - a ;
if ( d > dmax ) {
xmax2 = 0.5f * ( a + b ) ;
dmax = d ;
} else if ( dmax > 0. ) {
y1 = y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ;
break ;
}
}
float xmax , ymax ;
if ( dmax = = 0.f ) {
// Only the hit in the positive direction found.
xmax = xmax1 ;
ymax = y0 ;
} else {
// Both positive and negative directions found.
xmax = xmax2 ;
ymax = 0.5f * ( y0 + y1 ) ;
for ( ; y > = y0 ; y - = IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ) {
enable_z_endstop ( false ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
/*
current_position [ X_AXIS ] = center_old_x ;
SERIAL_PROTOCOLPGM ( " Failed 3 \n " ) ;
goto canceled ;
*/
}
a = current_position [ X_AXIS ] ;
enable_z_endstop ( false ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
continue ;
/*
current_position [ X_AXIS ] = center_old_x ;
SERIAL_PROTOCOLPGM ( " Failed 4 \n " ) ;
goto canceled ;
*/
}
b = current_position [ X_AXIS ] ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
debug_output_point ( PSTR ( " left " ) , a , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
debug_output_point ( PSTR ( " right " ) , b , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
float d = b - a ;
if ( d > dmax ) {
xmax = 0.5f * ( a + b ) ;
ymax = y ;
dmax = d ;
}
}
}
{
// Compare the distance in the Y+ direction with the diameter in the X direction.
// Find the positive Y hit once again, this time along the Y axis going through the X point with the highest diameter.
enable_z_endstop ( false ) ;
go_xy ( xmax , ymax + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( xmax , max ( ymax - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS , Y_MIN_POS_FOR_BED_CALIBRATION ) , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( ! endstop_z_hit_on_purpose ( ) ) {
current_position [ Y_AXIS ] = center_old_y ;
goto canceled ;
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 )
debug_output_point ( PSTR ( " top " ) , current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
if ( current_position [ Y_AXIS ] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax ) {
2017-06-29 16:35:43 +00:00
// Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
// First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
if ( current_position [ Y_AXIS ] < ymax | | dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 5 ) {
2017-06-29 16:35:43 +00:00
SERIAL_ECHOPGM ( " Partial point diameter too small: " ) ;
SERIAL_ECHO ( dmax ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
result = false ;
} else {
// Estimate the circle radius from the maximum diameter and height:
float h = current_position [ Y_AXIS ] - ymax ;
float r = dmax * dmax / ( 8.f * h ) + 0.5f * h ;
if ( r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 5 ) {
2017-06-29 16:35:43 +00:00
SERIAL_ECHOPGM ( " Partial point estimated radius too small: " ) ;
SERIAL_ECHO ( r ) ;
SERIAL_ECHOPGM ( " , dmax: " ) ;
SERIAL_ECHO ( dmax ) ;
SERIAL_ECHOPGM ( " , h: " ) ;
SERIAL_ECHO ( h ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
result = false ;
} else {
// The point may end up outside of the machine working space.
// That is all right as it helps to improve the accuracy of the measurement point
// due to averaging.
// For the y correction, use an average of dmax/2 and the estimated radius.
r = 0.5f * ( 0.5f * dmax + r ) ;
ymax = current_position [ Y_AXIS ] - r ;
}
}
} else {
// If the diameter of the detected spot was smaller than a minimum allowed,
// the induction sensor is probably too high. Returning false will force
// the sensor to be lowered a tiny bit.
result = xmax > = MIN_BED_SENSOR_POINT_RESPONSE_DMR ;
if ( y0 > Y_MIN_POS_FOR_BED_CALIBRATION + 0.2f )
// Only in case both left and right y tangents are known, use them.
// If y0 is close to the bed edge, it may not be symmetric to the right tangent.
ymax = 0.5f * ymax + 0.25f * ( y0 + y1 ) ;
}
}
// Go to the center.
enable_z_endstop ( false ) ;
current_position [ X_AXIS ] = xmax ;
current_position [ Y_AXIS ] = ymax ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " Adjusted position: " ) ;
SERIAL_ECHO ( current_position [ X_AXIS ] ) ;
SERIAL_ECHOPGM ( " , " ) ;
SERIAL_ECHO ( current_position [ Y_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
// Only clamp the coordinate to go.
go_xy ( current_position [ X_AXIS ] , max ( Y_MIN_POS , current_position [ Y_AXIS ] ) , homing_feedrate [ X_AXIS ] / 60.f ) ;
// delay_keep_alive(3000);
}
if ( result )
return true ;
// otherwise clamp the Y coordinate
canceled :
// Go back to the center.
enable_z_endstop ( false ) ;
if ( current_position [ Y_AXIS ] < Y_MIN_POS )
current_position [ Y_AXIS ] = Y_MIN_POS ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
return false ;
}
// Scan the mesh bed induction points one by one by a left-right zig-zag movement,
// write the trigger coordinates to the serial line.
