287 lines
12 KiB
C++
287 lines
12 KiB
C++
|
#include <stdio.h>
|
||
|
|
||
|
#include "../ClipperUtils.hpp"
|
||
|
#include "../Surface.hpp"
|
||
|
#include "../PrintConfig.hpp"
|
||
|
|
||
|
#include "FillBase.hpp"
|
||
|
|
||
|
namespace Slic3r {
|
||
|
|
||
|
#if 0
|
||
|
// Generate infills for Slic3r::Layer::Region.
|
||
|
// The Slic3r::Layer::Region at this point of time may contain
|
||
|
// surfaces of various types (internal/bridge/top/bottom/solid).
|
||
|
// The infills are generated on the groups of surfaces with a compatible type.
|
||
|
// Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
|
||
|
// and the thin fills generated by generate_perimeters().
|
||
|
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
|
||
|
{
|
||
|
// Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
|
||
|
|
||
|
double fill_density = layerm.region()->config.fill_density;
|
||
|
Flow infill_flow = layerm.flow(frInfill);
|
||
|
Flow solid_infill_flow = layerm.flow(frSolidInfill);
|
||
|
Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
|
||
|
|
||
|
Surfaces surfaces;
|
||
|
|
||
|
// merge adjacent surfaces
|
||
|
// in case of bridge surfaces, the ones with defined angle will be attached to the ones
|
||
|
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
|
||
|
{
|
||
|
SurfacesPtr surfaces_with_bridge_angle;
|
||
|
surfaces_with_bridge_angle.reserve(layerm->fill_surfaces.surfaces.size());
|
||
|
for (Surfaces::iterator it = layerm->fill_surfaces.surfaces.begin(); it != layerm->fill_surfaces.surfaces.end(); ++ it)
|
||
|
if (it->bridge_angle >= 0)
|
||
|
surfaces_with_bridge_angle.push_back(&(*it));
|
||
|
|
||
|
// group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
|
||
|
// group is of type Slic3r::SurfaceCollection
|
||
|
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
|
||
|
std::vector<SurfacesPtr> groups;
|
||
|
layerm->fill_surfaces.group(&groups);
|
||
|
|
||
|
// merge compatible groups (we can generate continuous infill for them)
|
||
|
{
|
||
|
// cache flow widths and patterns used for all solid groups
|
||
|
// (we'll use them for comparing compatible groups)
|
||
|
my @is_solid = my @fw = my @pattern = ();
|
||
|
for (my $i = 0; $i <= $num_ groups; $i++) {
|
||
|
// we can only merge solid non-bridge surfaces, so discard
|
||
|
// non-solid surfaces
|
||
|
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->layer->id == 0)) {
|
||
|
$is_solid[$i] = 1;
|
||
|
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
|
||
|
? $top_solid_infill_flow->width
|
||
|
: $solid_infill_flow->width;
|
||
|
$pattern[$i] = $groups[$i][0]->is_external
|
||
|
? $layerm->region->config->external_fill_pattern
|
||
|
: 'rectilinear';
|
||
|
} else {
|
||
|
$is_solid[$i] = 0;
|
||
|
$fw[$i] = 0;
|
||
|
$pattern[$i] = 'none';
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// loop through solid groups
|
||
|
for (my $i = 0; $i <= $num_groups; $i++) {
|
||
|
next if !$is_solid[$i];
|
||
|
|
||
|
// find compatible groups and append them to this one
|
||
|
for (my $j = $i+1; $j <= $num_groups; $j++) {
|
||
|
next if !$is_solid[$j];
|
||
|
|
||
|
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
|
||
|
// groups are compatible, merge them
|
||
|
push @{$groups[$i]}, @{$groups[$j]};
|
||
|
splice @groups, $j, 1;
|
||
|
splice @is_solid, $j, 1;
|
||
|
splice @fw, $j, 1;
|
||
|
splice @pattern, $j, 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// give priority to bridges
|
||
|
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
|
||
|
|
||
|
foreach my $group (@groups) {
|
||
|
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
|
||
|
my $union_p = union([ map $_->p, @$group ], 1);
|
||
|
|
||
|
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
