PrusaSlicer-NonPlainar/src/libslic3r/BridgeDetector.cpp

322 lines
13 KiB
C++
Raw Normal View History

2014-11-15 21:41:22 +00:00
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include <algorithm>
namespace Slic3r {
BridgeDetector::BridgeDetector(
ExPolygon _expolygon,
const ExPolygons &_lower_slices,
coord_t _spacing) :
// The original infill polygon, not inflated.
expolygons(expolygons_owned),
// All surfaces of the object supporting this region.
lower_slices(_lower_slices),
spacing(_spacing)
{
this->expolygons_owned.push_back(std::move(_expolygon));
initialize();
}
BridgeDetector::BridgeDetector(
const ExPolygons &_expolygons,
const ExPolygons &_lower_slices,
coord_t _spacing) :
// The original infill polygon, not inflated.
expolygons(_expolygons),
// All surfaces of the object supporting this region.
lower_slices(_lower_slices),
spacing(_spacing)
{
initialize();
}
2014-11-15 21:41:22 +00:00
void BridgeDetector::initialize()
2014-11-15 21:41:22 +00:00
{
// 5 degrees stepping
this->resolution = PI/36.0;
// output angle not known
this->angle = -1.;
// Outset our bridge by an arbitrary amout; we'll use this outer margin for detecting anchors.
Polygons grown = offset(to_polygons(this->expolygons), float(this->spacing));
2014-11-15 21:41:22 +00:00
// Detect possible anchoring edges of this bridging region.
// Detect what edges lie on lower slices by turning bridge contour and holes
// into polylines and then clipping them with each lower slice's contour.
// Currently _edges are only used to set a candidate direction of the bridge (see bridge_direction_candidates()).
Polygons contours;
contours.reserve(this->lower_slices.size());
for (const ExPolygon &expoly : this->lower_slices)
contours.push_back(expoly.contour);
this->_edges = intersection_pl(to_polylines(grown), contours);
2014-11-15 21:41:22 +00:00
#ifdef SLIC3R_DEBUG
printf(" bridge has " PRINTF_ZU " support(s)\n", this->_edges.size());
2014-11-15 21:41:22 +00:00
#endif
// detect anchors as intersection between our bridge expolygon and the lower slices
// safety offset required to avoid Clipper from detecting empty intersection while Boost actually found some edges
this->_anchor_regions = intersection_ex(grown, to_polygons(this->lower_slices), true);
2014-11-15 21:41:22 +00:00
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge.svg",
expolygons => [ $self->expolygon ],
red_expolygons => $self->lower_slices,
polylines => $self->_edges,
);
}
*/
}
bool BridgeDetector::detect_angle(double bridge_direction_override)
2014-11-15 21:41:22 +00:00
{
if (this->_edges.empty() || this->_anchor_regions.empty())
// The bridging region is completely in the air, there are no anchors available at the layer below.
return false;
std::vector<BridgeDirection> candidates;
if (bridge_direction_override == 0.) {
std::vector<double> angles = bridge_direction_candidates();
candidates.reserve(angles.size());
for (size_t i = 0; i < angles.size(); ++ i)
candidates.emplace_back(BridgeDirection(angles[i]));
} else
candidates.emplace_back(BridgeDirection(bridge_direction_override));
2014-11-15 21:41:22 +00:00
/* Outset the bridge expolygon by half the amount we used for detecting anchors;
we'll use this one to clip our test lines and be sure that their endpoints
are inside the anchors and not on their contours leading to false negatives. */
Polygons clip_area = offset(this->expolygons, 0.5f * float(this->spacing));
2014-11-15 21:41:22 +00:00
/* we'll now try several directions using a rudimentary visibility check:
bridge in several directions and then sum the length of lines having both
endpoints within anchors */
bool have_coverage = false;
for (size_t i_angle = 0; i_angle < candidates.size(); ++ i_angle)
{
const double angle = candidates[i_angle].angle;
Lines lines;
{
// Get an oriented bounding box around _anchor_regions.