// Useful for visualizing the behavior of the bed induction detector.
inline void scan_bed_induction_sensor_point ( )
{
float center_old_x = current_position [ X_AXIS ] ;
float center_old_y = current_position [ Y_AXIS ] ;
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS ;
float y = y0 ;
if ( x0 < X_MIN_POS )
x0 = X_MIN_POS ;
if ( x1 > X_MAX_POS )
x1 = X_MAX_POS ;
if ( y0 < Y_MIN_POS_FOR_BED_CALIBRATION )
y0 = Y_MIN_POS_FOR_BED_CALIBRATION ;
if ( y1 > Y_MAX_POS )
y1 = Y_MAX_POS ;
for ( float y = y0 ; y < y1 ; y + = IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_STEP_FINE_Y ) {
enable_z_endstop ( false ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( endstop_z_hit_on_purpose ( ) )
debug_output_point ( PSTR ( " left " ) , current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
enable_z_endstop ( false ) ;
go_xy ( x1 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
enable_z_endstop ( true ) ;
go_xy ( x0 , y , homing_feedrate [ X_AXIS ] / 60.f ) ;
update_current_position_xyz ( ) ;
if ( endstop_z_hit_on_purpose ( ) )
debug_output_point ( PSTR ( " right " ) , current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] ) ;
}
enable_z_endstop ( false ) ;
current_position [ X_AXIS ] = center_old_x ;
current_position [ Y_AXIS ] = center_old_y ;
go_xy ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , homing_feedrate [ X_AXIS ] / 60.f ) ;
}
# define MESH_BED_CALIBRATION_SHOW_LCD
BedSkewOffsetDetectionResultType find_bed_offset_and_skew ( int8_t verbosity_level , uint8_t & too_far_mask )
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float * pts = & mbl . z_values [ 0 ] [ 0 ] ;
float * vec_x = pts + 2 * 4 ;
float * vec_y = vec_x + 2 ;
float * cntr = vec_y + 2 ;
memset ( pts , 0 , sizeof ( float ) * 7 * 7 ) ;
uint8_t iteration = 0 ;
BedSkewOffsetDetectionResultType result ;
// SERIAL_ECHOLNPGM("find_bed_offset_and_skew verbosity level: ");
// SERIAL_ECHO(int(verbosity_level));
// SERIAL_ECHOPGM("");
while ( iteration < 3 ) {
SERIAL_ECHOPGM ( " Iteration: " ) ;
MYSERIAL . println ( int ( iteration + 1 ) ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " Vectors: " ) ;
SERIAL_ECHOPGM ( " vec_x[0]: " ) ;
MYSERIAL . print ( vec_x [ 0 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " vec_x[1]: " ) ;
MYSERIAL . print ( vec_x [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " vec_y[0]: " ) ;
MYSERIAL . print ( vec_y [ 0 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " vec_y[1]: " ) ;
MYSERIAL . print ( vec_y [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " cntr[0]: " ) ;
MYSERIAL . print ( cntr [ 0 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " cntr[1]: " ) ;
MYSERIAL . print ( cntr [ 1 ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line ;
lcd_display_message_fullscreen_P ( MSG_FIND_BED_OFFSET_AND_SKEW_LINE1 , next_line ) ;
if ( next_line > 3 )
next_line = 3 ;
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect the rear 2x3 points.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3 ;
for ( int k = 0 ; k < 4 ; + + k ) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_print_at ( 0 , next_line , k + 1 ) ;
lcd_printPGM ( MSG_FIND_BED_OFFSET_AND_SKEW_LINE2 ) ;
if ( iteration > 0 ) {
lcd_print_at_PGM ( 0 , next_line + 1 , MSG_FIND_BED_OFFSET_AND_SKEW_ITERATION ) ;
lcd_implementation_print ( int ( iteration + 1 ) ) ;
}
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
float * pt = pts + k * 2 ;
// Go up to z_initial.
go_to_current ( homing_feedrate [ Z_AXIS ] / 60.f ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
// Go to Y0, wait, then go to Y-4.
current_position [ Y_AXIS ] = 0.f ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
SERIAL_ECHOLNPGM ( " At Y0 " ) ;
delay_keep_alive ( 5000 ) ;
current_position [ Y_AXIS ] = Y_MIN_POS ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
SERIAL_ECHOLNPGM ( " At Y-4 " ) ;
delay_keep_alive ( 5000 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Go to the measurement point position.
