PrusaSlicer-NonPlainar/src/slic3r/GUI/MeshUtils.cpp

233 lines
7.9 KiB
C++
Raw Normal View History

#include "MeshUtils.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "slic3r/GUI/Camera.hpp"
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
void MeshClipper::set_plane(const ClippingPlane& plane)
{
if (m_plane != plane) {
m_plane = plane;
m_triangles_valid = false;
}
}
void MeshClipper::set_mesh(const TriangleMesh& mesh)
{
if (m_mesh != &mesh) {
m_mesh = &mesh;
m_triangles_valid = false;
m_triangles2d.resize(0);
m_tms.reset(nullptr);
}
}
void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
{
if (! m_trafo.get_matrix().isApprox(trafo.get_matrix())) {
m_trafo = trafo;
m_triangles_valid = false;
m_triangles2d.resize(0);
}
}
void MeshClipper::render_cut()
{
if (! m_triangles_valid)
recalculate_triangles();
m_vertex_array.render();
}
void MeshClipper::recalculate_triangles()
{
if (! m_tms) {
m_tms.reset(new TriangleMeshSlicer);
m_tms->init(m_mesh, [](){});
}
const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>();
const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>();
// Calculate clipping plane normal in mesh coordinates.
Vec3f up_noscale = instance_matrix_no_translation_no_scaling.inverse() * m_plane.get_normal().cast<float>();
Vec3d up (up_noscale(0)*scaling(0), up_noscale(1)*scaling(1), up_noscale(2)*scaling(2));
// Calculate distance from mesh origin to the clipping plane (in mesh coordinates).
float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());
// Now do the cutting
std::vector<ExPolygons> list_of_expolys;
m_tms->set_up_direction(up.cast<float>());
m_tms->slice(std::vector<float>{height_mesh}, SlicingMode::Regular, 0.f, &list_of_expolys, [](){});
m_triangles2d = triangulate_expolygons_2f(list_of_expolys[0], m_trafo.get_matrix().matrix().determinant() < 0.);
// Rotate the cut into world coords:
Eigen::Quaterniond q;
q.setFromTwoVectors(Vec3d::UnitZ(), up);
Transform3d tr = Transform3d::Identity();
tr.rotate(q);
tr = m_trafo.get_matrix() * tr;
// to avoid z-fighting
height_mesh += 0.001f;
m_vertex_array.release_geometry();
for (auto it=m_triangles2d.cbegin(); it != m_triangles2d.cend(); it=it+3) {
m_vertex_array.push_geometry(tr * Vec3d((*(it+0))(0), (*(it+0))(1), height_mesh), up);
m_vertex_array.push_geometry(tr * Vec3d((*(it+1))(0), (*(it+1))(1), height_mesh), up);
m_vertex_array.push_geometry(tr * Vec3d((*(it+2))(0), (*(it+2))(1), height_mesh), up);
size_t idx = it - m_triangles2d.cbegin();
m_vertex_array.push_triangle(idx, idx+1, idx+2);
}
m_vertex_array.finalize_geometry(true);
m_triangles_valid = true;
}
Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const
{
return m_normals[facet_idx];
}
void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
Vec3d& point, Vec3d& direction) const
{
const std::array<int, 4>& viewport = camera.get_viewport();
const Transform3d& model_mat = camera.get_view_matrix();
const Transform3d& proj_mat = camera.get_projection_matrix();
Vec3d pt1;
Vec3d pt2;
::gluUnProject(mouse_pos(0), viewport[3] - mouse_pos(1), 0., model_mat.data(), proj_mat.data(), viewport.data(), &pt1(0), &pt1(1), &pt1(2));
::gluUnProject(mouse_pos(0), viewport[3] - mouse_pos(1), 1., model_mat.data(), proj_mat.data(), viewport.data(), &pt2(0), &pt2(1), &pt2(2));
Transform3d inv = trafo.inverse();
pt1 = inv * pt1;
pt2 = inv * pt2;
point = pt1;
direction = pt2-pt1;
}
bool MeshRaycaster::unproject_on_mesh(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
Vec3f& position, Vec3f& normal, const ClippingPlane* clipping_plane,
size_t* facet_idx) const
{
Vec3d point;
Vec3d direction;
line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);
std::vector<sla::EigenMesh3D::hit_result> hits = m_emesh.query_ray_hits(point, direction);
if (hits.empty())
return false; // no intersection found
unsigned i = 0;
// Remove points that are obscured or cut by the clipping plane
if (clipping_plane) {
for (i=0; i<hits.size(); ++i)
if (! clipping_plane->is_point_clipped(trafo * hits[i].position()))
break;
if (i==hits.size() || (hits.size()-i) % 2 != 0) {
// All hits are either clipped, or there is an odd number of unclipped
// hits - meaning the nearest must be from inside the mesh.
return false;
}
}
// Now stuff the points in the provided vector and calculate normals if asked about them:
position = hits[i].position().cast<float>();
normal = hits[i].normal().cast<float>();
if (facet_idx)
*facet_idx = hits[i].face();
return true;
}
std::vector<unsigned> MeshRaycaster::get_unobscured_idxs(const Geometry::Transformation& trafo, const Camera& camera, const std::vector<Vec3f>& points,
const ClippingPlane* clipping_plane) const
{
std::vector<unsigned> out;
const Transform3d& instance_matrix_no_translation_no_scaling = trafo.get_matrix(true,false,true);
Vec3f direction_to_camera = -camera.get_dir_forward().cast<float>();
Vec3f direction_to_camera_mesh = (instance_matrix_no_translation_no_scaling.inverse().cast<float>() * direction_to_camera).normalized().eval();
Vec3f scaling = trafo.get_scaling_factor().cast<float>();
direction_to_camera_mesh = Vec3f(direction_to_camera_mesh(0)*scaling(0), direction_to_camera_mesh(1)*scaling(1), direction_to_camera_mesh(2)*scaling(2));
const Transform3f inverse_trafo = trafo.get_matrix().inverse().cast<float>();
for (size_t i=0; i<points.size(); ++i) {
const Vec3f& pt = points[i];
if (clipping_plane && clipping_plane->is_point_clipped(pt.cast<double>()))
continue;
bool is_obscured = false;
// Cast a ray in the direction of the camera and look for intersection with the mesh:
std::vector<sla::EigenMesh3D::hit_result> hits;
// Offset the start of the ray by EPSILON to account for numerical inaccuracies.
hits = m_emesh.query_ray_hits((inverse_trafo * pt + direction_to_camera_mesh * EPSILON).cast<double>(),
direction_to_camera.cast<double>());
if (! hits.empty()) {
// If the closest hit facet normal points in the same direction as the ray,
// we are looking through the mesh and should therefore discard the point:
if (hits.front().normal().dot(direction_to_camera_mesh.cast<double>()) > 0)
is_obscured = true;
// Eradicate all hits that the caller wants to ignore
for (unsigned j=0; j<hits.size(); ++j) {
if (clipping_plane && clipping_plane->is_point_clipped(trafo.get_matrix() * hits[j].position())) {
hits.erase(hits.begin()+j);
--j;
}
}
// FIXME: the intersection could in theory be behind the camera, but as of now we only have camera direction.
// Also, the threshold is in mesh coordinates, not in actual dimensions.
if (! hits.empty())
is_obscured = true;
}
if (! is_obscured)
out.push_back(i);
}
return out;
}
Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const
{
int idx = 0;
Vec3d closest_point;
m_emesh.squared_distance(point.cast<double>(), idx, closest_point);
if (normal)
*normal = m_normals[idx];
return closest_point.cast<float>();
}
} // namespace GUI
} // namespace Slic3r