PrusaSlicer-NonPlainar/xs/src/libslic3r/GCode/WipeTowerPrusaMM.cpp

1211 lines
45 KiB
C++
Raw Normal View History

#include "WipeTowerPrusaMM.hpp"
#include <assert.h>
2017-05-12 12:22:20 +00:00
#include <math.h>
#include <fstream>
#include <iostream>
#include <vector>
2017-08-14 10:56:09 +00:00
#if defined(__linux) || defined(__GNUC__ )
2017-05-10 14:15:14 +00:00
#include <strings.h>
#endif /* __linux */
#ifdef _MSC_VER
#define strcasecmp _stricmp
#endif
namespace Slic3r
{
namespace PrusaMultiMaterial {
class Writer
{
public:
Writer() :
m_current_pos(std::numeric_limits<float>::max(), std::numeric_limits<float>::max()),
m_current_z(0.f),
m_current_feedrate(0.f),
m_extrusion_flow(0.f),
m_layer_height(0.f),
m_preview_suppressed(false),
m_elapsed_time(0.f) {}
Writer& set_initial_position(const WipeTower::xy &pos) {
m_start_pos = pos;
m_current_pos = pos;
return *this;
}
Writer& set_initial_tool(const unsigned int tool) { m_current_tool = tool; return *this; }
Writer& set_z(float z)
{ m_current_z = z; return *this; }
Writer& set_layer_height(float layer_height)
{ m_layer_height = layer_height; return *this; }
Writer& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
Writer& set_rotation(WipeTower::xy& pos, float width, float depth, float angle)
{ m_wipe_tower_pos = pos; m_wipe_tower_width = width; m_wipe_tower_depth=depth; m_angle_deg = angle; return (*this); }
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
// is asked to suppres output of some lines, which look like extrusions.
Writer& suppress_preview() { m_preview_suppressed = true; return *this; }
Writer& resume_preview() { m_preview_suppressed = false; return *this; }
Writer& feedrate(float f)
{
if (f != m_current_feedrate)
m_gcode += "G1" + set_format_F(f) + "\n";
return *this;
}
const std::string& gcode() const { return m_gcode; }
const std::vector<WipeTower::Extrusion>& extrusions() const { return m_extrusions; }
float x() const { return m_current_pos.x; }
float y() const { return m_current_pos.y; }
const WipeTower::xy& pos() const { return m_current_pos; }
const WipeTower::xy start_pos_rotated() const { return m_start_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); }
const WipeTower::xy pos_rotated() const { return m_current_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); }
float elapsed_time() const { return m_elapsed_time; }
// Extrude with an explicitely provided amount of extrusion.
Writer& extrude_explicit(float x, float y, float e, float f = 0.f)
{
if (x == m_current_pos.x && y == m_current_pos.y && e == 0.f && (f == 0.f || f == m_current_feedrate))
// Neither extrusion nor a travel move.
return *this;
float dx = x - m_current_pos.x;
float dy = y - m_current_pos.y;
double len = sqrt(dx*dx+dy*dy);
// For rotated wipe tower, transform position to printer coordinates
WipeTower::xy rotated_current_pos(m_current_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg));
WipeTower::xy rot(WipeTower::xy(x,y).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg));
if (! m_preview_suppressed && e > 0.f && len > 0.) {
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width = float(double(e) * m_filament_area / (len * m_layer_height));
// Correct for the roundings of a squished extrusion.
width += m_layer_height * float(1. - M_PI / 4.);
if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos)
m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool));
m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(rot.x, rot.y), width, m_current_tool));
}
m_gcode += "G1";
if (rot.x != rotated_current_pos.x)
m_gcode += set_format_X(rot.x);
if (rot.y != rotated_current_pos.y)
m_gcode += set_format_Y(rot.y);
// Transform current position back to wipe tower coordinates (was updated by set_format_X)
m_current_pos.x = x;
m_current_pos.y = y;
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate)
m_gcode += set_format_F(f);
// Update the elapsed time with a rough estimate.
m_elapsed_time += ((len == 0) ? std::abs(e) : len) / m_current_feedrate * 60.f;
m_gcode += "\n";
return *this;
}
Writer& extrude_explicit(const WipeTower::xy &dest, float e, float f = 0.f)
{ return extrude_explicit(dest.x, dest.y, e, f); }
// Travel to a new XY position. f=0 means use the current value.
Writer& travel(float x, float y, float f = 0.f)
{ return extrude_explicit(x, y, 0.f, f); }
Writer& travel(const WipeTower::xy &dest, float f = 0.f)
{ return extrude_explicit(dest.x, dest.y, 0.f, f); }
// Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow.
Writer& extrude(float x, float y, float f = 0.f)
{
float dx = x - m_current_pos.x;
float dy = y - m_current_pos.y;
return extrude_explicit(x, y, sqrt(dx*dx+dy*dy) * m_extrusion_flow, f);
}
Writer& extrude(const WipeTower::xy &dest, const float f = 0.f)
{ return extrude(dest.x, dest.y, f); }
Writer& load(float e, float f = 0.f)
{
if (e == 0.f && (f == 0.f || f == m_current_feedrate))
return *this;
m_gcode += "G1";
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
// Derectract while moving in the X direction.
