PrusaSlicer-NonPlainar/xs/src/libslic3r/PrintObject.cpp

828 lines
38 KiB
C++
Raw Normal View History

#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
2016-09-26 11:56:24 +00:00
#include "SVG.hpp"
namespace Slic3r {
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
: typed_slices(false),
_print(print),
_model_object(model_object)
{
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
{
// Translate meshes so that our toolpath generation algorithms work with smaller
// XY coordinates; this translation is an optimization and not strictly required.
// A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
this->_copies_shift = Point(
scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y));
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z));
}
this->reload_model_instances();
this->layer_height_ranges = model_object->layer_height_ranges;
}
2014-11-12 23:34:56 +00:00
bool
PrintObject::add_copy(const Pointf &point)
{
Points points = this->_copies;
points.push_back(Point::new_scale(point.x, point.y));
return this->set_copies(points);
}
bool
PrintObject::delete_last_copy()
{
Points points = this->_copies;
points.pop_back();
return this->set_copies(points);
}
bool
PrintObject::delete_all_copies()
{
Points points;
return this->set_copies(points);
}
bool
PrintObject::set_copies(const Points &points)
{
this->_copies = points;
// order copies with a nearest neighbor search and translate them by _copies_shift
this->_shifted_copies.clear();
this->_shifted_copies.reserve(points.size());
// order copies with a nearest-neighbor search
std::vector<Points::size_type> ordered_copies;
Slic3r::Geometry::chained_path(points, ordered_copies);
for (std::vector<Points::size_type>::const_iterator it = ordered_copies.begin(); it != ordered_copies.end(); ++it) {
Point copy = points[*it];
copy.translate(this->_copies_shift);
this->_shifted_copies.push_back(copy);
}
bool invalidated = false;
if (this->_print->invalidate_step(psSkirt)) invalidated = true;
if (this->_print->invalidate_step(psBrim)) invalidated = true;
return invalidated;
}
bool
PrintObject::reload_model_instances()
{
Points copies;
for (ModelInstancePtrs::const_iterator i = this->_model_object->instances.begin(); i != this->_model_object->instances.end(); ++i) {
copies.push_back(Point::new_scale((*i)->offset.x, (*i)->offset.y));
}
return this->set_copies(copies);
}
void
PrintObject::add_region_volume(int region_id, int volume_id)
{
region_volumes[region_id].push_back(volume_id);
}
/* This is the *total* layer count (including support layers)
this value is not supposed to be compared with Layer::id
since they have different semantics */
size_t
PrintObject::total_layer_count() const
{
return this->layer_count() + this->support_layer_count();
}
size_t
PrintObject::layer_count() const
{
return this->layers.size();
}
void
PrintObject::clear_layers()
{
for (int i = this->layers.size()-1; i >= 0; --i)
this->delete_layer(i);
}
Layer*
PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
Layer* layer = new Layer(id, this, height, print_z, slice_z);
layers.push_back(layer);
return layer;
}
void
PrintObject::delete_layer(int idx)
{
LayerPtrs::iterator i = this->layers.begin() + idx;
delete *i;
this->layers.erase(i);
}
size_t
PrintObject::support_layer_count() const
{
return this->support_layers.size();
}
void
PrintObject::clear_support_layers()
{
for (int i = this->support_layers.size()-1; i >= 0; --i)
this->delete_support_layer(i);
}
SupportLayer*
PrintObject::get_support_layer(int idx)
{
return this->support_layers.at(idx);
}
SupportLayer*
PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
{
SupportLayer* layer = new SupportLayer(id, this, height, print_z, -1);
support_layers.push_back(layer);
return layer;
}
void
PrintObject::delete_support_layer(int idx)
{
SupportLayerPtrs::iterator i = this->support_layers.begin() + idx;
delete *i;
this->support_layers.erase(i);
}
bool
PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
std::set<PrintObjectStep> steps;
// this method only accepts PrintObjectConfig and PrintRegionConfig option keys
for (std::vector<t_config_option_key>::const_iterator opt_key = opt_keys.begin(); opt_key != opt_keys.end(); ++opt_key) {
if (*opt_key == "perimeters"
|| *opt_key == "extra_perimeters"
|| *opt_key == "gap_fill_speed"
|| *opt_key == "overhangs"
|| *opt_key == "first_layer_extrusion_width"
|| *opt_key == "perimeter_extrusion_width"
|| *opt_key == "infill_overlap"
|| *opt_key == "thin_walls"
|| *opt_key == "external_perimeters_first") {