|
||
|
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
|
||
|
$union_p = diff(
|
||
|
$union_p,
|
||
|
[ map $_->p, @surfaces_with_bridge_angle ],
|
||
|
1,
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// subtract any other surface already processed
|
||
|
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
|
||
|
my $union = diff_ex(
|
||
|
$union_p,
|
||
|
[ map $_->p, @surfaces ],
|
||
|
1,
|
||
|
);
|
||
|
|
||
|
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// we need to detect any narrow surfaces that might collapse
|
||
|
// when adding spacing below
|
||
|
// such narrow surfaces are often generated in sloping walls
|
||
|
// by bridge_over_infill() and combine_infill() as a result of the
|
||
|
// subtraction of the combinable area from the layer infill area,
|
||
|
// which leaves small areas near the perimeters
|
||
|
// we are going to grow such regions by overlapping them with the void (if any)
|
||
|
// TODO: detect and investigate whether there could be narrow regions without
|
||
|
// any void neighbors
|
||
|
{
|
||
|
my $distance_between_surfaces = max(
|
||
|
$infill_flow->scaled_spacing,
|
||
|
$solid_infill_flow->scaled_spacing,
|
||
|
$top_solid_infill_flow->scaled_spacing,
|
||
|
);
|
||
|
my $collapsed = diff(
|
||
|
[ map @{$_->expolygon}, @surfaces ],
|
||
|
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
|
||
|
1,
|
||
|
);
|
||
|
push @surfaces, map Slic3r::Surface->new(
|
||
|
expolygon => $_,
|
||
|
surface_type => S_TYPE_INTERNALSOLID,
|
||
|
), @{intersection_ex(
|
||
|
offset($collapsed, $distance_between_surfaces),
|
||
|
[
|
||
|
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
|
||
|
(@$collapsed),
|
||
|
],
|
||
|
1,
|
||
|
)};
|
||
|
}
|
||
|
|
||
|
if (0) {
|
||
|
require "Slic3r/SVG.pm";
|
||
|
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
|
||
|
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
|
||
|
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
|
||
|
);
|
||
|
}
|
||
|
|
||
|
SURFACE: foreach my $surface (@surfaces) {
|
||
|
next if $surface->surface_type == S_TYPE_INTERNALVOID;
|
||
|
my $filler = $layerm->region->config->fill_pattern;
|
||
|
my $density = $fill_density;
|
||
|
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
|
||
|
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
|
||
|
: FLOW_ROLE_INFILL;
|
||
|
my $is_bridge = $layerm->layer->id > 0 && $surface->is_bridge;
|
||
|
my $is_solid = $surface->is_solid;
|
||
|
|
||
|
if ($surface->is_solid) {
|
||
|
$density = 100;
|
||
|
$filler = 'rectilinear';
|
||
|
if ($surface->is_external && !$is_bridge) {
|
||
|
$filler = $layerm->region->config->external_fill_pattern;
|
||
|
}
|
||
|
} else {
|
||
|
next SURFACE unless $density > 0;
|
||
|
}
|
||
|
|
||
|
// get filler object
|
||
|
my $f = $self->filler($filler);
|
||
|
|
||
|
// calculate the actual flow we'll be using for this infill
|
||
|
my $h = $surface->thickness == -1 ? $layerm->layer->height : $surface->thickness;
|
||
|
my $flow = $layerm->region->flow(
|
||
|
$role,
|
||
|
$h,
|
||
|
$is_bridge || $f->use_bridge_flow,
|
||
|
$layerm->layer->id == 0,
|
||
|
-1,
|
||
|
$layerm->layer->object,
|
||
|
);
|
||
|
|
||
|
// calculate flow spacing for infill pattern generation
|
||
|
my $using_internal_flow = 0;
|
||
|
if (!$is_solid && !$is_bridge) {
|
||
|
// it's internal infill, so we can calculate a generic flow spacing
|
||
|
// for all layers, for avoiding the ugly effect of
|
||
|
// misaligned infill on first layer because of different extrusion width and
|
||
|
// layer height
|
||
|
my $internal_flow = $layerm->region->flow(
|
||
|
FLOW_ROLE_INFILL,
|
||
|
$layerm->layer->object->config->layer_height, // TODO: handle infill_every_layers?
