PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/GLCanvas3D.cpp

560 lines
13 KiB
C++
Raw Normal View History

2018-05-09 08:47:04 +00:00
#include "GLCanvas3D.hpp"
2018-05-14 12:14:19 +00:00
#include "../../slic3r/GUI/3DScene.hpp"
2018-05-09 08:47:04 +00:00
#include <wx/glcanvas.h>
#include <iostream>
static const bool TURNTABLE_MODE = true;
2018-05-14 10:08:23 +00:00
static const float GIMBALL_LOCK_THETA_MAX = 180.0f;
// phi / theta angles to orient the camera.
static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f };
static const float VIEW_LEFT[2] = { 90.0f, 90.0f };
static const float VIEW_RIGHT[2] = { -90.0f, 90.0f };
static const float VIEW_TOP[2] = { 0.0f, 0.0f };
static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };
2018-05-09 08:47:04 +00:00
namespace Slic3r {
namespace GUI {
GLCanvas3D::Camera::Camera()
2018-05-14 10:08:23 +00:00
: m_type(CT_Ortho)
, m_zoom(1.0f)
, m_phi(45.0f)
, m_theta(45.0f)
, m_distance(0.0f)
, m_target(0.0, 0.0, 0.0)
{
}
GLCanvas3D::Camera::EType GLCanvas3D::Camera::get_type() const
{
return m_type;
}
2018-05-09 08:47:04 +00:00
2018-05-14 10:08:23 +00:00
void GLCanvas3D::Camera::set_type(GLCanvas3D::Camera::EType type)
2018-05-09 08:47:04 +00:00
{
2018-05-14 10:08:23 +00:00
m_type = type;
2018-05-09 08:47:04 +00:00
}
2018-05-14 09:31:58 +00:00
std::string GLCanvas3D::Camera::get_type_as_string() const
{
2018-05-14 10:08:23 +00:00
switch (m_type)
2018-05-14 09:31:58 +00:00
{
default:
case CT_Unknown:
return "unknown";
case CT_Perspective:
return "perspective";
case CT_Ortho:
return "ortho";
};
}
2018-05-14 10:08:23 +00:00
float GLCanvas3D::Camera::get_zoom() const
{
return m_zoom;
}
void GLCanvas3D::Camera::set_zoom(float zoom)
{
m_zoom = zoom;
}
float GLCanvas3D::Camera::get_phi() const
{
return m_phi;
}
void GLCanvas3D::Camera::set_phi(float phi)
{
m_phi = phi;
}
float GLCanvas3D::Camera::get_theta() const
{
return m_theta;
}
void GLCanvas3D::Camera::set_theta(float theta)
{
m_theta = theta;
// clamp angle
if (m_theta > GIMBALL_LOCK_THETA_MAX)
m_theta = GIMBALL_LOCK_THETA_MAX;
if (m_theta < 0.0f)
m_theta = 0.0f;
}
float GLCanvas3D::Camera::get_distance() const
{
return m_distance;
}
void GLCanvas3D::Camera::set_distance(float distance)
{
m_distance = distance;
}
const Pointf3& GLCanvas3D::Camera::get_target() const
{
return m_target;
}
void GLCanvas3D::Camera::set_target(const Pointf3& target)
{
m_target = target;
}
2018-05-14 12:14:19 +00:00
const Pointfs& GLCanvas3D::Bed::get_shape() const
{
return m_shape;
}
void GLCanvas3D::Bed::set_shape(const Pointfs& shape)
{
m_shape = shape;
_calc_bounding_box();
}
const BoundingBoxf3& GLCanvas3D::Bed::get_bounding_box() const
{
return m_bounding_box;
}
2018-05-15 09:07:32 +00:00
const Pointf& GLCanvas3D::Bed::get_origin() const
{
return m_origin;
}
void GLCanvas3D::Bed::set_origin(const Pointf& origin)
{
m_origin = origin;
}
2018-05-14 12:14:19 +00:00
void GLCanvas3D::Bed::_calc_bounding_box()
{
m_bounding_box = BoundingBoxf3();
for (const Pointf& p : m_shape)
{
m_bounding_box.merge(Pointf3(p.x, p.y, 0.0));
}
}
2018-05-09 08:47:04 +00:00
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, wxGLContext* context)
