2018-11-21 14:21:57 +00:00
|
|
|
#ifndef MTUTILS_HPP
|
|
|
|
#define MTUTILS_HPP
|
|
|
|
|
2018-11-21 14:33:30 +00:00
|
|
|
#include <atomic> // for std::atomic_flag and memory orders
|
2018-11-21 14:21:57 +00:00
|
|
|
#include <mutex> // for std::lock_guard
|
|
|
|
#include <functional> // for std::function
|
|
|
|
#include <utility> // for std::forward
|
|
|
|
|
|
|
|
namespace Slic3r {
|
|
|
|
|
|
|
|
/// Handy little spin mutex for the cached meshes.
|
|
|
|
/// Implements the "Lockable" concept
|
|
|
|
class SpinMutex {
|
|
|
|
std::atomic_flag m_flg;
|
|
|
|
static const /*constexpr*/ auto MO_ACQ = std::memory_order_acquire;
|
|
|
|
static const /*constexpr*/ auto MO_REL = std::memory_order_release;
|
|
|
|
public:
|
|
|
|
inline SpinMutex() { m_flg.clear(MO_REL); }
|
|
|
|
inline void lock() { while(m_flg.test_and_set(MO_ACQ)); }
|
|
|
|
inline bool try_lock() { return !m_flg.test_and_set(MO_ACQ); }
|
|
|
|
inline void unlock() { m_flg.clear(MO_REL); }
|
|
|
|
};
|
|
|
|
|
|
|
|
/// A wrapper class around arbitrary object that needs thread safe caching.
|
|
|
|
template<class T> class CachedObject {
|
|
|
|
public:
|
|
|
|
// Method type which refreshes the object when it has been invalidated
|
|
|
|
using Setter = std::function<void(T&)>;
|
|
|
|
private:
|
|
|
|
T m_obj; // the object itself
|
|
|
|
bool m_valid; // invalidation flag
|
|
|
|
SpinMutex m_lck; // to make the caching thread safe
|
|
|
|
|
|
|
|
// the setter will be called just before the object's const value is about
|
|
|
|
// to be retrieved.
|
|
|
|
std::function<void(T&)> m_setter;
|
|
|
|
public:
|
|
|
|
|
|
|
|
// Forwarded constructor
|
|
|
|
template<class...Args> inline CachedObject(Setter fn, Args&&...args):
|
|
|
|
m_obj(std::forward<Args>(args)...), m_valid(false), m_setter(fn) {}
|
|
|
|
|
|
|
|
// invalidate the value of the object. The object will be refreshed at the
|
|
|
|
// next retrieval (Setter will be called). The data that is used in
|
2018-11-21 14:33:30 +00:00
|
|
|
// the setter function should be guarded as well during modification so the
|
2018-11-21 14:21:57 +00:00
|
|
|
// modification has to take place in fn.
|
|
|
|
inline void invalidate(std::function<void()> fn) {
|
|
|
|
std::lock_guard<SpinMutex> lck(m_lck); fn(); m_valid = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get the const object properly updated.
|
|
|
|
inline const T& get() {
|
|
|
|
std::lock_guard<SpinMutex> lck(m_lck);
|
|
|
|
if(!m_valid) { m_setter(m_obj); m_valid = true; }
|
|
|
|
return m_obj;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2019-03-22 16:05:41 +00:00
|
|
|
/// An std compatible random access iterator which uses indices to the source
|
|
|
|
/// vector thus resistant to invalidation caused by relocations. It also "knows"
|
|
|
|
/// its container. No comparison is neccesary to the container "end()" iterator.
|
|
|
|
/// The template can be instantiated with a different value type than that of
|
|
|
|
/// the container's but the types must be compatible. E.g. a base class of the
|
|
|
|
/// contained objects is compatible.
|
|
|
|
///
|
|
|
|
/// For a constant iterator, one can instantiate this template with a value
|
|
|
|
/// type preceded with 'const'.
|
|
|
|
template<class Vector, // The container type, must be random access...