// If |x| > 0, the feed rate relates to the x distance,
// otherwise the feed rate relates to the e distance.
Writer& load_move_x(float x, float e, float f = 0.f)
{ return extrude_explicit(x, m_current_pos.y, e, f); }
Writer& retract(float e, float f = 0.f)
{ return load(-e, f); }
// Elevate the extruder head above the current print_z position.
Writer& z_hop(float hop, float f = 0.f)
{
m_gcode += std::string("G1") + set_format_Z(m_current_z + hop);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
// Lower the extruder head back to the current print_z position.
Writer& z_hop_reset(float f = 0.f)
{ return z_hop(0, f); }
// Move to x1, +y_increment,
// extrude quickly amount e to x2 with feed f.
Writer& ram(float x1, float x2, float dy, float e0, float e, float f)
{
extrude_explicit(x1, m_current_pos.y + dy, e0, f);
extrude_explicit(x2, m_current_pos.y, e);
return *this;
}
// Let the end of the pulled out filament cool down in the cooling tube
// by moving up and down and moving the print head left / right
// at the current Y position to spread the leaking material.
Writer& cool(float x1, float x2, float e1, float e2, float f)
{
extrude_explicit(x1, m_current_pos.y, e1, f);
extrude_explicit(x2, m_current_pos.y, e2);
return *this;
}
Writer& set_tool(int tool)
{
char buf[64];
sprintf(buf, "T%d\n", tool);
m_gcode += buf;
m_current_tool = tool;
return *this;
}
// Set extruder temperature, don't wait by default.
Writer& set_extruder_temp(int temperature, bool wait = false)
{
char buf[128];
sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature);
m_gcode += buf;
return *this;
};
// Set speed factor override percentage.
Writer& speed_override(int speed)
{
char buf[128];
sprintf(buf, "M220 S%d\n", speed);
m_gcode += buf;
return *this;
};
// Set digital trimpot motor
Writer& set_extruder_trimpot(int current)
{
char buf[128];
sprintf(buf, "M907 E%d\n", current);
m_gcode += buf;
return *this;
};
Writer& flush_planner_queue()
{
m_gcode += "G4 S0\n";
return *this;
}
// Reset internal extruder counter.
Writer& reset_extruder()
{
m_gcode += "G92 E0\n";
return *this;
}
Writer& comment_with_value(const char *comment, int value)
{
char strvalue[64];
sprintf(strvalue, "%d", value);
m_gcode += std::string(";") + comment + strvalue + "\n";
return *this;
};
Writer& comment_material(WipeTowerPrusaMM::material_type material)
{
m_gcode += "; material : ";
switch (material)
{
case WipeTowerPrusaMM::PVA:
m_gcode += "#8 (PVA)";
break;
case WipeTowerPrusaMM::SCAFF:
m_gcode += "#5 (Scaffold)";
break;
case WipeTowerPrusaMM::FLEX:
m_gcode += "#4 (Flex)";
break;
default:
m_gcode += "DEFAULT (PLA)";
break;
}
m_gcode += "\n";
return *this;
};
Writer& append(const char *text) { m_gcode += text; return *this; }
private:
WipeTower::xy m_start_pos;
WipeTower::xy m_current_pos;
float m_current_z;
float m_current_feedrate;
unsigned int m_current_tool;
float m_layer_height;
float m_extrusion_flow;
bool m_preview_suppressed;
std::string m_gcode;
std::vector<WipeTower::Extrusion> m_extrusions;
float m_elapsed_time;
const double m_filament_area = 0.25*M_PI*1.75*1.75;
float m_angle_deg = 0;
WipeTower::xy m_wipe_tower_pos;
float m_wipe_tower_width;
float m_wipe_tower_depth;
std::string set_format_X(float x) {
char buf[64];
sprintf(buf, " X%.3f", x);
m_current_pos.x = x;
return buf;
}
std::string set_format_Y(float y) {
char buf[64];
sprintf(buf, " Y%.3f", y);
m_current_pos.y = y;
return buf;
}
std::string set_format_Z(float z) {
char buf[64];
sprintf(buf, " Z%.3f", z);
return buf;
}
std::string set_format_E(float e) {
char buf[64];
sprintf(buf, " E%.4f", e);
return buf;
}
std::string set_format_F(float f) {
char buf[64];
sprintf(buf, " F%d", int(floor(f + 0.5f)));
m_current_feedrate = f;
return buf;
}
Writer& operator=(const Writer &rhs);
};
/*
class Material
{
public:
std::string name;
std::string type;
struct RammingStep {
// float length;
float extrusion_multiplier; // sirka linky
float extrusion;
float speed;
};
std::vector<RammingStep> ramming_sequence;
// Number and speed of the cooling moves.
std::vector<float> cooling_moves;
// Percentage of the speed overide, in pairs of <z, percentage>
std::vector<std::pair<float, int>> speed_override;
};
*/
}; // namespace PrusaMultiMaterial
WipeTowerPrusaMM::material_type WipeTowerPrusaMM::parse_material(const char *name)
{
if (strcasecmp(name, "PLA") == 0)
return PLA;
if (strcasecmp(name, "ABS") == 0)
return ABS;
if (strcasecmp(name, "PET") == 0)
return PET;
if (strcasecmp(name, "HIPS") == 0)
return HIPS;
if (strcasecmp(name, "FLEX") == 0)
return FLEX;
if (strcasecmp(name, "SCAFF") == 0)
return SCAFF;
if (strcasecmp(name, "EDGE") == 0)
return EDGE;
if (strcasecmp(name, "NGEN") == 0)
return NGEN;
if (strcasecmp(name, "PVA") == 0)
return PVA;
return INVALID;
}
// Returns gcode to prime the nozzles at the front edge of the print bed.