//if (iteration == 0) {
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points_4 + k * 2 ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points_4 + k * 2 + 1 ) ;
/*}
else {
// if first iteration failed, count corrected point coordinates as initial
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position [ X_AXIS ] = vec_x [ 0 ] * pgm_read_float ( bed_ref_points_4 + k * 2 ) + vec_y [ 0 ] * pgm_read_float ( bed_ref_points_4 + k * 2 + 1 ) + cntr [ 0 ] ;
current_position [ Y_AXIS ] = vec_x [ 1 ] * pgm_read_float ( bed_ref_points_4 + k * 2 ) + vec_y [ 1 ] * pgm_read_float ( bed_ref_points_4 + k * 2 + 1 ) + cntr [ 1 ] ;
// The calibration points are very close to the min Y.
if ( current_position [ Y_AXIS ] < Y_MIN_POS_FOR_BED_CALIBRATION )
current_position [ Y_AXIS ] = Y_MIN_POS_FOR_BED_CALIBRATION ;
} */
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " current_position[X_AXIS]: " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " current_position[Y_AXIS]: " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " current_position[Z_AXIS]: " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 )
delay_keep_alive ( 3000 ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( ! find_bed_induction_sensor_point_xy ( verbosity_level ) )
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND ;
2018-03-04 22:49:54 +00:00
# ifndef HEATBED_V2
2017-06-29 16:35:43 +00:00
2017-10-27 14:12:37 +00:00
if ( k = = 0 | | k = = 1 ) {
2017-06-29 16:35:43 +00:00
// Improve the position of the 1st row sensor points by a zig-zag movement.
find_bed_induction_sensor_point_z ( ) ;
int8_t i = 4 ;
for ( ; ; ) {
if ( improve_bed_induction_sensor_point3 ( verbosity_level ) )
break ;
if ( - - i = = 0 )
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND ;
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position [ Z_AXIS ] - = 0.025f ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
go_to_current ( homing_feedrate [ Z_AXIS ] ) ;
}
if ( i = = 0 )
// not found
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND ;
}
2018-03-04 22:49:54 +00:00
# endif //HEATBED_V2
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 )
delay_keep_alive ( 3000 ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Save the detected point position and then clamp the Y coordinate, which may have been estimated
// to lie outside the machine working space.
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " Measured: " ) ;
MYSERIAL . println ( current_position [ X_AXIS ] ) ;
MYSERIAL . println ( current_position [ Y_AXIS ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
pt [ 0 ] = ( pt [ 0 ] * iteration ) / ( iteration + 1 ) ;
pt [ 0 ] + = ( current_position [ X_AXIS ] / ( iteration + 1 ) ) ; //count average
pt [ 1 ] = ( pt [ 1 ] * iteration ) / ( iteration + 1 ) ;
pt [ 1 ] + = ( current_position [ Y_AXIS ] / ( iteration + 1 ) ) ;
//pt[0] += current_position[X_AXIS];
//if(iteration > 0) pt[0] = pt[0] / 2;
//pt[1] += current_position[Y_AXIS];
//if (iteration > 0) pt[1] = pt[1] / 2;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " pt[0]: " ) ;
MYSERIAL . println ( pt [ 0 ] ) ;
SERIAL_ECHOPGM ( " pt[1]: " ) ;
MYSERIAL . println ( pt [ 1 ] ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( current_position [ Y_AXIS ] < Y_MIN_POS )
current_position [ Y_AXIS ] = Y_MIN_POS ;
// Start searching for the other points at 3mm above the last point.
current_position [ Z_AXIS ] + = 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3 ;
//cntr[0] += pt[0];
//cntr[1] += pt[1];
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 & & k = = 0 ) {
// Show the zero. Test, whether the Y motor skipped steps.
current_position [ Y_AXIS ] = MANUAL_Y_HOME_POS ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
delay_keep_alive ( 3000 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
2017-12-05 12:16:59 +00:00
delay_keep_alive ( 0 ) ; //manage_heater, reset watchdog, manage inactivity
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive ( 3000 ) ;
for ( int8_t mesh_point = 0 ; mesh_point < 4 ; + + mesh_point ) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position [ X_AXIS ] = pts [ mesh_point * 2 ] ;
current_position [ Y_AXIS ] = pts [ mesh_point * 2 + 1 ] ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
delay_keep_alive ( 3000 ) ;
}
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( pts [ 1 ] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) {
too_far_mask | = 1 < < 1 ; //front center point is out of reach
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " WARNING: Front point not reachable. Y coordinate: " ) ;
MYSERIAL . print ( pts [ 1 ] ) ;
SERIAL_ECHOPGM ( " < " ) ;
MYSERIAL . println ( Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) ;
}
result = calculate_machine_skew_and_offset_LS ( pts , 4 , bed_ref_points_4 , vec_x , vec_y , cntr , verbosity_level ) ;
2017-12-05 12:16:59 +00:00
delay_keep_alive ( 0 ) ; //manage_heater, reset watchdog, manage inactivity
2017-06-29 16:35:43 +00:00
if ( result > = 0 ) {
world2machine_update ( vec_x , vec_y , cntr ) ;
# if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 0 ) , cntr [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 4 ) , cntr [ 1 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 0 ) , vec_x [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 4 ) , vec_x [ 1 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 0 ) , vec_y [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 4 ) , vec_y [ 1 ] ) ;
# endif
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) {
// Length of the vec_x
float l = sqrt ( vec_x [ 0 ] * vec_x [ 0 ] + vec_x [ 1 ] * vec_x [ 1 ] ) ;
SERIAL_ECHOLNPGM ( " X vector length: " ) ;
MYSERIAL . println ( l ) ;
// Length of the vec_y
l = sqrt ( vec_y [ 0 ] * vec_y [ 0 ] + vec_y [ 1 ] * vec_y [ 1 ] ) ;
SERIAL_ECHOLNPGM ( " Y vector length: " ) ;
MYSERIAL . println ( l ) ;
// Zero point correction
l = sqrt ( cntr [ 0 ] * cntr [ 0 ] + cntr [ 1 ] * cntr [ 1 ] ) ;
SERIAL_ECHOLNPGM ( " Zero point correction: " ) ;
MYSERIAL . println ( l ) ;
// vec_x and vec_y shall be nearly perpendicular.
