PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/Fill.cpp

279 lines
13 KiB
C++
Raw Normal View History

#include <assert.h>
#include <stdio.h>
2016-11-02 10:13:13 +00:00
#include <memory>
#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "FillBase.hpp"
namespace Slic3r {
// Generate infills for Slic3r::Layer::Region.
// The Slic3r::Layer::Region at this point of time may contain
// surfaces of various types (internal/bridge/top/bottom/solid).
// The infills are generated on the groups of surfaces with a compatible type.
// Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
// and the thin fills generated by generate_perimeters().
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
{
// Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
double fill_density = layerm.region()->config.fill_density;
Flow infill_flow = layerm.flow(frInfill);
Flow solid_infill_flow = layerm.flow(frSolidInfill);
Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
Surfaces surfaces;
// merge adjacent surfaces
// in case of bridge surfaces, the ones with defined angle will be attached to the ones
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
{
SurfacesPtr surfaces_with_bridge_angle;
surfaces_with_bridge_angle.reserve(layerm.fill_surfaces.surfaces.size());
for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
if (it->bridge_angle >= 0)
surfaces_with_bridge_angle.push_back(&(*it));
// group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
// group is of type Slic3r::SurfaceCollection
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
std::vector<SurfacesPtr> groups;
layerm.fill_surfaces.group(&groups);
// merge compatible groups (we can generate continuous infill for them)
{
// cache flow widths and patterns used for all solid groups
// (we'll use them for comparing compatible groups)
std::vector<char> is_solid(groups.size(), false);
std::vector<float> fw(groups.size(), 0.f);
std::vector<int> pattern(groups.size(), -1);
for (size_t i = 0; i < groups.size(); ++ i) {
// we can only merge solid non-bridge surfaces, so discard
// non-solid surfaces
const Surface &surface = *groups[i].front();
if (surface.is_solid() && (!surface.is_bridge() || layerm.layer()->id() == 0)) {
is_solid[i] = true;
fw[i] = (surface.surface_type == stTop) ? top_solid_infill_flow.width : solid_infill_flow.width;
pattern[i] = surface.is_external() ? layerm.region()->config.external_fill_pattern.value : ipRectilinear;
}
}
// loop through solid groups
for (size_t i = 0; i < groups.size(); ++ i) {
if (is_solid[i]) {
// find compatible groups and append them to this one
for (size_t j = i + 1; j < groups.size(); ++ j) {
if (is_solid[j] && fw[i] == fw[j] && pattern[i] == pattern[j]) {
// groups are compatible, merge them
groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
groups.erase(groups.begin() + j);
is_solid.erase(is_solid.begin() + j);
fw.erase(fw.begin() + j);
pattern.erase(pattern.begin() + j);
}
}
}
}
}
// Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
for (size_t round = 0; round < 2; ++ round) {
for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++ it_group) {
const SurfacesPtr &group = *it_group;
bool is_bridge = group.front()->bridge_angle >= 0;
if (is_bridge != (round == 0))
continue;
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
Polygons union_p = union_(to_polygons(*it_group), true);
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
if (! surfaces_with_bridge_angle.empty() && it_group->front()->bridge_angle < 0)
union_p = diff(union_p, to_polygons(surfaces_with_bridge_angle), true);
// subtract any other surface already processed
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
ExPolygons union_expolys = diff_ex(union_p, to_polygons(surfaces), true);
for (ExPolygons::const_iterator it_expoly = union_expolys.begin(); it_expoly != union_expolys.end(); ++ it_expoly)
surfaces.push_back(Surface(*it_group->front(), *it_expoly));
}
}
}
// we need to detect any narrow surfaces that might collapse
// when adding spacing below
// such narrow surfaces are often generated in sloping walls
// by bridge_over_infill() and combine_infill() as a result of the
// subtraction of the combinable area from the layer infill area,
// which leaves small areas near the perimeters
// we are going to grow such regions by overlapping them with the void (if any)
// TODO: detect and investigate whether there could be narrow regions without
// any void neighbors
{
coord_t distance_between_surfaces = std::max(
std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
top_solid_infill_flow.scaled_spacing());
Polygons surfaces_polygons = to_polygons(surfaces);
Polygons collapsed = diff(
surfaces_polygons,
offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
true);
Polygons to_subtract;
to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
if (it_surface->surface_type == stInternalVoid)
polygons_append(to_subtract, *it_surface);
polygons_append(to_subtract, collapsed);
surfaces_append(
surfaces,
intersection_ex(
offset(collapsed, distance_between_surfaces),
to_subtract,
true),
stInternalSolid);
}
if (0) {
// require "Slic3r/SVG.pm";
// Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
// expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
// red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
// );
}
for (Surfaces::const_iterator surface_it = surfaces.begin(); surface_it != surfaces.end(); ++ surface_it) {
const Surface &surface = *surface_it;
if (surface.surface_type == stInternalVoid)
continue;
InfillPattern fill_pattern = layerm.region()->config.fill_pattern.value;
double density = fill_density;
FlowRole role = (surface.surface_type == stTop) ? frTopSolidInfill :
(surface.is_solid() ? frSolidInfill : frInfill);
bool is_bridge = layerm.layer()->id() > 0 && surface.is_bridge();
if (surface.is_solid()) {
density = 100;
fill_pattern = (surface.is_external() && ! is_bridge) ?