steps.insert(posPerimeters);
} else if (*opt_key == "layer_height"
|| *opt_key == "first_layer_height"
|| *opt_key == "xy_size_compensation"
|| *opt_key == "raft_layers") {
steps.insert(posSlice);
} else if (*opt_key == "support_material"
|| *opt_key == "support_material_angle"
|| *opt_key == "support_material_extruder"
|| *opt_key == "support_material_extrusion_width"
|| *opt_key == "support_material_interface_layers"
|| *opt_key == "support_material_interface_extruder"
|| *opt_key == "support_material_interface_spacing"
|| *opt_key == "support_material_interface_speed"
|| *opt_key == "support_material_buildplate_only"
|| *opt_key == "support_material_pattern"
|| *opt_key == "support_material_spacing"
|| *opt_key == "support_material_threshold"
|| *opt_key == "support_material_with_sheath"
|| *opt_key == "dont_support_bridges"
|| *opt_key == "first_layer_extrusion_width") {
steps.insert(posSupportMaterial);
} else if (*opt_key == "interface_shells"
|| *opt_key == "infill_only_where_needed"
|| *opt_key == "infill_every_layers"
|| *opt_key == "solid_infill_every_layers"
|| *opt_key == "bottom_solid_layers"
|| *opt_key == "top_solid_layers"
|| *opt_key == "solid_infill_below_area"
|| *opt_key == "infill_extruder"
|| *opt_key == "solid_infill_extruder"
|| *opt_key == "infill_extrusion_width"
|| *opt_key == "ensure_vertical_shell_thickness") {
steps.insert(posPrepareInfill);
} else if (*opt_key == "external_fill_pattern"
|| *opt_key == "external_fill_link_max_length"
|| *opt_key == "fill_angle"
|| *opt_key == "fill_pattern"
|| *opt_key == "fill_link_max_length"
|| *opt_key == "top_infill_extrusion_width"
|| *opt_key == "first_layer_extrusion_width") {
steps.insert(posInfill);
} else if (*opt_key == "fill_density"
|| *opt_key == "solid_infill_extrusion_width") {
steps.insert(posPerimeters);
steps.insert(posPrepareInfill);
} else if (*opt_key == "external_perimeter_extrusion_width"
|| *opt_key == "perimeter_extruder") {
steps.insert(posPerimeters);
steps.insert(posSupportMaterial);
} else if (*opt_key == "bridge_flow_ratio") {
steps.insert(posPerimeters);
steps.insert(posInfill);
} else if (*opt_key == "seam_position"
|| *opt_key == "seam_preferred_direction"
|| *opt_key == "seam_preferred_direction_jitter"
|| *opt_key == "support_material_speed"
|| *opt_key == "bridge_speed"
|| *opt_key == "external_perimeter_speed"
|| *opt_key == "infill_speed"
|| *opt_key == "perimeter_speed"
|| *opt_key == "small_perimeter_speed"
|| *opt_key == "solid_infill_speed"
|| *opt_key == "top_solid_infill_speed") {
// these options only affect G-code export, so nothing to invalidate
} else {
// for legacy, if we can't handle this option let's invalidate all steps
return this->invalidate_all_steps();
}
}
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
bool
PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = this->state.invalidate(step);
// propagate to dependent steps
if (step == posPerimeters) {
this->invalidate_step(posPrepareInfill);
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posPrepareInfill) {
this->invalidate_step(posInfill);
} else if (step == posInfill) {
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
} else if (step == posSlice) {
this->invalidate_step(posPerimeters);
this->invalidate_step(posSupportMaterial);
} else if (step == posSupportMaterial) {
this->_print->invalidate_step(psSkirt);
this->_print->invalidate_step(psBrim);
}
return invalidated;
}
bool
PrintObject::invalidate_all_steps()
{
// make a copy because when invalidating steps the iterators are not working anymore
std::set<PrintObjectStep> steps = this->state.started;
bool invalidated = false;
for (std::set<PrintObjectStep>::const_iterator step = steps.begin(); step != steps.end(); ++step) {
if (this->invalidate_step(*step)) invalidated = true;
}
return invalidated;
}
bool
PrintObject::has_support_material() const
{
return this->config.support_material
|| this->config.raft_layers > 0
|| this->config.support_material_enforce_layers > 0;
}
// This function analyzes slices of a region (SurfaceCollection slices).
// Each slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type S_TYPE_INTERNAL.
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
// S_TYPE_TOP - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
// S_TYPE_BOTTOMBRIDGE - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
// S_TYPE_BOTTOM - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
// S_TYPE_INTERNAL - Part of a region, which is supported by the same region type.
