PrusaSlicer-NonPlainar/xs/src/libslic3r/ModelArrange.hpp

756 lines
24 KiB
C++
Raw Normal View History

#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v.x << ", "
<< v.y << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
2018-08-06 18:13:04 +00:00
double bin_area,
2018-08-09 07:59:05 +00:00
sl::Shapes<PolygonImpl>& pile, // The currently arranged pile
const Item &item,
double norm, // A norming factor for physical dimensions
std::vector<double>& areacache, // pile item areas will be cached
// a spatial index to quickly get neighbors of the candidate item
SpatIndex& spatindex,
const ItemGroup& remaining
)
{
using Coord = TCoord<PointImpl>;
static const double BIG_ITEM_TRESHOLD = 0.02;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
2018-08-06 18:13:04 +00:00
auto isBig = [&areacache, bin_area](double a) {
return a/bin_area > BIG_ITEM_TRESHOLD ;
2018-08-06 18:13:04 +00:00
};
2018-08-02 17:17:27 +00:00
// If a new bin has been created:
if(pile.size() < areacache.size()) {
areacache.clear();
spatindex.clear();
}
// We must fill the caches:
2018-08-02 17:17:27 +00:00
int idx = 0;
for(auto& p : pile) {
if(idx == areacache.size()) {
areacache.emplace_back(sl::area(p));
2018-08-06 18:13:04 +00:00
if(isBig(areacache[idx]))
spatindex.insert({sl::boundingBox(p), idx});
}
idx++;
}
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
pile.emplace_back(item.transformedShape());
2018-08-09 07:59:05 +00:00
auto fullbb = sl::boundingBox(pile);
pile.pop_back();
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// Will hold the resulting score
double score = 0;
2018-08-06 18:13:04 +00:00
if(isBig(item.area())) {
// This branch is for the bigger items..
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
// Density is the pack density: how big is the arranged pile
double density = 0;
if(remaining.empty()) {
pile.emplace_back(item.transformedShape());
auto chull = sl::convexHull(pile);
pile.pop_back();
strategies::EdgeCache<PolygonImpl> ec(chull);
double circ = ec.circumference() / norm;
double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
score = 0.5*circ + 0.5*bcirc;
} else {
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the aligment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = 1.0;
density = (fullbb.width()*fullbb.height()) / (norm*norm);
auto& trsh = item.transformedShape();
auto querybb = item.boundingBox();
// Query the spatial index for the neigbours
std::vector<SpatElement> result;
result.reserve(spatindex.size());
spatindex.query(bgi::intersects(querybb),
std::back_inserter(result));
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
auto& p = pile[idx];
auto parea = areacache[idx];
if(std::abs(1.0 - parea/item.area()) < 1e-6) {
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neigbours
if(result.empty())
score = 0.5 * dist + 0.5 * density;
else
score = 0.45 * dist + 0.45 * density + 0.1 * alignment_score;
}
2018-08-06 18:13:04 +00:00
} else if( !isBig(item.area()) && spatindex.empty()) {
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
// Bindist is surprisingly enough...
score = bindist;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.65f;
pcfg.parallel = false;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
using Selector = FirstFitSelection;
2018-08-09 07:59:05 +00:00
using Packer = Nester<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
2018-08-09 07:59:05 +00:00
using Pile = sl::Shapes<PolygonImpl>;
Packer pck_;
PConfig pconf_; // Placement configuration
double bin_area_;
std::vector<double> areacache_;
SpatIndex rtree_;
2018-08-09 07:59:05 +00:00
double norm_;
Pile pile_cache_;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind):
2018-08-09 07:59:05 +00:00
pck_(bin, dist), bin_area_(sl::area(bin)),
norm_(std::sqrt(sl::area(bin)))
{
fillConfig(pconf_);
pck_.progressIndicator(progressind);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
areacache_.clear();
2018-08-03 12:49:26 +00:00
rtree_.clear();
2018-08-09 07:59:05 +00:00
return pck_.executeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<Box>(bin, dist, progressind)
{
// pconf_.object_function = [this, bin] (
// const Pile& pile_c,
// const Item &item,
// const ItemGroup& rem) {
// auto& pile = pile_cache_;
// if(pile.size() != pile_c.size()) pile = pile_c;
// auto result = objfunc(bin.center(), bin_area_, pile,
// item, norm_, areacache_, rtree_, rem);
// double score = std::get<0>(result);
// auto& fullbb = std::get<1>(result);
// auto wdiff = fullbb.width() - bin.width();
// auto hdiff = fullbb.height() - bin.height();
// if(wdiff > 0) score += std::pow(wdiff, 2) / norm_;
// if(hdiff > 0) score += std::pow(hdiff, 2) / norm_;
// return score;
// };
pck_.configure(pconf_);
}
};
using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
template<>
class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
public:
AutoArranger(const lnCircle& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<lnCircle>(bin, dist, progressind) {