WipeTower::ToolChangeResult WipeTowerPrusaMM::prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool last_wipe_inside_wipe_tower,
// May be used by a stand alone post processor.
Purpose purpose)
{
this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);
float wipe_area = m_wipe_area;
// Calculate the amount of wipe over the wipe tower brim following the prime, decrease wipe_area
// with the amount of material extruded over the brim.
// DOESN'T MAKE SENSE NOW, wipe tower dimensions are still unknown at this point
/*{
// Simulate the brim extrusions, summ the length of the extrusion.
float e_length = this->tool_change(0, false, PURPOSE_EXTRUDE).total_extrusion_length_in_plane();
// Shrink wipe_area by the amount of extrusion extruded by the finish_layer().
// Y stepping of the wipe extrusions.
float dy = m_line_width;
// Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer().
// Minimum wipe area is 5mm wide.
//FIXME calculate the purge_lines_width precisely.
float purge_lines_width = 1.3f;
2017-09-04 08:14:56 +00:00
wipe_area = std::max(5.f, m_wipe_area - float(floor(e_length / m_wipe_tower_width)) * dy - purge_lines_width);
}
this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);*/
this->m_num_layer_changes = 0;
this->m_current_tool = tools.front();
// The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210].
// Due to the XYZ calibration, this working space may shrink slightly from all directions,
// therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0].
// box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area);
//FIXME: set the width properly
constexpr float prime_section_width = 60.f;
box_coordinates cleaning_box(xy(5.f, 0.f), prime_section_width, wipe_area);
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_layer_height(m_layer_height)
.set_initial_tool(m_current_tool)
.append(";--------------------\n"
"; CP PRIMING START\n")
.append(";--------------------\n")
.speed_override(100);
// Always move to the starting position.
writer.set_initial_position(xy(0.f, 0.f))
.travel(cleaning_box.ld, 7200)
// Increase the extruder driver current to allow fast ramming.
.set_extruder_trimpot(750);
if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
float y_end = 0.f;
for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) {
unsigned int tool = tools[idx_tool];
// Select the tool, set a speed override for soluble and flex materials.
toolchange_Change(writer, tool, m_material[tool]);
// Prime the tool.
toolchange_Load(writer, cleaning_box);
if (idx_tool + 1 == tools.size()) {
// Last tool should not be unloaded, but it should be wiped enough to become of a pure color.
if (last_wipe_inside_wipe_tower) {
// Shrink the last wipe area to the area of the other purge areas,
// remember the last initial wipe width to be purged into the 1st layer of the wipe tower.
this->m_initial_extra_wipe = std::max(0.f, wipe_area - (y_end + 0.5f * m_line_width - cleaning_box.ld.y));
cleaning_box.lu.y -= this->m_initial_extra_wipe;
cleaning_box.ru.y -= this->m_initial_extra_wipe;
}
toolchange_Wipe(writer, cleaning_box, false);
} else {
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200);
// Change the extruder temperature to the temperature of the next filament before starting the cooling moves.
toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_first_layer_temperature[tools[idx_tool+1]]);
// Save the y end of the non-last priming area.
y_end = writer.y();
cleaning_box.translate(prime_section_width, 0.f);
writer.travel(cleaning_box.ld, 7200);
}
++ m_num_tool_changes;
}
}
// Reset the extruder current to a normal value.
writer.set_extruder_trimpot(550)
.feedrate(6000)
.flush_planner_queue()
.reset_extruder()
.append("; CP PRIMING END\n"
";------------------\n"
"\n\n");
// Force m_idx_tool_change_in_layer to -1, so that tool_change() will know to extrude the wipe tower brim.
///m_idx_tool_change_in_layer = (unsigned int)(-1);
m_print_brim = true;
ToolChangeResult result;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
result.elapsed_time = writer.elapsed_time();
result.extrusions = writer.extrusions();
result.start_pos = writer.start_pos_rotated();
result.end_pos = writer.pos_rotated();
return result;
}
WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, bool last_in_layer, Purpose purpose)
{
// Either it is the last tool unload,
// or there must be a nonzero wipe tower partitions available.
// assert(tool < 0 || it_layer_tools->wipe_tower_partitions > 0);
if ( m_print_brim ) {
///if (m_idx_tool_change_in_layer == (unsigned int)(-1)) {
// First layer, prime the extruder.
return toolchange_Brim(purpose);
}
float wipe_area = 0.f;
/*if (++ m_idx_tool_change_in_layer < (unsigned int)m_max_color_changes && last_in_layer) {
// This tool_change() call will be followed by a finish_layer() call.