|
|
|
|
class Value = typename Vector::value_type // The value type
|
|
|
|
>
|
2019-03-22 14:31:38 +00:00
|
|
|
class IndexBasedIterator {
|
|
|
|
static const size_t NONE = size_t(-1);
|
|
|
|
|
|
|
|
std::reference_wrapper<Vector> m_index_ref;
|
|
|
|
size_t m_idx = NONE;
|
|
|
|
public:
|
|
|
|
|
|
|
|
using value_type = Value;
|
|
|
|
using pointer = Value *;
|
|
|
|
using reference = Value &;
|
|
|
|
using difference_type = long;
|
|
|
|
using iterator_category = std::random_access_iterator_tag;
|
|
|
|
|
|
|
|
inline explicit
|
|
|
|
IndexBasedIterator(Vector& index, size_t idx):
|
|
|
|
m_index_ref(index), m_idx(idx) {}
|
|
|
|
|
|
|
|
// Post increment
|
|
|
|
inline IndexBasedIterator operator++(int) {
|
|
|
|
IndexBasedIterator cpy(*this); ++m_idx; return cpy;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator operator--(int) {
|
|
|
|
IndexBasedIterator cpy(*this); --m_idx; return cpy;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator& operator++() {
|
|
|
|
++m_idx; return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator& operator--() {
|
|
|
|
--m_idx; return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator& operator+=(difference_type l) {
|
|
|
|
m_idx += size_t(l); return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator operator+(difference_type l) {
|
|
|
|
auto cpy = *this; cpy += l; return cpy;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator& operator-=(difference_type l) {
|
|
|
|
m_idx -= size_t(l); return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline IndexBasedIterator operator-(difference_type l) {
|
|
|
|
auto cpy = *this; cpy -= l; return cpy;
|
|
|
|
}
|
|
|
|
|
|
|
|
operator difference_type() { return difference_type(m_idx); }
|
|
|
|
|
2019-03-22 16:05:41 +00:00
|
|
|
/// Tesing the end of the container... this is not possible with std
|
|
|
|
/// iterators.
|
2019-03-22 14:31:38 +00:00
|
|
|
inline bool is_end() const { return m_idx >= m_index_ref.get().size();}
|
|
|
|
|
|
|
|
inline Value & operator*() const {
|
|
|
|
assert(m_idx < m_index_ref.get().size());
|
|
|
|
return m_index_ref.get().operator[](m_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Value * operator->() const {
|
|
|
|
assert(m_idx < m_index_ref.get().size());
|
|
|
|
return &m_index_ref.get().operator[](m_idx);
|
|
|
|
}
|
|
|
|
|
2019-03-22 16:05:41 +00:00
|
|
|
/// If both iterators point past the container, they are equal...
|
2019-03-22 14:31:38 +00:00
|
|
|
inline bool operator ==(const IndexBasedIterator& other) {
|
|
|
|
size_t e = m_index_ref.get().size();
|
|
|
|
return m_idx == other.m_idx || (m_idx >= e && other.m_idx >= e);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator !=(const IndexBasedIterator& other) {
|
|
|
|
return !(*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator <=(const IndexBasedIterator& other) {
|
|
|
|
return (m_idx < other.m_idx) || (*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator <(const IndexBasedIterator& other) {
|
|
|
|
return m_idx < other.m_idx && (*this != other);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator >=(const IndexBasedIterator& other) {
|
|
|
|
return m_idx > other.m_idx || *this == other;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool operator >(const IndexBasedIterator& other) {
|
|
|
|
return m_idx > other.m_idx && *this != other;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2019-03-22 16:05:41 +00:00
|
|
|
/// A very simple range concept implementation with iterator-like objects.
|
2019-03-22 14:31:38 +00:00
|
|
|
template<class It> class Range {
|
|
|
|
It from, to;
|
|
|
|
public:
|
2019-03-22 16:05:41 +00:00
|
|
|
|
|
|
|
// The class is ready for range based for loops.
|
2019-03-22 14:31:38 +00:00
|
|
|
It begin() const { return from; }
|
|
|
|
It end() const { return to; }
|
2019-03-22 16:05:41 +00:00
|
|
|
|
|
|
|
// The iterator type can be obtained this way.
|
2019-03-22 14:31:38 +00:00
|
|
|
using Type = It;
|
|
|
|
|
|
|
|
Range() = default;
|
|
|
|
Range(It &&b, It &&e):
|
|
|
|
from(std::forward<It>(b)), to(std::forward<It>(e)) {}
|
|
|
|
|
2019-03-22 16:05:41 +00:00
|
|
|
// Some useful container-like methods...
|
2019-03-22 14:31:38 +00:00
|
|
|
inline size_t size() const { return end() - begin(); }
|
|
|
|
inline bool empty() const { return size() == 0; }
|
|
|
|
};
|
|
|
|
|
2018-11-21 14:21:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif // MTUTILS_HPP
|