PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/3DScene.hpp

244 lines
9.4 KiB
C++
Raw Normal View History

2015-01-17 23:36:21 +00:00
#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_
#include "../../libslic3r/libslic3r.h"
#include "../../libslic3r/Point.hpp"
#include "../../libslic3r/Line.hpp"
#include "../../libslic3r/TriangleMesh.hpp"
2015-01-17 23:36:21 +00:00
namespace Slic3r {
class Print;
class PrintObject;
class Model;
class ModelObject;
class GLVertexArray {
public:
GLVertexArray() {}
GLVertexArray(const GLVertexArray &rhs) : verts(rhs.verts), norms(rhs.norms) {}
GLVertexArray(GLVertexArray &&rhs) : verts(std::move(rhs.verts)), norms(std::move(rhs.norms)) {}
GLVertexArray& operator=(const GLVertexArray &rhs) { verts = rhs.verts; norms = rhs.norms; return *this; }
GLVertexArray& operator=(GLVertexArray &&rhs) { verts = std::move(rhs.verts); norms = std::move(rhs.norms); return *this; }
std::vector<float> verts, norms;
void reserve(size_t len) {
this->verts.reserve(len);
this->norms.reserve(len);
};
void reserve_more(size_t len) {
len += this->verts.size();
this->reserve(len);
};
void push_vert(const Pointf3 &point) {
this->verts.push_back(point.x);
this->verts.push_back(point.y);
this->verts.push_back(point.z);
};
void push_vert(float x, float y, float z) {
this->verts.push_back(x);
this->verts.push_back(y);
this->verts.push_back(z);
};
void push_norm(const Pointf3 &point) {
this->norms.push_back(point.x);
this->norms.push_back(point.y);
this->norms.push_back(point.z);
};
void push_norm(float x, float y, float z) {
this->norms.push_back(x);
this->norms.push_back(y);
this->norms.push_back(z);
};
void load_mesh(const TriangleMesh &mesh);
size_t size() const { return verts.size(); }
bool empty() const { return verts.empty(); }
void shrink_to_fit() { this->verts.shrink_to_fit(); this->norms.shrink_to_fit(); }
BoundingBoxf3 bounding_box() const {
BoundingBoxf3 bbox;
if (! this->verts.empty()) {
bbox.min.x = bbox.max.x = this->verts[0];
bbox.min.y = bbox.max.y = this->verts[1];
bbox.min.z = bbox.max.z = this->verts[2];
for (size_t i = 3; i < this->verts.size(); i += 3) {
bbox.min.x = std::min<coordf_t>(bbox.min.x, this->verts[i + 0]);
bbox.min.y = std::min<coordf_t>(bbox.min.y, this->verts[i + 1]);
bbox.min.z = std::min<coordf_t>(bbox.min.z, this->verts[i + 2]);
bbox.max.x = std::max<coordf_t>(bbox.max.x, this->verts[i + 0]);
bbox.max.y = std::max<coordf_t>(bbox.max.y, this->verts[i + 1]);
bbox.max.z = std::max<coordf_t>(bbox.max.z, this->verts[i + 2]);
}
}
return bbox;
}
};
class GLTexture
{
public:
GLTexture() : width(0), height(0), levels(0), cells(0) {}
// Texture data
std::vector<char> data;
// Width of the texture, top level.
size_t width;
// Height of the texture, top level.
size_t height;
// For how many levels of detail is the data allocated?
size_t levels;
// Number of texture cells allocated for the height texture.
size_t cells;
};
class GLVolume {
public:
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f) :
composite_id(-1),
select_group_id(-1),
drag_group_id(-1),
selected(false),
hover(false),
qverts_range(0, size_t(-1)),
tverts_range(0, size_t(-1)),
name_vertex_buffer(0),
name_normal_buffer(0),
name_index_buffer(0)
{
color[0] = r;
color[1] = g;
color[2] = b;
color[3] = a;
}
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
std::vector<int> load_object(
const ModelObject *model_object,
const std::vector<int> &instance_idxs,
const std::string &color_by,
const std::string &select_by,
const std::string &drag_by);
// Bounding box of this volume, in unscaled coordinates.