// Try to shrink the wipe_area to save material, as less than usual wipe is required
// if this step is foolowed by finish_layer() extrusions wiping the same extruder.
for (size_t iter = 0; iter < 3; ++ iter) {
// Simulate the finish_layer() extrusions, summ the length of the extrusion.
float e_length = 0.f;
{
unsigned int old_idx_tool_change = m_idx_tool_change_in_layer;
float old_wipe_start_y = m_current_wipe_start_y;
m_current_wipe_start_y += wipe_area;
e_length = this->finish_layer(PURPOSE_EXTRUDE).total_extrusion_length_in_plane();
m_idx_tool_change_in_layer = old_idx_tool_change;
m_current_wipe_start_y = old_wipe_start_y;
}
// Shrink wipe_area by the amount of extrusion extruded by the finish_layer().
// Y stepping of the wipe extrusions.
float dy = m_line_width;
// Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer().
float num_lines_extruded = floor(e_length / m_wipe_tower_width);
// Minimum wipe area is 5mm wide.
wipe_area = m_wipe_area - num_lines_extruded * dy;
if (wipe_area < 5.) {
wipe_area = 5.;
break;
}
}
}*/
if (tool != (unsigned int)(-1)) {
for (const auto &b : m_layer_info->tool_changes)
if ( b.new_tool == tool )
wipe_area = b.required_depth;
}
else {
// Otherwise we are going to Unload only. And m_layer_info would be invalid.
}
box_coordinates cleaning_box(
m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y + 0.5f * m_perimeter_width),
m_wipe_tower_width,
wipe_area - m_perimeter_width);
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_layer_height(m_layer_height)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos,m_wipe_tower_width,m_wipe_tower_depth,m_wipe_tower_rotation_angle)
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
.comment_with_value(" toolchange #", m_num_tool_changes)
.comment_material(m_material[m_current_tool])
.append(";--------------------\n")
.speed_override(100);
xy initial_position = ((m_current_shape == SHAPE_NORMAL) ? cleaning_box.ld : cleaning_box.lu) +
xy(m_perimeter_width, ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width);
if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
// Scaffold leaks terribly, reduce leaking by a full retract when going to the wipe tower.
float initial_retract = ((m_material[m_current_tool] == SCAFF) ? 1.f : 0.5f) * m_retract;
writer // Lift for a Z hop.
.z_hop(m_zhop, 7200)
// Additional retract on move to tower.
.retract(initial_retract, 3600)
// Move to a starting position, one perimeter width inside the cleaning box.
.travel(initial_position, 7200)
// Unlift for a Z hop.
.z_hop_reset(7200)
// Additional retract on move to tower.
.load(initial_retract, 3600)
.load(m_retract, 1500);
} else {
// Already at the initial position.
writer.set_initial_position(initial_position);
}
if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
// Increase the extruder driver current to allow fast ramming.
writer.set_extruder_trimpot(750);
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
if (tool != (unsigned int)-1) {
toolchange_Unload(writer, cleaning_box, m_material[m_current_tool],
m_is_first_layer ? m_first_layer_temperature[tool] : m_temperature[tool]);
// This is not the last change.
// Change the tool, set a speed override for soluble and flex materials.
toolchange_Change(writer, tool, m_material[tool]);
toolchange_Load(writer, cleaning_box);
// Wipe the newly loaded filament until the end of the assigned wipe area.
toolchange_Wipe(writer, cleaning_box, false);
// Draw a perimeter around cleaning_box and wipe.
box_coordinates box = cleaning_box;
if (m_current_shape == SHAPE_REVERSED) {
std::swap(box.lu, box.ld);
std::swap(box.ru, box.rd);
}
// Draw a perimeter around cleaning_box.
writer.travel(box.lu, 7000)
.extrude(box.ld, 3200).extrude(box.rd)
.extrude(box.ru).extrude(box.lu);
// Wipe the nozzle.
//if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE)
// Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower.
writer.travel(box.ru, 7200)
.travel(box.lu);
} else
toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_temperature[m_current_tool]);
// Reset the extruder current to a normal value.
writer.set_extruder_trimpot(550)
.feedrate(6000)
.flush_planner_queue()
.reset_extruder()
.append("; CP TOOLCHANGE END\n"
";------------------\n"
"\n\n");
++ m_num_tool_changes;
m_current_wipe_start_y += wipe_area;
}
ToolChangeResult result;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
result.elapsed_time = writer.elapsed_time();
result.extrusions = writer.extrusions();
result.start_pos = writer.start_pos_rotated();
result.end_pos = writer.pos_rotated();
return result;
}
WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(Purpose purpose, bool sideOnly, float y_offset)
{
const box_coordinates wipeTower_box(
m_wipe_tower_pos,
m_wipe_tower_width,
m_wipe_tower_depth - m_perimeter_width / 2);
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow * 1.1f)
// Let the writer know the current Z position as a base for Z-hop.
.set_z(m_z_pos)
.set_layer_height(m_layer_height)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.append(
";-------------------------------------\n"
"; CP WIPE TOWER FIRST LAYER BRIM START\n");
xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0);
if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE)
// Move with Z hop.
writer.z_hop(m_zhop, 7200)
.travel(initial_position, 6000)
.z_hop_reset(7200);
else
writer.set_initial_position(initial_position);
if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
// Prime the extruder 10*m_perimeter_width left along the vertical edge of the wipe tower.
writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0),
1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400);
// The tool is supposed to be active and primed at the time when the wipe tower brim is extruded.