// If a part of a region is of S_TYPE_BOTTOM and S_TYPE_TOP, the S_TYPE_BOTTOM wins.
void PrintObject::detect_surfaces_type()
{
// Slic3r::debugf "Detecting solid surfaces...\n";
for (int idx_region = 0; idx_region < this->_print->regions.size(); ++ idx_region) {
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) {
LayerRegion *layerm = this->layers[idx_layer]->get_region(idx_region);
layerm->slices_to_fill_surfaces_clipped();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) {
Layer *layer = this->layers[idx_layer];
LayerRegion *layerm = layer->get_region(idx_region);
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
Layer *upper_layer = idx_layer + 1 < this->layer_count() ? this->get_layer(idx_layer + 1) : NULL;
Layer *lower_layer = idx_layer > 0 ? this->get_layer(idx_layer - 1) : NULL;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
// find top surfaces (difference between current surfaces
// of current layer and upper one)
Surfaces top;
if (upper_layer) {
// Config value $self->config->interface_shells is true, if a support is separated from the object
// by a soluble material (for example a PVA plastic).
Polygons upper_slices = this->config.interface_shells.value ?
to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) :
to_polygons(upper_layer->slices);
surfaces_append(top,
offset2_ex(diff(layerm_slices_surfaces, upper_slices, true), -offset, offset),
stTop);
} else {
// if no upper layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
top = layerm->slices.surfaces;
for (Surfaces::iterator it = top.begin(); it != top.end(); ++ it)
it->surface_type = stTop;
}
// find bottom surfaces (difference between current surfaces
// of current layer and lower one)
Surfaces bottom;
if (lower_layer) {
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
// the support from the print.
SurfaceType surface_type_bottom =
(this->config.support_material.value && this->config.support_material_contact_distance.value == 0) ?
stBottom : stBottomBridge;
// Any surface lying on the void is a true bottom bridge (an overhang)
surfaces_append(
bottom,
offset2_ex(
diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true),
-offset, offset),
surface_type_bottom);
// if user requested internal shells, we need to identify surfaces
// lying on other slices not belonging to this region
//FIXME Vojtech: config.internal_shells or config.interface_shells? Is it some legacy code?
// Why shall multiple regions over soluble support be treated specially?
if (this->config.interface_shells.value) {
// non-bridging bottom surfaces: any part of this layer lying
// on something else, excluding those lying on our own region
surfaces_append(
bottom,
offset2_ex(
diff(
intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces),
true),
-offset, offset),
stBottom);
}
} else {
// if no lower layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
bottom = layerm->slices.surfaces;
// if we have raft layers, consider bottom layer as a bridge
// just like any other bottom surface lying on the void
SurfaceType surface_type_bottom =
(this->config.raft_layers.value > 0 && this->config.support_material_contact_distance.value > 0) ?
stBottomBridge : stBottom;
for (Surfaces::iterator it = bottom.begin(); it != bottom.end(); ++ it)
it->surface_type = surface_type_bottom;
}
// now, if the object contained a thin membrane, we could have overlapping bottom
// and top surfaces; let's do an intersection to discover them and consider them
// as bottom surfaces (to allow for bridge detection)
if (! top.empty() && ! bottom.empty()) {
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
// if $Slic3r::debug;
Polygons top_polygons = to_polygons(STDMOVE(top));
top.clear();
surfaces_append(top,
#if 0
offset2_ex(diff(top_polygons, to_polygons(bottom), true), -offset, offset),
#else
diff_ex(top_polygons, to_polygons(bottom), false),
#endif
stTop);
}
// save surfaces to layer
layerm->slices.surfaces.clear();
// find internal surfaces (difference between top/bottom surfaces and others)
{
Polygons topbottom = to_polygons(top);
polygons_append(topbottom, to_polygons(bottom));
surfaces_append(layerm->slices.surfaces,
#if 0
offset2_ex(diff(layerm_slices_surfaces, topbottom, true), -offset, offset),
#else
diff_ex(layerm_slices_surfaces, topbottom, false),
#endif
stInternal);
}
surfaces_append(layerm->slices.surfaces, STDMOVE(top));
surfaces_append(layerm->slices.surfaces, STDMOVE(bottom));
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer of a region
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
for (int idx_layer = 0; idx_layer < int(this->layer_count()); ++ idx_layer) {
LayerRegion *layerm = this->layers[idx_layer]->get_region(idx_region);
layerm->slices_to_fill_surfaces_clipped();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer of a region
} // for each $self->print->region_count
}
2015-10-26 22:23:03 +00:00
void
PrintObject::process_external_surfaces()
{
FOREACH_REGION(this->_print, region) {