|
||
|
0, // no bridge
|
||
|
0, // no first layer
|
||
|
-1, // auto width
|
||
|
$layerm->layer->object,
|
||
|
);
|
||
|
$f->set_spacing($internal_flow->spacing);
|
||
|
$using_internal_flow = 1;
|
||
|
} else {
|
||
|
$f->set_spacing($flow->spacing);
|
||
|
}
|
||
|
|
||
|
my $link_max_length = 0;
|
||
|
if (! $is_bridge) {
|
||
|
$link_max_length = $layerm->region->config->get_abs_value_over($surface->is_external ? 'external_fill_link_max_length' : 'fill_link_max_length', $flow->spacing);
|
||
|
print "flow spacing: ", $flow->spacing, " is_external: ", $surface->is_external, ", link_max_length: $link_max_length\n";
|
||
|
}
|
||
|
|
||
|
$f->set_layer_id($layerm->layer->id);
|
||
|
$f->set_z($layerm->layer->print_z);
|
||
|
$f->set_angle(deg2rad($layerm->region->config->fill_angle));
|
||
|
// Maximum length of the perimeter segment linking two infill lines.
|
||
|
$f->set_link_max_length(scale($link_max_length));
|
||
|
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
||
|
$f->set_loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
||
|
|
||
|
// apply half spacing using this flow's own spacing and generate infill
|
||
|
my @polylines = $f->fill_surface(
|
||
|
$surface,
|
||
|
density => $density/100,
|
||
|
layer_height => $h,
|
||
|
);
|
||
|
next unless @polylines;
|
||
|
|
||
|
|
||
|
// calculate actual flow from spacing (which might have been adjusted by the infill
|
||
|
// pattern generator)
|
||
|
if ($using_internal_flow) {
|
||
|
// if we used the internal flow we're not doing a solid infill
|
||
|
// so we can safely ignore the slight variation that might have
|
||
|
// been applied to $f->flow_spacing
|
||
|
} else {
|
||
|
$flow = Slic3r::Flow->new_from_spacing(
|
||
|
spacing => $f->spacing,
|
||
|
nozzle_diameter => $flow->nozzle_diameter,
|
||
|
layer_height => $h,
|
||
|
bridge => $is_bridge || $f->use_bridge_flow,
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// save into layer
|
||
|
{
|
||
|
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
|
||
|
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
|
||
|
: EXTR_ROLE_FILL;
|
||
|
|
||
|
out.
|
||
|
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
|
||
|
// Only concentric fills are not sorted.
|
||
|
$collection->no_sort($f->no_sort);
|
||
|
$collection->append(
|
||
|
map Slic3r::ExtrusionPath->new(
|
||
|
polyline => $_,
|
||
|
role => $role,
|
||
|
mm3_per_mm => $flow->mm3_per_mm,
|
||
|
width => $flow->width,
|
||
|
height => $flow->height,
|
||
|
), map @$_, @polylines,
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add thin fill regions
|
||
|
// thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
|
||
|
// Unpacks the collection, creates multiple collections per path.
|
||
|
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
|
||
|
// Why the paths are unpacked?
|
||
|
for (ExtrusionEntitiesPtr::iterator thin_fill = layerm.thin_fills.entities.begin(); thin_fill != layerm.thin_fills.entities.end(); ++ thin_fill) {
|
||
|
// ExtrusionEntityCollection
|
||
|
out.append(new ExtrusionEntityCollection->new($thin_fill);
|
||
|
}
|
||
|
|
||
|
return @fills;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
} // namespace Slic3r
|