: m_canvas(canvas)
, m_context(context)
2018-05-14 12:14:19 +00:00
, m_volumes(nullptr)
2018-05-09 08:47:04 +00:00
, m_dirty(true)
2018-05-14 12:14:19 +00:00
, m_apply_zoom_to_volumes_filter(false)
2018-05-09 08:47:04 +00:00
{
}
GLCanvas3D::~GLCanvas3D()
{
_deregister_callbacks();
}
2018-05-09 08:47:04 +00:00
void GLCanvas3D::set_current()
{
if ((m_canvas != nullptr) && (m_context != nullptr))
m_canvas->SetCurrent(*m_context);
}
2018-05-14 12:14:19 +00:00
bool GLCanvas3D::is_shown_on_screen() const
{
return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false;
}
void GLCanvas3D::resize(unsigned int w, unsigned int h)
{
if (m_context == nullptr)
return;
set_current();
::glViewport(0, 0, w, h);
::glMatrixMode(GL_PROJECTION);
::glLoadIdentity();
BoundingBoxf3 bbox = max_bounding_box();
switch (get_camera_type())
{
case Camera::CT_Ortho:
{
float w2 = w;
float h2 = h;
float two_zoom = 2.0f * get_camera_zoom();
if (two_zoom != 0.0f)
{
float inv_two_zoom = 1.0f / two_zoom;
w2 *= inv_two_zoom;
h2 *= inv_two_zoom;
}
// FIXME: calculate a tighter value for depth will improve z-fighting
float depth = 5.0f * (float)bbox.max_size();
2018-05-14 12:14:19 +00:00
::glOrtho(-w2, w2, -h2, h2, -depth, depth);
break;
}
case Camera::CT_Perspective:
{
float bbox_r = (float)bbox.radius();
float fov = PI * 45.0f / 180.0f;
float fov_tan = tan(0.5f * fov);
float cam_distance = 0.5f * bbox_r / fov_tan;
set_camera_distance(cam_distance);
float nr = cam_distance - bbox_r * 1.1f;
float fr = cam_distance + bbox_r * 1.1f;
if (nr < 1.0f)
nr = 1.0f;
if (fr < nr + 1.0f)
fr = nr + 1.0f;
float h2 = fov_tan * nr;
float w2 = h2 * w / h;
::glFrustum(-w2, w2, -h2, h2, nr, fr);
break;
}
default:
{
throw std::runtime_error("Invalid camera type.");
break;
}
}
::glMatrixMode(GL_MODELVIEW);
set_dirty(false);
}
GLVolumeCollection* GLCanvas3D::get_volumes()
{
return m_volumes;
}
void GLCanvas3D::set_volumes(GLVolumeCollection* volumes)
{
m_volumes = volumes;
}
void GLCanvas3D::set_bed_shape(const Pointfs& shape)
{
m_bed.set_shape(shape);
}
2018-05-15 09:07:32 +00:00
const Pointf& GLCanvas3D::get_bed_origin() const
{
return m_bed.get_origin();
}
void GLCanvas3D::set_bed_origin(const Pointf& origin)
{
m_bed.set_origin(origin);
}
2018-05-09 08:47:04 +00:00
bool GLCanvas3D::is_dirty() const
{
return m_dirty;
}
void GLCanvas3D::set_dirty(bool dirty)
{
m_dirty = dirty;
}
GLCanvas3D::Camera::EType GLCanvas3D::get_camera_type() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_type();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_type(GLCanvas3D::Camera::EType type)
{
2018-05-14 10:08:23 +00:00
m_camera.set_type(type);
2018-05-09 08:47:04 +00:00
}
2018-05-14 09:31:58 +00:00
std::string GLCanvas3D::get_camera_type_as_string() const
{
return m_camera.get_type_as_string();
}
2018-05-09 08:47:04 +00:00
float GLCanvas3D::get_camera_zoom() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_zoom();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_zoom(float zoom)
{
2018-05-14 10:08:23 +00:00
m_camera.set_zoom(zoom);
2018-05-09 08:47:04 +00:00
}