size_t region_id = region - this->_print->regions.begin();
FOREACH_LAYER(this, layer_it) {
const Layer* lower_layer = (layer_it == this->layers.begin())
? NULL
: *(layer_it-1);
(*layer_it)->get_region(region_id)->process_external_surfaces(lower_layer);
}
}
}
2016-09-26 11:56:24 +00:00
void
PrintObject::discover_vertical_shells()
{
for (size_t idx_region = 0; idx_region < this->_print->regions.size(); ++ idx_region) {
if (! this->_print->regions[idx_region]->config.ensure_vertical_shell_thickness.value)
continue;
2016-09-26 11:56:24 +00:00
for (size_t idx_layer = 0; idx_layer < this->layers.size(); ++ idx_layer) {
Layer *layer = this->layers[idx_layer];
LayerRegion *layerm = layer->get_region(idx_region);
Flow solid_infill_flow = layerm->flow(frSolidInfill);
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
2016-09-26 11:56:24 +00:00
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
Polygons shell;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
2016-09-26 11:56:24 +00:00
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
2016-09-26 11:56:24 +00:00
if (1)
{
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", idx), this->bounding_box());
2016-09-26 11:56:24 +00:00
for (int n = (int)idx_layer - layerm->region()->config.bottom_solid_layers + 1; n < (int)idx_layer + layerm->region()->config.top_solid_layers; ++ n) {
if (n < 0 || n >= (int)this->layers.size())
continue;
ExPolygons &expolys = this->layers[n]->perimeter_expolygons;
for (size_t i = 0; i < expolys.size(); ++ i) {
SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", idx, n, i), get_extents(expolys[i]));
2016-09-26 11:56:24 +00:00
svg.draw(expolys[i]);
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
svg.Close();
svg_cummulative.draw(expolys[i]);
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
}
}
++ idx;
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
for (int n = (int)idx_layer - layerm->region()->config.bottom_solid_layers + 1; n < (int)idx_layer + layerm->region()->config.top_solid_layers; ++ n)
if (n >= 0 && n < (int)this->layers.size()) {
Layer &neighbor_layer = *this->layers[n];
LayerRegion &neighbor_region = *neighbor_layer.get_region(int(idx_region));
polygons_append(shell, neighbor_layer.perimeter_expolygons.expolygons);
if (n > int(idx_layer)) {
// Collect top surfaces.
polygons_append(shell, to_polygons(neighbor_region.slices.filter_by_type(stTop)));
polygons_append(shell, to_polygons(neighbor_region.fill_surfaces.filter_by_type(stTop)));
}
else if (n < int(idx_layer)) {
// Collect bottom and bottom bridge surfaces.
polygons_append(shell, to_polygons(neighbor_region.slices.filter_by_types(surfaces_bottom, 2)));
polygons_append(shell, to_polygons(neighbor_region.fill_surfaces.filter_by_types(surfaces_bottom, 2)));
}
}
2016-09-26 11:56:24 +00:00
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", idx ++), get_extents(shell));
2016-09-26 11:56:24 +00:00
svg.draw(shell);
svg.draw_outline(shell, "black", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
shell = union_(shell, true);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
shell_ex = union_ex(shell, true);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
if (shell.empty())
continue;
2016-09-26 11:56:24 +00:00
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", idx ++), get_extents(shell));
2016-09-26 11:56:24 +00:00
svg.draw(shell_ex);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", idx ++), get_extents(shell));
2016-09-26 11:56:24 +00:00
svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", idx ++), get_extents(shell));
2016-09-26 11:56:24 +00:00
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", idx ++), get_extents(shell));
2016-09-26 11:56:24 +00:00
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the shells region by the internal & internal void surfaces.
const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 2));
shell = intersection(shell, polygonsInternal, true);
if (shell.empty())
continue;
// Append the internal solids, so they will be merged with the new ones.
polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
// These regions will be filled by a rectilinear full infill. Currently this type of infill
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
// make sure that this region does not contain parts narrower than the infill spacing width.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Polygons shell_before = shell;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 1
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
// Intentionally inflate a bit more than how much the region has been shrunk,
// so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
shell = offset2(shell, - 0.5f * min_perimeter_infill_spacing, 0.8f * min_perimeter_infill_spacing,
CLIPPER_OFFSET_SCALE, ClipperLib::jtSquare);
if (shell.empty())
continue;
#else
// Ensure each region is at least 3x infill line width wide, so it could be filled in.