l = vec_x [ 0 ] * vec_y [ 0 ] + vec_x [ 1 ] * vec_y [ 1 ] ;
SERIAL_ECHOLNPGM ( " Perpendicularity " ) ;
MYSERIAL . println ( fabs ( l ) ) ;
SERIAL_ECHOLNPGM ( " Saving bed calibration vectors to EEPROM " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
world2machine_update_current ( ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive ( 3000 ) ;
for ( int8_t mesh_point = 0 ; mesh_point < 9 ; + + mesh_point ) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points + mesh_point * 2 ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + mesh_point * 2 + 1 ) ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
delay_keep_alive ( 3000 ) ;
}
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
return result ;
}
if ( result = = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED & & too_far_mask = = 2 ) return result ; //if fitting failed and front center point is out of reach, terminate calibration and inform user
iteration + + ;
}
return result ;
}
BedSkewOffsetDetectionResultType improve_bed_offset_and_skew ( int8_t method , int8_t verbosity_level , uint8_t & too_far_mask )
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Mask of the first three points. Are they too far?
too_far_mask = 0 ;
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float * pts = & mbl . z_values [ 0 ] [ 0 ] ;
float * vec_x = pts + 2 * 9 ;
float * vec_y = vec_x + 2 ;
float * cntr = vec_y + 2 ;
memset ( pts , 0 , sizeof ( float ) * 7 * 7 ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) SERIAL_ECHOLNPGM ( " Improving bed offset and skew " ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Cache the current correction matrix.
world2machine_initialize ( ) ;
vec_x [ 0 ] = world2machine_rotation_and_skew [ 0 ] [ 0 ] ;
vec_x [ 1 ] = world2machine_rotation_and_skew [ 1 ] [ 0 ] ;
vec_y [ 0 ] = world2machine_rotation_and_skew [ 0 ] [ 1 ] ;
vec_y [ 1 ] = world2machine_rotation_and_skew [ 1 ] [ 1 ] ;
cntr [ 0 ] = world2machine_shift [ 0 ] ;
cntr [ 1 ] = world2machine_shift [ 1 ] ;
// and reset the correction matrix, so the planner will not do anything.
world2machine_reset ( ) ;
bool endstops_enabled = enable_endstops ( false ) ;
bool endstop_z_enabled = enable_z_endstop ( false ) ;
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line ;
lcd_display_message_fullscreen_P ( MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1 , next_line ) ;
if ( next_line > 3 )
next_line = 3 ;
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Collect a matrix of 9x9 points.
BedSkewOffsetDetectionResultType result = BED_SKEW_OFFSET_DETECTION_PERFECT ;
2017-10-27 14:12:37 +00:00
for ( int8_t mesh_point = 0 ; mesh_point < 4 ; + + mesh_point ) {
2017-06-29 16:35:43 +00:00
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Print the decrasing ID of the measurement point.
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
lcd_implementation_print_at ( 0 , next_line , mesh_point + 1 ) ;
lcd_printPGM ( MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2 ) ;
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Move up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
// Go to Y0, wait, then go to Y-4.
current_position [ Y_AXIS ] = 0.f ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
SERIAL_ECHOLNPGM ( " At Y0 " ) ;
delay_keep_alive ( 5000 ) ;
current_position [ Y_AXIS ] = Y_MIN_POS ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60.f ) ;
SERIAL_ECHOLNPGM ( " At Y_MIN_POS " ) ;
delay_keep_alive ( 5000 ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
2017-10-27 14:12:37 +00:00
current_position [ X_AXIS ] = vec_x [ 0 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 ) + vec_y [ 0 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 + 1 ) + cntr [ 0 ] ;
current_position [ Y_AXIS ] = vec_x [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 ) + vec_y [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 + 1 ) + cntr [ 1 ] ;
2017-06-29 16:35:43 +00:00
// The calibration points are very close to the min Y.
if ( current_position [ Y_AXIS ] < Y_MIN_POS_FOR_BED_CALIBRATION ) {
current_position [ Y_AXIS ] = Y_MIN_POS_FOR_BED_CALIBRATION ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOPGM ( " Calibration point " ) ;
SERIAL_ECHO ( mesh_point ) ;
SERIAL_ECHOPGM ( " lower than Ymin. Y coordinate clamping was used. " ) ;
SERIAL_ECHOLNPGM ( " " ) ;
2017-11-07 10:36:41 +00:00
}
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
// Find its Z position by running the normal vertical search.