BoundingBox bbox = get_extents_rotated(this->_anchor_regions, - angle);
// Cover the region with line segments.
lines.reserve((bbox.max(1) - bbox.min(1) + this->spacing) / this->spacing);
double s = sin(angle);
double c = cos(angle);
//FIXME Vojtech: The lines shall be spaced half the line width from the edge, but then
// some of the test cases fail. Need to adjust the test cases then?
// for (coord_t y = bbox.min(1) + this->spacing / 2; y <= bbox.max(1); y += this->spacing)
for (coord_t y = bbox.min(1); y <= bbox.max(1); y += this->spacing)
lines.push_back(Line(
Point((coord_t)round(c * bbox.min(0) - s * y), (coord_t)round(c * y + s * bbox.min(0))),
Point((coord_t)round(c * bbox.max(0) - s * y), (coord_t)round(c * y + s * bbox.max(0)))));
}
double total_length = 0;
double max_length = 0;
{
Lines clipped_lines = intersection_ln(lines, clip_area);
for (size_t i = 0; i < clipped_lines.size(); ++i) {
const Line &line = clipped_lines[i];
if (expolygons_contain(this->_anchor_regions, line.a) && expolygons_contain(this->_anchor_regions, line.b)) {
// This line could be anchored.
double len = line.length();
total_length += len;
max_length = std::max(max_length, len);
}
}
}
if (total_length == 0.)
continue;
have_coverage = true;
// Sum length of bridged lines.
candidates[i_angle].coverage = total_length;
/* The following produces more correct results in some cases and more broken in others.
TODO: investigate, as it looks more reliable than line clipping. */
// $directions_coverage{$angle} = sum(map $_->area, @{$self->coverage($angle)}) // 0;
// max length of bridged lines
candidates[i_angle].max_length = max_length;
}
// if no direction produced coverage, then there's no bridge direction
if (! have_coverage)
return false;
// sort directions by coverage - most coverage first
std::sort(candidates.begin(), candidates.end());
// if any other direction is within extrusion width of coverage, prefer it if shorter
// TODO: There are two options here - within width of the angle with most coverage, or within width of the currently perferred?
size_t i_best = 0;
for (size_t i = 1; i < candidates.size() && candidates[i_best].coverage - candidates[i].coverage < this->spacing; ++ i)
if (candidates[i].max_length < candidates[i_best].max_length)
i_best = i;
this->angle = candidates[i_best].angle;
if (this->angle >= PI)
this->angle -= PI;
2014-11-15 21:41:22 +00:00
#ifdef SLIC3R_DEBUG
printf(" Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle));
#endif
return true;
}
std::vector<double> BridgeDetector::bridge_direction_candidates() const
{
2014-11-15 21:41:22 +00:00
// we test angles according to configured resolution
std::vector<double> angles;
for (int i = 0; i <= PI/this->resolution; ++i)
angles.push_back(i * this->resolution);
// we also test angles of each bridge contour
{
Lines lines = to_lines(this->expolygons);
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
angles.push_back(line->direction());
2014-11-15 21:41:22 +00:00
}
/* we also test angles of each open supporting edge
(this finds the optimal angle for C-shaped supports) */
for (const Polyline &edge : this->_edges)
if (edge.first_point() != edge.last_point())
angles.push_back(Line(edge.first_point(), edge.last_point()).direction());
2014-11-15 21:41:22 +00:00
// remove duplicates
double min_resolution = PI/180.0; // 1 degree
std::sort(angles.begin(), angles.end());
for (size_t i = 1; i < angles.size(); ++i) {
if (Slic3r::Geometry::directions_parallel(angles[i], angles[i-1], min_resolution)) {
angles.erase(angles.begin() + i);
--i;
}
}
/* compare first value with last one and remove the greatest one (PI)
in case they are parallel (PI, 0) */
if (Slic3r::Geometry::directions_parallel(angles.front(), angles.back(), min_resolution))
angles.pop_back();
return angles;
2014-11-15 21:41:22 +00:00
}
Polygons BridgeDetector::coverage(double angle) const
2014-11-15 21:41:22 +00:00
{
if (angle == -1)
angle = this->angle;
2014-11-15 21:41:22 +00:00
Polygons covered;
if (angle != -1) {
// Get anchors, convert them to Polygons and rotate them.