BoundingBoxf3 bounding_box;
// Offset of the volume to be rendered.
Pointf3 origin;
// Color of the triangles / quads held by this volume.
float color[4];
// An ID containing the object ID, volume ID and instance ID.
int composite_id;
// An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance.
int select_group_id;
// An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance.
int drag_group_id;
// Is this object selected?
bool selected;
// Boolean: Is mouse over this object?
bool hover;
// Geometric data.
// Quad vertices.
GLVertexArray qverts;
std::pair<size_t, size_t> qverts_range;
// Triangle vertices.
GLVertexArray tverts;
std::pair<size_t, size_t> tverts_range;
// OpenGL buffers for vertices and their normals.
int name_vertex_buffer;
int name_normal_buffer;
// OpenGL buffer of the indices.
int name_index_buffer;
// Triangle indices for the vertex buffer object.
std::vector<size_t> triangle_indices;
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
// of the extrusions per layer.
std::vector<coordf_t> print_zs;
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
std::vector<size_t> offsets;
int object_idx() const { return this->composite_id / 1000000; }
int volume_idx() const { return (this->composite_id / 1000) % 1000; }
int instance_idx() const { return this->composite_id % 1000; }
BoundingBoxf3 transformed_bounding_box() const { BoundingBoxf3 bb = this->bounding_box; bb.translate(this->origin); return bb; }
bool empty() const { return qverts.size() < 4 && tverts.size() < 3; }
void set_range(coordf_t low, coordf_t high);
void* qverts_to_render_ptr() { return qverts.verts.data() + qverts_range.first; }
void* qnorms_to_render_ptr() { return qverts.norms.data() + qverts_range.first; }
size_t qverts_to_render_cnt() { return std::min(qverts.verts.size(), qverts_range.second - qverts_range.first); }
void* tverts_to_render_ptr() { return tverts.verts.data() + tverts_range.first; }
void* tnorms_to_render_ptr() { return tverts.norms.data() + tverts_range.first; }
size_t tverts_to_render_cnt() { return std::min(tverts.verts.size(), tverts_range.second - tverts_range.first); }
void render_VBOs() const;
std::shared_ptr<GLTexture> layer_height_texture;
bool has_layer_height_texture() const
{ return this->layer_height_texture.get() != nullptr; }
size_t layer_height_texture_width() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->width; }
size_t layer_height_texture_height() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->height; }
size_t layer_height_texture_cells() const
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->cells; }
void* layer_height_texture_data_ptr_level0() {
return (layer_height_texture.get() == nullptr) ? 0 :
(void*)layer_height_texture->data.data();
}
void* layer_height_texture_data_ptr_level1() {
return (layer_height_texture.get() == nullptr) ? 0 :
(void*)(layer_height_texture->data.data() + layer_height_texture->width * layer_height_texture->height * 4);
}
double layer_height_texture_z_to_row_id() const {
return (this->layer_height_texture.get() == nullptr) ? 0. :
double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * bounding_box.max.z);
}
void generate_layer_height_texture(PrintObject *print_object, bool force);
};
class GLVolumeCollection
{
public:
std::vector<GLVolume*> volumes;
GLVolumeCollection() {};
~GLVolumeCollection() { clear(); };
std::vector<int> load_object(
const ModelObject *model_object,
int obj_idx,
const std::vector<int> &instance_idxs,
const std::string &color_by,
const std::string &select_by,
const std::string &drag_by);
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
void render_VBOs() const { for (GLVolume *vol : this->volumes) vol->render_VBOs(); }
};
2015-01-17 23:36:21 +00:00
class _3DScene
{
public:
static void _load_print_toolpaths(
const Print *print,
GLVolumeCollection *volumes,
bool use_VBOs);
static void _load_print_object_toolpaths(
const PrintObject *print_object,
GLVolumeCollection *volumes,
bool use_VBOs);
2015-01-17 23:36:21 +00:00
};
}
#endif