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 10 )
2017-06-29 16:35:43 +00:00
delay_keep_alive ( 3000 ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
find_bed_induction_sensor_point_z ( ) ;
# ifdef SUPPORT_VERBOSITY
if ( verbosity_level > = 10 )
2017-06-29 16:35:43 +00:00
delay_keep_alive ( 3000 ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
2017-06-29 16:35:43 +00:00
current_position [ Z_AXIS ] - = 0.025f ;
// Improve the point position by searching its center in a current plane.
int8_t n_errors = 3 ;
for ( int8_t iter = 0 ; iter < 8 ; ) {
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > 20 ) {
SERIAL_ECHOPGM ( " Improving bed point " ) ;
SERIAL_ECHO ( mesh_point ) ;
SERIAL_ECHOPGM ( " , iteration " ) ;
SERIAL_ECHO ( iter ) ;
SERIAL_ECHOPGM ( " , z " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
bool found = false ;
2017-10-27 14:12:37 +00:00
if ( mesh_point < 2 ) {
2017-06-29 16:35:43 +00:00
// Because the sensor cannot move in front of the first row
// of the sensor points, the y position cannot be measured
// by a cross center method.
// Use a zig-zag search for the first row of the points.
found = improve_bed_induction_sensor_point3 ( verbosity_level ) ;
} else {
switch ( method ) {
case 0 : found = improve_bed_induction_sensor_point ( ) ; break ;
2017-10-27 14:12:37 +00:00
case 1 : found = improve_bed_induction_sensor_point2 ( mesh_point < 2 , verbosity_level ) ; break ;
2017-06-29 16:35:43 +00:00
default : break ;
}
}
if ( found ) {
if ( iter > 3 ) {
// Average the last 4 measurements.
pts [ mesh_point * 2 ] + = current_position [ X_AXIS ] ;
pts [ mesh_point * 2 + 1 ] + = current_position [ Y_AXIS ] ;
}
if ( current_position [ Y_AXIS ] < Y_MIN_POS )
current_position [ Y_AXIS ] = Y_MIN_POS ;
+ + iter ;
} else if ( n_errors - - = = 0 ) {
// Give up.
result = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND ;
goto canceled ;
} else {
// Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position [ Z_AXIS ] - = 0.05f ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
go_to_current ( homing_feedrate [ Z_AXIS ] ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
SERIAL_ECHOPGM ( " Improving bed point " ) ;
SERIAL_ECHO ( mesh_point ) ;
SERIAL_ECHOPGM ( " , iteration " ) ;
SERIAL_ECHO ( iter ) ;
SERIAL_ECHOPGM ( " failed. Lowering z to " ) ;
MYSERIAL . print ( current_position [ Z_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
}
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 )
delay_keep_alive ( 3000 ) ;
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
}
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Average the last 4 measurements.
2017-10-27 14:12:37 +00:00
for ( int8_t i = 0 ; i < 8 ; + + i )
2017-06-29 16:35:43 +00:00
pts [ i ] * = ( 1.f / 4.f ) ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
// Test the positions. Are the positions reproducible?
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
2017-10-27 14:12:37 +00:00
for ( int8_t mesh_point = 0 ; mesh_point < 4 ; + + mesh_point ) {
2017-06-29 16:35:43 +00:00
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position [ X_AXIS ] = pts [ mesh_point * 2 ] ;
current_position [ Y_AXIS ] = pts [ mesh_point * 2 + 1 ] ;
if ( verbosity_level > = 10 ) {
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
delay_keep_alive ( 3000 ) ;
}
SERIAL_ECHOPGM ( " Final measured bed point " ) ;
SERIAL_ECHO ( mesh_point ) ;
SERIAL_ECHOPGM ( " : " ) ;
MYSERIAL . print ( current_position [ X_AXIS ] , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( current_position [ Y_AXIS ] , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
{
// First fill in the too_far_mask from the measured points.
2017-10-27 14:12:37 +00:00
for ( uint8_t mesh_point = 0 ; mesh_point < 2 ; + + mesh_point )
2017-06-29 16:35:43 +00:00
if ( pts [ mesh_point * 2 + 1 ] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH )
too_far_mask | = 1 < < mesh_point ;
2017-10-27 14:12:37 +00:00
result = calculate_machine_skew_and_offset_LS ( pts , 4 , bed_ref_points_4 , vec_x , vec_y , cntr , verbosity_level ) ;
2017-06-29 16:35:43 +00:00
if ( result < 0 ) {
SERIAL_ECHOLNPGM ( " Calculation of the machine skew and offset failed. " ) ;
goto canceled ;
}
// In case of success, update the too_far_mask from the calculated points.