// toolchange_Change(writer, int(tool), m_material[tool]);
if (sideOnly) {
float x_offset = m_perimeter_width;
for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width)
writer.travel (wipeTower_box.ld + xy(- x_offset, y_offset), 7000)
.extrude(wipeTower_box.lu + xy(- x_offset, - y_offset), 2100);
writer.travel(wipeTower_box.rd + xy(x_offset, y_offset), 7000);
x_offset = m_perimeter_width;
for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width)
writer.travel (wipeTower_box.rd + xy(x_offset, y_offset), 7000)
.extrude(wipeTower_box.ru + xy(x_offset, - y_offset), 2100);
} else {
// Extrude 4 rounds of a brim around the future wipe tower.
box_coordinates box(wipeTower_box);
//FIXME why is the box shifted in +Y by 0.5f * m_perimeter_width?
box.translate(0.f, 0.5f * m_perimeter_width);
box.expand(0.5f * m_perimeter_width);
for (size_t i = 0; i < 4; ++ i) {
writer.travel (box.ld, 7000)
.extrude(box.lu, 2100).extrude(box.ru)
.extrude(box.rd ).extrude(box.ld);
box.expand(m_perimeter_width);
}
}
if (m_initial_extra_wipe > m_perimeter_width * 1.9f) {
box_coordinates cleaning_box(
m_wipe_tower_pos + xy(0.f, 0.5f * m_perimeter_width),
m_wipe_tower_width,
m_initial_extra_wipe - m_perimeter_width);
writer.travel(cleaning_box.ld + xy(m_perimeter_width, 0.5f * m_perimeter_width), 6000);
// Wipe the newly loaded filament until the end of the assigned wipe area.
toolchange_Wipe(writer, cleaning_box, true);
// Draw a perimeter around cleaning_box.
writer.travel(cleaning_box.lu, 7000)
.extrude(cleaning_box.ld, 3200).extrude(cleaning_box.rd)
.extrude(cleaning_box.ru).extrude(cleaning_box.lu);
m_current_wipe_start_y = m_initial_extra_wipe;
}
// Move to the front left corner.
writer.travel(wipeTower_box.ld, 7000);
//if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE)
// Wipe along the front edge.
// Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower.
writer.travel(wipeTower_box.rd)
.travel(wipeTower_box.ld);
writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n"
";-----------------------------------\n");
// Mark the brim as extruded.
///m_idx_tool_change_in_layer = 0;
m_print_brim = false;
}
ToolChangeResult result;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
result.elapsed_time = writer.elapsed_time();
result.extrusions = writer.extrusions();
result.start_pos = writer.start_pos_rotated();
result.end_pos = writer.pos_rotated();
return result;
}
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
void WipeTowerPrusaMM::toolchange_Unload(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type current_material,
const int new_temperature)
{
float xl = cleaning_box.ld.x + 0.5f * m_perimeter_width;
float xr = cleaning_box.rd.x - 0.5f * m_perimeter_width;
float y_step = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width;
writer.append("; CP TOOLCHANGE UNLOAD\n");
// Ram the hot material out of the extruder melt zone.
// Current extruder position is on the left, one perimeter inside the cleaning box in both X and Y.
float e0 = m_perimeter_width * m_extrusion_flow;
float e = (xr - xl) * m_extrusion_flow;
switch (current_material)
{
case ABS:
// ramming start end y increment amount feedrate
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.2f * e, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.6f * e, 4600)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000)
.ram(xr - m_perimeter_width * 2, xl + m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000);
break;
case PVA:
// Used for the PrimaSelect PVA
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.75f * e, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 4500)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.5f, 0, 1.75f * e, 4800)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 5000);
break;
case SCAFF:
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 2.f, 0, 1.75f * e, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 3.f, 0, 2.34f * e, 4600)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 3.f, 0, 2.63f * e, 5200);
break;
default:
// PLA, PLA/PHA and others
// Used for the Verbatim BVOH, PET, NGEN, co-polyesters
writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.60f * e, 4000)
.ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.65f * e, 4600)
.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.74f * e, 5200);
}
// Pull the filament end into a cooling tube.
writer.retract(15, 5000).retract(50, 5400).retract(15, 3000).retract(12, 2000);
if (new_temperature != 0)
// Set the extruder temperature, but don't wait.
writer.set_extruder_temp(new_temperature, false);
// In case the current print head position is closer to the left edge, reverse the direction.
if (std::abs(writer.x() - xl) < std::abs(writer.x() - xr))
std::swap(xl, xr);
// Horizontal cooling moves will be performed at the following Y coordinate:
writer.travel(xr, writer.y() + y_step * 0.8f, 7200)
.suppress_preview();
switch (current_material)
{
case PVA:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -3, 2400);
break;
case SCAFF:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -5, 2200)
.cool(xl, xr, 5, -3, 2400);
break;
default:
writer.cool(xl, xr, 3, -5, 1600)
.cool(xl, xr, 5, -5, 2000)
.cool(xl, xr, 5, -5, 2400)
.cool(xl, xr, 5, -3, 2400);
}
writer.resume_preview()
.flush_planner_queue();
}
// Change the tool, set a speed override for solube and flex materials.