layerm.region()->config.external_fill_pattern.value :
ipRectilinear;
} else if (density <= 0)
continue;
// get filler object
#if SLIC3R_CPPVER >= 11
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
#else
std::auto_ptr<Fill> f = std::auto_ptr<Fill>(Fill::new_from_type(fill_pattern));
#endif
f->set_bounding_box(layerm.layer()->object()->bounding_box());
// calculate the actual flow we'll be using for this infill
coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
Flow flow = layerm.region()->flow(
role,
h,
is_bridge || f->use_bridge_flow(), // bridge flow?
layerm.layer()->id() == 0, // first layer?
-1, // auto width
*layerm.layer()->object()
);
// calculate flow spacing for infill pattern generation
bool using_internal_flow = false;
if (! surface.is_solid() && ! is_bridge) {
// it's internal infill, so we can calculate a generic flow spacing
// for all layers, for avoiding the ugly effect of
// misaligned infill on first layer because of different extrusion width and
// layer height
Flow internal_flow = layerm.region()->flow(
frInfill,
layerm.layer()->object()->config.layer_height.value, // TODO: handle infill_every_layers?
false, // no bridge
false, // no first layer
-1, // auto width
*layerm.layer()->object()
);
f->spacing = internal_flow.spacing();
using_internal_flow = true;
} else {
f->spacing = flow.spacing();
}
double link_max_length = 0.;
if (! is_bridge) {
#if 0
link_max_length = layerm.region()->config.get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
if (density > 80.) // 80%
link_max_length = 3. * f->spacing;
#endif
}
f->layer_id = layerm.layer()->id();
f->z = layerm.layer()->print_z;
f->angle = Geometry::deg2rad(layerm.region()->config.fill_angle.value);
// Maximum length of the perimeter segment linking two infill lines.
f->link_max_length = scale_(link_max_length);
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
// f->layer_height = h;
// apply half spacing using this flow's own spacing and generate infill
FillParams params;
params.density = 0.01 * density;
params.dont_adjust = true;
Polylines polylines = f->fill_surface(&surface, params);
if (polylines.empty())
continue;
// calculate actual flow from spacing (which might have been adjusted by the infill
// pattern generator)
if (using_internal_flow) {
// if we used the internal flow we're not doing a solid infill
// so we can safely ignore the slight variation that might have
// been applied to $f->flow_spacing
} else {
flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
}
// save into layer
{
ExtrusionRole role = is_bridge ? erBridgeInfill :
(surface.is_solid() ? ((surface.surface_type == stTop) ? erTopSolidInfill : erSolidInfill) : erInternalInfill);
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
out.entities.push_back(&collection);
// Only concentric fills are not sorted.
collection.no_sort = f->no_sort();
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
ExtrusionPath *path = new ExtrusionPath(role);
collection.entities.push_back(path);
path->polyline.points.swap(it->points);
path->mm3_per_mm = flow.mm3_per_mm();
path->width = flow.width,
path->height = flow.height;
}
}
}
// add thin fill regions
// thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
// Unpacks the collection, creates multiple collections per path.
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
// Why the paths are unpacked?
for (ExtrusionEntitiesPtr::iterator thin_fill = layerm.thin_fills.entities.begin(); thin_fill != layerm.thin_fills.entities.end(); ++ thin_fill) {
#if 0
out.entities.push_back((*thin_fill)->clone());
assert(dynamic_cast<ExtrusionEntityCollection*>(out.entities.back()) != NULL);
#else
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
out.entities.push_back(&collection);
collection.entities.push_back((*thin_fill)->clone());
#endif
}
}
} // namespace Slic3r