// float margin = float(infill_line_spacing) * 3.f;
float margin = float(infill_line_spacing) * 1.5f;
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, CLIPPER_OFFSET_SCALE, ClipperLib::jtMiter, 5.), true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
}
#endif
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", idx ++), get_extents(shell_before));
// Source shell.
svg.draw(union_ex(shell_before, true));
// Shell trimmed to the internal surfaces.
svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
// Regularized infill region.
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the internal & internalvoid by the shell.
2016-09-26 11:56:24 +00:00
Slic3r::ExPolygons new_internal = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
shell,
false
);
Slic3r::ExPolygons new_internal_void = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
shell,
false
);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static size_t idx = 0;
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
2016-09-26 11:56:24 +00:00
++ idx;
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Assign resulting internal surfaces to layer.
const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
2016-09-26 11:56:24 +00:00
layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
layerm->fill_surfaces.append(stInternal , new_internal);
layerm->fill_surfaces.append(stInternalVoid , new_internal_void);
layerm->fill_surfaces.append(stInternalSolid, new_internal_solid);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer
} // for each region
}
2015-10-26 22:23:03 +00:00
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
void
PrintObject::bridge_over_infill()
{
FOREACH_REGION(this->_print, region) {
size_t region_id = region - this->_print->regions.begin();
2015-10-26 22:23:03 +00:00
// skip bridging in case there are no voids
if ((*region)->config.fill_density.value == 100) continue;
// get bridge flow
Flow bridge_flow = (*region)->flow(
frSolidInfill,
-1, // layer height, not relevant for bridge flow
true, // bridge
false, // first layer
-1, // custom width, not relevant for bridge flow
*this
);
FOREACH_LAYER(this, layer_it) {
2015-10-26 22:23:03 +00:00
// skip first layer
if (layer_it == this->layers.begin()) continue;
Layer* layer = *layer_it;
LayerRegion* layerm = layer->get_region(region_id);
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
// check whether the lower area is deep enough for absorbing the extra flow
// (for obvious physical reasons but also for preventing the bridge extrudates
// from overflowing in 3D preview)
ExPolygons to_bridge;
{
Polygons to_bridge_pp = internal_solid;
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height;
for (int i = (layer_it - this->layers.begin()) - 1; i >= 0; --i) {
2015-10-26 22:23:03 +00:00
const Layer* lower_layer = this->layers[i];
// stop iterating if layer is lower than bottom_z
if (lower_layer->print_z < bottom_z) break;
// iterate through regions and collect internal surfaces
Polygons lower_internal;
FOREACH_LAYERREGION(lower_layer, lower_layerm_it)
(*lower_layerm_it)->fill_surfaces.filter_by_type(stInternal, &lower_internal);
// intersect such lower internal surfaces with the candidate solid surfaces
2015-10-26 22:23:03 +00:00
to_bridge_pp = intersection(to_bridge_pp, lower_internal);
}
// there's no point in bridging too thin/short regions
2016-09-26 11:56:24 +00:00
//FIXME Vojtech: The offset2 function is not a geometric offset,
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
double min_width = bridge_flow.scaled_width() * 3;
2015-10-26 22:23:03 +00:00
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
}
if (to_bridge_pp.empty()) continue;
// convert into ExPolygons
2015-10-26 22:23:03 +00:00
to_bridge = union_ex(to_bridge_pp);
}
#ifdef SLIC3R_DEBUG
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
#endif
// compute the remaning internal solid surfaces as difference
2015-10-26 22:23:03 +00:00
ExPolygons not_to_bridge = diff_ex(internal_solid, to_bridge, true);
2016-09-26 11:56:24 +00:00
to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
// build the new collection of fill_surfaces
{
2016-09-26 11:56:24 +00:00
layerm->fill_surfaces.remove_type(stInternalSolid);
for (ExPolygons::const_iterator ex = to_bridge.begin(); ex != to_bridge.end(); ++ex)
2016-09-26 11:56:24 +00:00
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, *ex));
for (ExPolygons::const_iterator ex = not_to_bridge.begin(); ex != not_to_bridge.end(); ++ex)
2016-09-26 11:56:24 +00:00
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, *ex));
}
/*
# exclude infill from the layers below if needed
# see discussion at https://github.com/alexrj/Slic3r/issues/240
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
if (0) {
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
my @new_surfaces = ();
# subtract the area from all types of surfaces
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
@{diff_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALVOID,
), @{intersection_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
}
$lower_layerm->fill_surfaces->clear;
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
}
$excess -= $self->get_layer($i)->height;
}
}
*/
2016-09-26 11:56:24 +00:00
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
}
}
}