Polygons anchors = to_polygons(this->_anchor_regions);
polygons_rotate(anchors, PI/2.0 - angle);
for (ExPolygon expolygon : this->expolygons) {
// Clone our expolygon and rotate it so that we work with vertical lines.
expolygon.rotate(PI/2.0 - angle);
// Outset the bridge expolygon by half the amount we used for detecting anchors;
// we'll use this one to generate our trapezoids and be sure that their vertices
// are inside the anchors and not on their contours leading to false negatives.
for (ExPolygon &expoly : offset_ex(expolygon, 0.5f * float(this->spacing))) {
// Compute trapezoids according to a vertical orientation
Polygons trapezoids;
expoly.get_trapezoids2(&trapezoids, PI/2.0);
for (const Polygon &trapezoid : trapezoids) {
// not nice, we need a more robust non-numeric check
size_t n_supported = 0;
for (const Line &supported_line : intersection_ln(trapezoid.lines(), anchors))
if (supported_line.length() >= this->spacing)
++ n_supported;
if (n_supported >= 2)
covered.push_back(std::move(trapezoid));
}
}
2014-11-15 21:41:22 +00:00
}
// Unite the trapezoids before rotation, as the rotation creates tiny gaps and intersections between the trapezoids
// instead of exact overlaps.
covered = union_(covered);
// Intersect trapezoids with actual bridge area to remove extra margins and append it to result.
polygons_rotate(covered, -(PI/2.0 - angle));
covered = intersection(covered, to_polygons(this->expolygons));
#if 0
{
my @lines = map @{$_->lines}, @$trapezoids;
$_->rotate(-(PI/2 - $angle), [0,0]) for @lines;
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"coverage_" . rad2deg($angle) . ".svg",
expolygons => [$self->expolygon],
green_expolygons => $self->_anchor_regions,
red_expolygons => $coverage,
lines => \@lines,
);
}
#endif
2014-11-15 21:41:22 +00:00
}
return covered;
2014-11-15 21:41:22 +00:00
}
2015-10-26 22:23:03 +00:00
/* This method returns the bridge edges (as polylines) that are not supported
but would allow the entire bridge area to be bridged with detected angle
if supported too */
2014-11-15 21:41:22 +00:00
void
BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const
{
2015-10-26 22:23:03 +00:00
if (angle == -1) angle = this->angle;
if (angle == -1) return;
Polygons grown_lower = offset(this->lower_slices, float(this->spacing));
for (ExPolygons::const_iterator it_expoly = this->expolygons.begin(); it_expoly != this->expolygons.end(); ++ it_expoly) {
// get unsupported bridge edges (both contour and holes)
Lines unsupported_lines = to_lines(diff_pl(to_polylines(*it_expoly), grown_lower));
/* Split into individual segments and filter out edges parallel to the bridging angle
TODO: angle tolerance should probably be based on segment length and flow width,
so that we build supports whenever there's a chance that at least one or two bridge
extrusions would be anchored within such length (i.e. a slightly non-parallel bridging
direction might still benefit from anchors if long enough)
double angle_tolerance = PI / 180.0 * 5.0; */
for (const Line &line : unsupported_lines)
if (! Slic3r::Geometry::directions_parallel(line.direction(), angle)) {
unsupported->emplace_back(Polyline());
unsupported->back().points.emplace_back(line.a);
unsupported->back().points.emplace_back(line.b);
}
2014-11-15 21:41:22 +00:00
}
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"unsupported_" . rad2deg($angle) . ".svg",
expolygons => [$self->expolygon],
green_expolygons => $self->_anchor_regions,
2014-11-15 21:41:22 +00:00
red_expolygons => union_ex($grown_lower),
no_arrows => 1,
polylines => \@bridge_edges,
red_polylines => $unsupported,
);
}
*/
}
2015-10-26 22:23:03 +00:00
Polylines
BridgeDetector::unsupported_edges(double angle) const
{
Polylines pp;
this->unsupported_edges(angle, &pp);
return pp;
}
2014-11-15 21:41:22 +00:00
}