float GLCanvas3D::get_camera_phi() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_phi();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_phi(float phi)
{
2018-05-14 10:08:23 +00:00
m_camera.set_phi(phi);
2018-05-09 08:47:04 +00:00
}
float GLCanvas3D::get_camera_theta() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_theta();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_theta(float theta)
{
2018-05-14 10:08:23 +00:00
m_camera.set_theta(theta);
2018-05-09 08:47:04 +00:00
}
float GLCanvas3D::get_camera_distance() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_distance();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_distance(float distance)
{
2018-05-14 10:08:23 +00:00
m_camera.set_distance(distance);
2018-05-09 08:47:04 +00:00
}
const Pointf3& GLCanvas3D::get_camera_target() const
{
2018-05-14 10:08:23 +00:00
return m_camera.get_target();
2018-05-09 08:47:04 +00:00
}
void GLCanvas3D::set_camera_target(const Pointf3& target)
{
2018-05-14 10:08:23 +00:00
m_camera.set_target(target);
2018-05-09 08:47:04 +00:00
}
2018-05-14 12:14:19 +00:00
BoundingBoxf3 GLCanvas3D::bed_bounding_box() const
{
return m_bed.get_bounding_box();
}
BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const
{
BoundingBoxf3 bb;
if (m_volumes != nullptr)
{
for (const GLVolume* volume : m_volumes->volumes)
{
if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes))
bb.merge(volume->transformed_bounding_box());
}
}
return bb;
}
BoundingBoxf3 GLCanvas3D::max_bounding_box() const
{
BoundingBoxf3 bb = bed_bounding_box();
bb.merge(volumes_bounding_box());
return bb;
}
2018-05-15 08:32:38 +00:00
void GLCanvas3D::zoom_to_bed()
{
_zoom_to_bounding_box(bed_bounding_box());
}
void GLCanvas3D::zoom_to_volumes()
{
m_apply_zoom_to_volumes_filter = true;
_zoom_to_bounding_box(volumes_bounding_box());
m_apply_zoom_to_volumes_filter = false;
}
void GLCanvas3D::select_view(const std::string& direction)
{
const float* dir_vec = nullptr;
if (direction == "iso")
dir_vec = VIEW_DEFAULT;
else if (direction == "left")
dir_vec = VIEW_LEFT;
else if (direction == "right")
dir_vec = VIEW_RIGHT;
else if (direction == "top")
dir_vec = VIEW_TOP;
else if (direction == "bottom")
dir_vec = VIEW_BOTTOM;
else if (direction == "front")
dir_vec = VIEW_FRONT;
else if (direction == "rear")
dir_vec = VIEW_REAR;
if ((dir_vec != nullptr) && !empty(volumes_bounding_box()))
{
m_camera.set_phi(dir_vec[0]);
m_camera.set_theta(dir_vec[1]);
m_on_viewport_changed_callback.call();
if (m_canvas != nullptr)
m_canvas->Refresh();
}
}
void GLCanvas3D::register_on_viewport_changed_callback(void* callback)
{
if (callback != nullptr)
m_on_viewport_changed_callback.register_callback(callback);
}
void GLCanvas3D::on_size(wxSizeEvent& evt)
{
set_dirty(true);
}
void GLCanvas3D::on_idle(wxIdleEvent& evt)
{
if (!is_dirty() || !is_shown_on_screen())
return;
if (m_canvas != nullptr)
{
std::pair<int, int> size = _get_canvas_size();
resize((unsigned int)size.first, (unsigned int)size.second);
m_canvas->Refresh();
}
}
2018-05-14 12:14:19 +00:00
void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox)
{
// Calculate the zoom factor needed to adjust viewport to bounding box.