void WipeTowerPrusaMM::toolchange_Change(
PrusaMultiMaterial::Writer &writer,
const unsigned int new_tool,
material_type new_material)
{
// Speed override for the material. Go slow for flex and soluble materials.
int speed_override;
switch (new_material) {
case PVA: speed_override = (m_z_pos < 0.80f) ? 60 : 80; break;
case SCAFF: speed_override = 35; break;
case FLEX: speed_override = 35; break;
default: speed_override = 100;
}
writer.set_tool(new_tool)
.speed_override(speed_override)
.flush_planner_queue();
m_current_tool = new_tool;
}
void WipeTowerPrusaMM::toolchange_Load(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box)
{
float xl = cleaning_box.ld.x + m_perimeter_width;
float xr = cleaning_box.rd.x - m_perimeter_width;
//FIXME flipping left / right side, so that the following toolchange_Wipe will start
// where toolchange_Load ends.
std::swap(xl, xr);
writer.append("; CP TOOLCHANGE LOAD\n")
// Load the filament while moving left / right,
// so the excess material will not create a blob at a single position.
.suppress_preview()
// Accelerate the filament loading
.load_move_x(xr, 20, 1400)
// Fast loading phase
.load_move_x(xl, 40, 3000)
// Slowing down
.load_move_x(xr, 20, 1600)
.load_move_x(xl, 10, 1000)
.resume_preview();
// Extrude first five lines (just three lines if colorInit is set).
writer.extrude(xr, writer.y(), 1600);
bool colorInit = false;
size_t pass = colorInit ? 1 : 2;
float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_line_width;
for (int i = 0; i < pass; ++ i) {
writer.travel (xr, writer.y() + dy, 7200);
writer.extrude(xl, writer.y(), 2200);
writer.travel (xl, writer.y() + dy, 7200);
writer.extrude(xr, writer.y(), 2200);
}
// Reset the extruder current to the normal value.
writer.set_extruder_trimpot(550);
}
// Wipe the newly loaded filament until the end of the assigned wipe area.
void WipeTowerPrusaMM::toolchange_Wipe(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
bool skip_initial_y_move)
{
// Increase flow on first layer, slow down print.
writer.set_extrusion_flow(m_extrusion_flow * (m_is_first_layer ? 1.18f : 1.f))
.append("; CP TOOLCHANGE WIPE\n");
float wipe_coeff = m_is_first_layer ? 0.5f : 1.f;
float xl = cleaning_box.ld.x + 2.f * m_perimeter_width;
float xr = cleaning_box.rd.x - 2.f * m_perimeter_width;
// Wipe speed will increase up to 4800.
float wipe_speed = 4200.f;
float wipe_speed_inc = 50.f;
float wipe_speed_max = 4800.f;
// Y increment per wipe line.
float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_line_width;
for (bool p = true;
// Next wipe line fits the cleaning box (and not forgetting about border)
((m_current_shape == SHAPE_NORMAL) ?
(writer.y() <= cleaning_box.lu.y - 1.5f * m_perimeter_width) :
(writer.y() >= cleaning_box.ld.y + 1.5f * m_perimeter_width));
p = ! p)
{
wipe_speed = std::min(wipe_speed_max, wipe_speed + wipe_speed_inc);
if (skip_initial_y_move)
skip_initial_y_move = false;
else
writer.extrude(xl - (p ? m_perimeter_width / 2 : m_perimeter_width), writer.y() + dy, wipe_speed * wipe_coeff);
writer.extrude(xr + (p ? m_perimeter_width : m_perimeter_width * 2), writer.y(), wipe_speed * wipe_coeff);
// Next wipe line fits the cleaning box.
if ((m_current_shape == SHAPE_NORMAL) ?
(writer.y() > cleaning_box.lu.y - m_perimeter_width) :
(writer.y() < cleaning_box.ld.y + m_perimeter_width))
break;
wipe_speed = std::min(wipe_speed_max, wipe_speed + wipe_speed_inc);
writer.extrude(xr + m_perimeter_width, writer.y() + dy, wipe_speed * wipe_coeff);
writer.extrude(xl - m_perimeter_width, writer.y());
}
// Reset the extrusion flow.
writer.set_extrusion_flow(m_extrusion_flow);
}
WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer(Purpose purpose)
{
// This should only be called if the layer is not finished yet.
// Otherwise the caller would likely travel to the wipe tower in vain.
assert(! this->layer_finished());
PrusaMultiMaterial::Writer writer;
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_layer_height(m_layer_height)
.set_initial_tool(m_current_tool)
.set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle)
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
// m_num_layer_changes is incremented by set_z, so it is 1 based.
.comment_with_value(" layer #", m_num_layer_changes - 1);
// Slow down on the 1st layer.
float speed_factor = m_is_first_layer ? 0.5f : 1.f;
float current_depth = m_wipe_tower_depth;
if (m_is_first_layer)
current_depth = m_wipe_tower_depth;
else
current_depth = m_layer_info->depth;
box_coordinates fill_box(m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y),
m_wipe_tower_width, current_depth - m_current_wipe_start_y);
fill_box.expand(0.f, - 0.5f * m_perimeter_width);
if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
if ( m_layer_info->tool_changes.size() == 0) {
// There were no tool changes at all in this layer.
writer.retract(m_retract * 1.5f, 3600)
// Jump with retract to fill_box.ld + a random shift in +x.