2017-10-27 14:12:37 +00:00
for ( uint8_t mesh_point = 0 ; mesh_point < 2 ; + + mesh_point ) {
float y = vec_x [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 ) + vec_y [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 + 1 ) + cntr [ 1 ] ;
2017-06-29 16:35:43 +00:00
distance_from_min [ mesh_point ] = ( y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 20 ) {
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " Distance from min: " ) ;
MYSERIAL . print ( distance_from_min [ mesh_point ] ) ;
SERIAL_ECHOLNPGM ( " " ) ;
SERIAL_ECHOPGM ( " y: " ) ;
MYSERIAL . print ( y ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH )
too_far_mask | = 1 < < mesh_point ;
}
}
world2machine_update ( vec_x , vec_y , cntr ) ;
# if 1
// Fearlessly store the calibration values into the eeprom.
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 0 ) , cntr [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 4 ) , cntr [ 1 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 0 ) , vec_x [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 4 ) , vec_x [ 1 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 0 ) , vec_y [ 0 ] ) ;
eeprom_update_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 4 ) , vec_y [ 1 ] ) ;
# endif
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
2017-12-05 12:16:59 +00:00
world2machine_update_current ( ) ;
2017-06-29 16:35:43 +00:00
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
2017-11-07 10:36:41 +00:00
# ifdef SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 5 ) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive ( 3000 ) ;
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
2017-10-27 14:12:37 +00:00
for ( int8_t mesh_point = 0 ; mesh_point < 4 ; + + mesh_point ) {
2017-06-29 16:35:43 +00:00
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
2017-10-27 14:12:37 +00:00
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points_4 + mesh_point * 2 ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points_4 + mesh_point * 2 + 1 ) ;
2017-06-29 16:35:43 +00:00
if ( verbosity_level > = 10 ) {
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
delay_keep_alive ( 3000 ) ;
}
{
float x , y ;
world2machine ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , x , y ) ;
SERIAL_ECHOPGM ( " Final calculated bed point " ) ;
SERIAL_ECHO ( mesh_point ) ;
SERIAL_ECHOPGM ( " : " ) ;
MYSERIAL . print ( x , 5 ) ;
SERIAL_ECHOPGM ( " , " ) ;
MYSERIAL . print ( y , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
}
}
2017-11-07 10:36:41 +00:00
# endif // SUPPORT_VERBOSITY
2017-06-29 16:35:43 +00:00
2018-03-04 22:49:54 +00:00
if ( ! sample_z ( ) )
2017-06-29 16:35:43 +00:00
goto canceled ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
return result ;
canceled :
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Print head up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
// Store the identity matrix to EEPROM.
reset_bed_offset_and_skew ( ) ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
return result ;
}
2018-03-04 22:49:54 +00:00
bool sample_z ( ) {
bool sampled = true ;
//make space
current_position [ Z_AXIS ] + = 150 ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate, active_extruder););
lcd_show_fullscreen_message_and_wait_P ( MSG_PLACE_STEEL_SHEET ) ;
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
if ( ! sample_mesh_and_store_reference ( ) ) sampled = false ;
return sampled ;
}
2017-06-29 16:35:43 +00:00
void go_home_with_z_lift ( )
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Go home.
// First move up to a safe height.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
// Second move to XY [0, 0].
current_position [ X_AXIS ] = X_MIN_POS + 0.2 ;
current_position [ Y_AXIS ] = Y_MIN_POS + 0.2 ;
// Clamp to the physical coordinates.
world2machine_clamp ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] ) ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
// Third move up to a safe height.
current_position [ Z_AXIS ] = Z_MIN_POS ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
}
// Sample the 9 points of the bed and store them into the EEPROM as a reference.
// When calling this function, the X, Y, Z axes should be already homed,
// and the world2machine correction matrix should be active.
// Returns false if the reference values are more than 3mm far away.
bool sample_mesh_and_store_reference ( )
{
bool endstops_enabled = enable_endstops ( false ) ;
bool endstop_z_enabled = enable_z_endstop ( false ) ;
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line ;
lcd_display_message_fullscreen_P ( MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1 , next_line ) ;
if ( next_line > 3 )
next_line = 3 ;
// display "point xx of yy"
lcd_implementation_print_at ( 0 , next_line , 1 ) ;
lcd_printPGM ( MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 ) ;
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
{
// The first point defines the reference.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 1 ) ;
world2machine_clamp ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] ) ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
memcpy ( destination , current_position , sizeof ( destination ) ) ;
enable_endstops ( true ) ;
homeaxis ( Z_AXIS ) ;
enable_endstops ( false ) ;
find_bed_induction_sensor_point_z ( ) ;
mbl . set_z ( 0 , 0 , current_position [ Z_AXIS ] ) ;
}
for ( int8_t mesh_point = 1 ; mesh_point ! = MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS ; + + mesh_point ) {
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Print the decrasing ID of the measurement point.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
current_position [ X_AXIS ] = pgm_read_float ( bed_ref_points + 2 * mesh_point ) ;
current_position [ Y_AXIS ] = pgm_read_float ( bed_ref_points + 2 * mesh_point + 1 ) ;
world2machine_clamp ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] ) ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
# ifdef MESH_BED_CALIBRATION_SHOW_LCD
// display "point xx of yy"
lcd_implementation_print_at ( 0 , next_line , mesh_point + 1 ) ;
lcd_printPGM ( MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2 ) ;
# endif /* MESH_BED_CALIBRATION_SHOW_LCD */
find_bed_induction_sensor_point_z ( ) ;
// Get cords of measuring point
int8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS ;
int8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS ;
if ( iy & 1 ) ix = ( MESH_MEAS_NUM_X_POINTS - 1 ) - ix ; // Zig zag
mbl . set_z ( ix , iy , current_position [ Z_AXIS ] ) ;
}
{
// Verify the span of the Z values.