float zoom = _get_zoom_to_bounding_box_factor(bbox);
if (zoom > 0.0f)
{
set_camera_zoom(zoom);
// center view around bounding box center
set_camera_target(bbox.center());
m_on_viewport_changed_callback.call();
if (is_shown_on_screen())
{
std::pair<int, int> size = _get_canvas_size();
resize((unsigned int)size.first, (unsigned int)size.second);
if (m_canvas != nullptr)
m_canvas->Refresh();
}
}
2018-05-14 12:14:19 +00:00
}
std::pair<int, int> GLCanvas3D::_get_canvas_size() const
{
std::pair<int, int> ret(0, 0);
if (m_canvas != nullptr)
m_canvas->GetSize(&ret.first, &ret.second);
return ret;
}
float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const
{
float max_bb_size = bbox.max_size();
if (max_bb_size == 0.0f)
return -1.0f;
// project the bbox vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
// we need the view matrix, we let opengl calculate it(same as done in render sub)
::glMatrixMode(GL_MODELVIEW);
::glLoadIdentity();
if (TURNTABLE_MODE)
{
// Turntable mode is enabled by default.
::glRotatef(-get_camera_theta(), 1.0f, 0.0f, 0.0f); //<2F>pitch
::glRotatef(get_camera_phi(), 0.0f, 0.0f, 1.0f); // yaw
}
else
{
// Shift the perspective camera.
Pointf3 camera_pos(0.0, 0.0, -(coordf_t)get_camera_distance());
::glTranslatef((float)camera_pos.x, (float)camera_pos.y, (float)camera_pos.z);
// my @rotmat = quat_to_rotmatrix($self->quat); <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< TEMPORARY COMMENTED OUT
// glMultMatrixd_p(@rotmat[0..15]); <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< TEMPORARY COMMENTED OUT
}
const Pointf3& target = get_camera_target();
::glTranslatef(-(float)target.x, -(float)target.y, -(float)target.z);
// get the view matrix back from opengl
GLfloat matrix[16];
::glGetFloatv(GL_MODELVIEW_MATRIX, matrix);
// camera axes
Pointf3 right((coordf_t)matrix[0], (coordf_t)matrix[4], (coordf_t)matrix[8]);
Pointf3 up((coordf_t)matrix[1], (coordf_t)matrix[5], (coordf_t)matrix[9]);
Pointf3 forward((coordf_t)matrix[2], (coordf_t)matrix[6], (coordf_t)matrix[10]);
Pointf3 bb_min = bbox.min;
Pointf3 bb_max = bbox.max;
Pointf3 bb_center = bbox.center();
// bbox vertices in world space
std::vector<Pointf3> vertices;
vertices.reserve(8);
vertices.push_back(bb_min);
vertices.emplace_back(bb_max.x, bb_min.y, bb_min.z);
vertices.emplace_back(bb_max.x, bb_max.y, bb_min.z);
vertices.emplace_back(bb_min.x, bb_max.y, bb_min.z);
vertices.emplace_back(bb_min.x, bb_min.y, bb_max.z);
vertices.emplace_back(bb_max.x, bb_min.y, bb_max.z);
vertices.push_back(bb_max);
vertices.emplace_back(bb_min.x, bb_max.y, bb_max.z);
coordf_t max_x = 0.0;
coordf_t max_y = 0.0;
// margin factor to give some empty space around the bbox
coordf_t margin_factor = 1.25;
for (const Pointf3 v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Pointf3 pos(v.x - bb_center.x, v.y - bb_center.y, v.z - bb_center.z);
Pointf3 proj_on_plane = pos - dot(pos, forward) * forward;
// calculates vertex coordinate along camera xy axes
coordf_t x_on_plane = dot(proj_on_plane, right);
coordf_t y_on_plane = dot(proj_on_plane, up);
max_x = std::max(max_x, margin_factor * std::abs(x_on_plane));
max_y = std::max(max_y, margin_factor * std::abs(y_on_plane));
}
if ((max_x == 0.0) || (max_y == 0.0))
return -1.0f;
max_x *= 2.0;
max_y *= 2.0;
std::pair<int, int> cvs_size = _get_canvas_size();
return (float)std::min((coordf_t)cvs_size.first / max_x, (coordf_t)cvs_size.second / max_y);
}
void GLCanvas3D::_deregister_callbacks()
{
m_on_viewport_changed_callback.deregister_callback();
}
2018-05-09 08:47:04 +00:00
} // namespace GUI
} // namespace Slic3r