.z_hop(m_zhop, 7200)
.travel(fill_box.ld + xy(5.f + 15.f * float(rand()) / RAND_MAX, 0.f), 7000)
.z_hop_reset(7200)
// Prime the extruder.
.load_move_x(fill_box.ld.x, m_retract * 1.5f, 3600);
} else {
// Otherwise the extruder is already over the wipe tower.
}
} else {
// The print head is inside the wipe tower. Rather move to the start of the following extrusion.
// writer.set_initial_position(fill_box.ld);
writer.set_initial_position(fill_box.ld);
}
if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) {
// Extrude the first perimeter.
box_coordinates box = fill_box;
writer.extrude(box.lu, 2400 * speed_factor)
.extrude(box.ru)
.extrude(box.rd)
.extrude(box.ld + xy(m_perimeter_width / 2, 0));
// Extrude second perimeter.
box.expand(- m_perimeter_width / 2);
writer.extrude(box.lu, 3200 * speed_factor)
.extrude(box.ru)
.extrude(box.rd)
.extrude(box.ld + xy(m_perimeter_width / 2, 0));
if (m_is_first_layer) {
// Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower.
box.expand(- m_perimeter_width / 2);
box.ld.y -= 0.5f * m_perimeter_width;
box.rd.y = box.ld.y;
int nsteps = int(floor((box.lu.y - box.ld.y) / (2. * (1.0 * m_perimeter_width))));
float step = (box.lu.y - box.ld.y) / nsteps;
//FIXME:
if (nsteps >= 0)
for (size_t i = 0; i < nsteps; ++i) {
writer.extrude(box.ld.x, writer.y() + 0.5f * step);
writer.extrude(box.rd.x, writer.y());
writer.extrude(box.rd.x, writer.y() + 0.5f * step);
writer.extrude(box.ld.x, writer.y());
}
} else {
// Extrude a sparse infill to support the material to be printed above.
// Extrude an inverse U at the left of the region.
writer.extrude(box.ld + xy(m_perimeter_width / 2, m_perimeter_width / 2))
.extrude(fill_box.ld + xy(m_perimeter_width * 3, m_perimeter_width), 2900 * speed_factor)
.extrude(fill_box.lu + xy(m_perimeter_width * 3, - m_perimeter_width))
.extrude(fill_box.lu + xy(m_perimeter_width * 6, - m_perimeter_width))
.extrude(fill_box.ld + xy(m_perimeter_width * 6, m_perimeter_width));
/*if (fill_box.lu.y - fill_box.ld.y > 4.f) {
const float max_bridge_distance = 10.f; // in mm
size_t zig_zags_num = int((m_wipe_tower_width - m_perimeter_width * 12.f) / ( max_bridge_distance * 2.f ) ) + 1 ;
float step = (m_wipe_tower_width - m_perimeter_width * 12.f) / (zig_zags_num * 4);
for (size_t i = 0; i < zig_zags_num; ++ i) {
writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width * 8, 3200 * speed_factor);
writer.extrude(writer.x() , fill_box.lu.y - m_perimeter_width * 8);
writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width );
writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width * 8);
writer.extrude(writer.x() , fill_box.ld.y + m_perimeter_width * 8);
writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width );
}
}
// Extrude an inverse U at the left of the region.
writer.extrude(fill_box.ru + xy(-m_perimeter_width * 6, -m_perimeter_width), 2900 * speed_factor)
.extrude(fill_box.ru + xy(-m_perimeter_width * 3, -m_perimeter_width))
.extrude(fill_box.rd + xy(-m_perimeter_width * 3, m_perimeter_width))
.extrude(fill_box.rd + xy(-m_perimeter_width, m_perimeter_width));*/
const float dy = (fill_box.lu.y - fill_box.ld.y - 2.f * m_perimeter_width);
if (dy > m_perimeter_width)
{
const float max_bridge_distance = 10.f; // in mm
const size_t zig_zags_num = (fill_box.rd.x - fill_box.ld.x - m_perimeter_width * 12.f) / max_bridge_distance;
const float step = (fill_box.rd.x - fill_box.ld.x - m_perimeter_width * 12.f) / (float)zig_zags_num;
float offsety = std::max(0.f, dy - m_last_infill_tan * (step - m_perimeter_width));
if (offsety < m_last_infill_tan * m_perimeter_width + WT_EPSILON || offsety > dy / 2.f)
offsety = 0.f;
float offsetx = ( offsety != 0 ? 0 : std::max(0.f, dy / m_last_infill_tan > step / 2.f ? step - dy / m_last_infill_tan : 0.f ) );
for (size_t i = 0; i < zig_zags_num; ++i)
{
writer.extrude(writer.x() + offsetx, writer.y(), 3200 * speed_factor);
if ( offsety != 0 ) {
writer.extrude(writer.x() + m_perimeter_width, writer.y());
writer.extrude(writer.x(), writer.y() + offsety);
}
writer.extrude(writer.x() + step - offsetx - (offsety==0 ? 0 : m_perimeter_width), fill_box.lu.y - m_perimeter_width);
writer.extrude(writer.x() , fill_box.ld.y + m_perimeter_width);
}
m_last_infill_tan = (dy - offsety) / (step - offsetx - (offsety==0 ? 0 : m_perimeter_width));
}
// Extrude an inverse U at the left of the region.
writer.extrude(fill_box.rd + xy(-m_perimeter_width * 6, m_perimeter_width), 2900 * speed_factor)
.extrude(fill_box.rd + xy(-m_perimeter_width * 3, m_perimeter_width))
.extrude(fill_box.ru + xy(-m_perimeter_width * 3, -m_perimeter_width))
.extrude(fill_box.ru + xy(-m_perimeter_width, -m_perimeter_width));
}
// if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE)
if (true)
// Wipe along the front side of the current wiping box.
// Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower.
writer.travel(fill_box.ld + xy( m_perimeter_width, m_perimeter_width / 2), 7200)
.travel(fill_box.rd + xy(- m_perimeter_width, m_perimeter_width / 2));
else
writer.feedrate(7200);
writer.append("; CP EMPTY GRID END\n"
";------------------\n\n\n\n\n\n\n");
// Indicate that this wipe tower layer is fully covered.
m_current_wipe_start_y = m_wipe_tower_depth;
///m_idx_tool_change_in_layer = (unsigned int)m_max_color_changes;
}
ToolChangeResult result;
result.print_z = this->m_z_pos;
result.layer_height = this->m_layer_height;
result.gcode = writer.gcode();
result.elapsed_time = writer.elapsed_time();
result.extrusions = writer.extrusions();
result.start_pos = writer.start_pos_rotated();
result.end_pos = writer.pos_rotated();
return result;
}
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool)
{
assert(m_plan.back().z <= z_par); // refuse to add a layer below the last one
// volumes in mm^3 required for ramming
// hardcoded so far, in future should be calculated by integrating the speed/time curve
const std::vector<float> ram_volumes = {22,22,22,22};
// volumes in mm^3 required for wipe: {{from 0 to ...},{from 1 to ...},{from 2 to ...},{from 3 to ...}}, usage [from][to]
const std::vector<std::vector<float>> wipe_volumes = {{ 0, 40, 60, 80},
{100, 0,120,100},
{ 80,107, 0,110},
{ 60, 40, 60, 0}};
float depth = (wipe_volumes[old_tool][new_tool]) / (m_extrusion_flow * Filament_Area); // length of extrusion
depth = floor(depth / m_wipe_tower_width + 1); // number of lines to extrude
depth += 6; // reserved for ramming
depth += 2; // reserved for loading
depth -= 2; // we will also print borders
depth *= m_perimeter_width; // conversion to distance
if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan along with the first toolchange
m_plan.push_back(WipeTowerInfo(z_par, layer_height_par));
if ( old_tool != new_tool ) {
if (!m_plan_brim_finished) { // this toolchange prints brim, we need it in m_plan, but not to count its depth
m_plan_brim_finished = true;
depth = 0.f;
}
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth));
}
// Calculate m_wipe_tower (maximum depth for all the layers) and propagate depths downwards
// Could be only called when a layer is changed, but do not forget about the last one
float this_layer_depth = m_plan.back().toolchanges_depth();
m_plan.back().depth = this_layer_depth;
if (this_layer_depth > m_wipe_tower_depth)
m_wipe_tower_depth = this_layer_depth;
for (int i = m_plan.size() - 2; i >= 0 && m_plan[i].depth < this_layer_depth; i-- ) {
if ( this_layer_depth - m_plan[i].depth < min_layer_difference && !m_plan[i].tool_changes.empty())
m_plan[i].tool_changes.back().required_depth += this_layer_depth - m_plan[i].depth;
m_plan[i].depth = this_layer_depth;
}
}
// Processes vector m_plan and calls respective function to generate G-code for the wipe tower
// Resulting ToolChangeResults are appended into container passed by "result" reference
void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result)
{
std::vector<WipeTower::ToolChangeResult> layer_result;
for (auto layer : m_plan)
{
set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z);
for (const auto &toolchange : layer.tool_changes)
layer_result.emplace_back(tool_change(toolchange.new_tool, false, WipeTower::PURPOSE_EXTRUDE));
if (! layer_finished()) {
layer_result.emplace_back(finish_layer(WipeTower::PURPOSE_EXTRUDE));
if (layer_result.size() > 1) {
// Merge the two last tool changes into one.
WipeTower::ToolChangeResult &tc1 = layer_result[layer_result.size() - 2];
WipeTower::ToolChangeResult &tc2 = layer_result.back();
if (tc1.end_pos != tc2.start_pos) {
// Add a travel move from tc1.end_pos to tc2.start_pos.
char buf[2048];
sprintf(buf, "G1 X%.3f Y%.3f F7200\n", tc2.start_pos.x, tc2.start_pos.y);
tc1.gcode += buf;
}
tc1.gcode += tc2.gcode;
tc1.extrusions.insert(tc1.extrusions.end(), tc2.extrusions.begin(), tc2.extrusions.end());
tc1.end_pos = tc2.end_pos;
layer_result.pop_back();
}
}
else
m_last_infill_tan = 1000.f; //if the layer was dense, no worries about infill continuity on the next
result.emplace_back(std::move(layer_result));
m_is_first_layer = false;
}
}
}; // namespace Slic3r