float zmin = mbl . z_values [ 0 ] [ 0 ] ;
float zmax = zmax ;
for ( int8_t j = 0 ; j < 3 ; + + j )
for ( int8_t i = 0 ; i < 3 ; + + i ) {
zmin = min ( zmin , mbl . z_values [ j ] [ i ] ) ;
zmax = min ( zmax , mbl . z_values [ j ] [ i ] ) ;
}
if ( zmax - zmin > 3.f ) {
// The span of the Z offsets is extreme. Give up.
// Homing failed on some of the points.
SERIAL_PROTOCOLLNPGM ( " Exreme span of the Z values! " ) ;
return false ;
}
}
// Store the correction values to EEPROM.
// Offsets of the Z heiths of the calibration points from the first point.
// The offsets are saved as 16bit signed int, scaled to tenths of microns.
{
uint16_t addr = EEPROM_BED_CALIBRATION_Z_JITTER ;
for ( int8_t j = 0 ; j < 3 ; + + j )
for ( int8_t i = 0 ; i < 3 ; + + i ) {
if ( i = = 0 & & j = = 0 )
continue ;
float dif = mbl . z_values [ j ] [ i ] - mbl . z_values [ 0 ] [ 0 ] ;
int16_t dif_quantized = int16_t ( floor ( dif * 100.f + 0.5f ) ) ;
eeprom_update_word ( ( uint16_t * ) addr , * reinterpret_cast < uint16_t * > ( & dif_quantized ) ) ;
#if 0
{
uint16_t z_offset_u = eeprom_read_word ( ( uint16_t * ) addr ) ;
float dif2 = * reinterpret_cast < int16_t * > ( & z_offset_u ) * 0.01 ;
SERIAL_ECHOPGM ( " Bed point " ) ;
SERIAL_ECHO ( i ) ;
SERIAL_ECHOPGM ( " , " ) ;
SERIAL_ECHO ( j ) ;
SERIAL_ECHOPGM ( " , differences: written " ) ;
MYSERIAL . print ( dif , 5 ) ;
SERIAL_ECHOPGM ( " , read: " ) ;
MYSERIAL . print ( dif2 , 5 ) ;
SERIAL_ECHOLNPGM ( " " ) ;
}
# endif
addr + = 2 ;
}
}
mbl . upsample_3x3 ( ) ;
mbl . active = true ;
go_home_with_z_lift ( ) ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
return true ;
}
bool scan_bed_induction_points ( int8_t verbosity_level )
{
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Reusing the z_values memory for the measurement cache.
// 7x7=49 floats, good for 16 (x,y,z) vectors.
float * pts = & mbl . z_values [ 0 ] [ 0 ] ;
float * vec_x = pts + 2 * 9 ;
float * vec_y = vec_x + 2 ;
float * cntr = vec_y + 2 ;
memset ( pts , 0 , sizeof ( float ) * 7 * 7 ) ;
// Cache the current correction matrix.
world2machine_initialize ( ) ;
vec_x [ 0 ] = world2machine_rotation_and_skew [ 0 ] [ 0 ] ;
vec_x [ 1 ] = world2machine_rotation_and_skew [ 1 ] [ 0 ] ;
vec_y [ 0 ] = world2machine_rotation_and_skew [ 0 ] [ 1 ] ;
vec_y [ 1 ] = world2machine_rotation_and_skew [ 1 ] [ 1 ] ;
cntr [ 0 ] = world2machine_shift [ 0 ] ;
cntr [ 1 ] = world2machine_shift [ 1 ] ;
// and reset the correction matrix, so the planner will not do anything.
world2machine_reset ( ) ;
bool endstops_enabled = enable_endstops ( false ) ;
bool endstop_z_enabled = enable_z_endstop ( false ) ;
// Collect a matrix of 9x9 points.
2018-03-04 19:49:34 +00:00
for ( int8_t mesh_point = 0 ; mesh_point < 9 ; + + mesh_point ) {
2017-06-29 16:35:43 +00:00
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
// Move up.
current_position [ Z_AXIS ] = MESH_HOME_Z_SEARCH ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
go_to_current ( homing_feedrate [ Z_AXIS ] / 60 ) ;
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
2018-03-04 19:49:34 +00:00
current_position [ X_AXIS ] = vec_x [ 0 ] * pgm_read_float ( bed_ref_points + mesh_point * 2 ) + vec_y [ 0 ] * pgm_read_float ( bed_ref_points + mesh_point * 2 + 1 ) + cntr [ 0 ] ;
current_position [ Y_AXIS ] = vec_x [ 1 ] * pgm_read_float ( bed_ref_points + mesh_point * 2 ) + vec_y [ 1 ] * pgm_read_float ( bed_ref_points + mesh_point * 2 + 1 ) + cntr [ 1 ] ;
2017-06-29 16:35:43 +00:00
// The calibration points are very close to the min Y.