pconf_.object_function = [this, &bin] (
const Pile& pile_c,
const Item &item,
const ItemGroup& rem) {
auto& pile = pile_cache_;
if(pile.size() != pile_c.size()) pile = pile_c;
2018-08-09 07:59:05 +00:00
auto result = objfunc(bin.center(), bin_area_, pile, item, norm_,
areacache_, rtree_, rem);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
2018-08-09 07:59:05 +00:00
auto d = pl::distance(fullbb.minCorner(),
2018-08-06 18:13:04 +00:00
fullbb.maxCorner());
auto diff = d - 2*bin.radius();
if(diff > 0) {
if( item.area() > 0.01*bin_area_ && item.vertexCount() < 30) {
2018-08-06 18:13:04 +00:00
pile.emplace_back(item.transformedShape());
2018-08-09 07:59:05 +00:00
auto chull = sl::convexHull(pile);
2018-08-06 18:13:04 +00:00
pile.pop_back();
2018-08-06 18:13:04 +00:00
auto C = strategies::boundingCircle(chull);
auto rdiff = C.radius() - bin.radius();
if(rdiff > 0) {
2018-08-09 07:59:05 +00:00
score += std::pow(rdiff, 3) / norm_;
2018-08-06 18:13:04 +00:00
}
}
}
return score;
};
pck_.configure(pconf_);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<PolygonImpl>(bin, dist, progressind)
{
pconf_.object_function = [this, &bin] (
const Pile& pile_c,
const Item &item,
const ItemGroup& rem) {
auto& pile = pile_cache_;
if(pile.size() != pile_c.size()) pile = pile_c;
2018-08-09 07:59:05 +00:00
auto binbb = sl::boundingBox(bin);
auto result = objfunc(binbb.center(), bin_area_, pile, item, norm_,
areacache_, rtree_, rem);
double score = std::get<0>(result);
return score;
};
pck_.configure(pconf_);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
_ArrBase<Box>(Box(0, 0), dist, progressind)
{
this->pconf_.object_function = [this] (
const Pile& pile_c,
const Item &item,
const ItemGroup& rem) {
auto& pile = pile_cache_;
if(pile.size() != pile_c.size()) pile = pile_c;
2018-08-09 07:59:05 +00:00
auto result = objfunc({0, 0}, 0, pile, item, norm_,
areacache_, rtree_, rem);
return std::get<0>(result);
};
this->pck_.configure(pconf_);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
2018-08-03 12:49:26 +00:00
class Circle {
Point center_;
double radius_;
public:
inline Circle(): center_(0, 0), radius_(std::nan("")) {}
inline Circle(const Point& c, double r): center_(c), radius_(r) {}
inline double radius() const { return radius_; }
inline const Point& center() const { return center_; }
inline operator bool() { return !std::isnan(radius_); }
2018-08-03 12:49:26 +00:00
};
enum class BedShapeType {
BOX,
CIRCLE,
IRREGULAR,
WHO_KNOWS
};
2018-08-03 12:49:26 +00:00
struct BedShapeHint {
BedShapeType type;
/*union*/ struct { // I know but who cares...
Circle circ;
BoundingBox box;
Polyline polygon;
} shape;
};
BedShapeHint bedShape(const Polyline& bed) {
static const double E = 10/SCALING_FACTOR;
BedShapeHint ret;
auto width = [](const BoundingBox& box) {
return box.max.x - box.min.x;
};
auto height = [](const BoundingBox& box) {
return box.max.y - box.min.y;
};
auto area = [&width, &height](const BoundingBox& box) {
double w = width(box);
double h = height(box);
return w*h;
2018-08-03 12:49:26 +00:00
};
auto poly_area = [](Polyline p) {
Polygon pp; pp.points.reserve(p.points.size() + 1);
pp.points = std::move(p.points);
pp.points.emplace_back(pp.points.front());
return std::abs(pp.area());
};
2018-08-03 12:49:26 +00:00
auto bb = bed.bounding_box();
auto isCircle = [bb](const Polyline& polygon) {
auto center = bb.center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt: polygon.points)
{
double distance = center.distance_to(pt);
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
Circle ret(center, avg_dist);
for (auto el: vertex_distances)
{
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
ret = Circle();
break;
}
return ret;
};
auto parea = poly_area(bed);
if( (1.0 - parea/area(bb)) < 1e-3 ) {
2018-08-03 12:49:26 +00:00
ret.type = BedShapeType::BOX;
ret.shape.box = bb;
}
else if(auto c = isCircle(bed)) {
ret.type = BedShapeType::CIRCLE;
ret.shape.circ = c;
} else {
ret.type = BedShapeType::IRREGULAR;
ret.shape.polygon = bed;
}
// Determine the bed shape by hand
2018-08-03 12:49:26 +00:00
return ret;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
2018-08-03 12:49:26 +00:00
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
BoundingBox bbb(bed);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
2018-08-03 12:49:26 +00:00
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = lnCircle({c.center().x, c.center().y} , c.radius());
AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind);
result = arrange(shapes.begin(), shapes.end());
break;
}
2018-08-03 12:49:26 +00:00
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
2018-08-09 07:59:05 +00:00
P irrbed = sl::create<PolygonImpl>(std::move(ctour));
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
2018-08-06 18:13:04 +00:00
if(result.empty()) return false;
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
}
#endif // MODELARRANGE_HPP