if ( current_position [ Y_AXIS ] < Y_MIN_POS_FOR_BED_CALIBRATION )
current_position [ Y_AXIS ] = Y_MIN_POS_FOR_BED_CALIBRATION ;
go_to_current ( homing_feedrate [ X_AXIS ] / 60 ) ;
find_bed_induction_sensor_point_z ( ) ;
2018-02-26 17:25:47 +00:00
scan_bed_induction_sensor_point ( ) ;
2017-06-29 16:35:43 +00:00
}
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
enable_endstops ( false ) ;
enable_z_endstop ( false ) ;
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout ( ) ;
enable_endstops ( endstops_enabled ) ;
enable_z_endstop ( endstop_z_enabled ) ;
return true ;
}
// Shift a Z axis by a given delta.
// To replace loading of the babystep correction.
static void shift_z ( float delta )
{
plan_buffer_line ( current_position [ X_AXIS ] , current_position [ Y_AXIS ] , current_position [ Z_AXIS ] - delta , current_position [ E_AXIS ] , homing_feedrate [ Z_AXIS ] / 40 , active_extruder ) ;
st_synchronize ( ) ;
plan_set_z_position ( current_position [ Z_AXIS ] ) ;
}
# define BABYSTEP_LOADZ_BY_PLANNER
// Number of baby steps applied
static int babystepLoadZ = 0 ;
2017-09-23 14:35:01 +00:00
void babystep_load ( )
2017-06-29 16:35:43 +00:00
{
// Apply Z height correction aka baby stepping before mesh bed leveling gets activated.
if ( calibration_status ( ) < CALIBRATION_STATUS_LIVE_ADJUST )
2017-09-23 14:35:01 +00:00
{
check_babystep ( ) ; //checking if babystep is in allowed range, otherwise setting babystep to 0
// End of G80: Apply the baby stepping value.
2017-06-29 16:35:43 +00:00
EEPROM_read_B ( EEPROM_BABYSTEP_Z , & babystepLoadZ ) ;
2017-09-23 14:35:01 +00:00
2017-06-29 16:35:43 +00:00
#if 0
SERIAL_ECHO ( " Z baby step: " ) ;
SERIAL_ECHO ( babystepLoadZ ) ;
SERIAL_ECHO ( " , current Z: " ) ;
SERIAL_ECHO ( current_position [ Z_AXIS ] ) ;
SERIAL_ECHO ( " correction: " ) ;
SERIAL_ECHO ( float ( babystepLoadZ ) / float ( axis_steps_per_unit [ Z_AXIS ] ) ) ;
SERIAL_ECHOLN ( " " ) ;
# endif
}
}
2017-09-23 14:35:01 +00:00
void babystep_apply ( )
{
babystep_load ( ) ;
# ifdef BABYSTEP_LOADZ_BY_PLANNER
shift_z ( - float ( babystepLoadZ ) / float ( axis_steps_per_unit [ Z_AXIS ] ) ) ;
# else
babystepsTodoZadd ( babystepLoadZ ) ;
# endif /* BABYSTEP_LOADZ_BY_PLANNER */
}
2017-06-29 16:35:43 +00:00
void babystep_undo ( )
{
# ifdef BABYSTEP_LOADZ_BY_PLANNER
shift_z ( float ( babystepLoadZ ) / float ( axis_steps_per_unit [ Z_AXIS ] ) ) ;
# else
babystepsTodoZsubtract ( babystepLoadZ ) ;
# endif /* BABYSTEP_LOADZ_BY_PLANNER */
babystepLoadZ = 0 ;
}
void babystep_reset ( )
{
babystepLoadZ = 0 ;
}
void count_xyz_details ( ) {
float a1 , a2 ;
float cntr [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_CENTER + 4 ) )
} ;
float vec_x [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_X + 4 ) )
} ;
float vec_y [ 2 ] = {
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 0 ) ) ,
eeprom_read_float ( ( float * ) ( EEPROM_BED_CALIBRATION_VEC_Y + 4 ) )
} ;
a2 = - 1 * asin ( vec_y [ 0 ] / MACHINE_AXIS_SCALE_Y ) ;
a1 = asin ( vec_x [ 1 ] / MACHINE_AXIS_SCALE_X ) ;
2017-10-27 14:12:37 +00:00
//angleDiff = fabs(a2 - a1);
for ( uint8_t mesh_point = 0 ; mesh_point < 2 ; + + mesh_point ) {
float y = vec_x [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 ) + vec_y [ 1 ] * pgm_read_float ( bed_ref_points_4 + mesh_point * 2 + 1 ) + cntr [ 1 ] ;
2017-06-29 16:35:43 +00:00
distance_from_min [ mesh_point ] = ( y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH ) ;
}
}
/*countDistanceFromMin() {
} */