GCodeViewer -> New shaders for options

This commit is contained in:
enricoturri1966 2020-05-22 13:21:43 +02:00
parent 80c2f107c1
commit 4d05ec0856
18 changed files with 132 additions and 408 deletions

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}

View file

@ -0,0 +1,8 @@
#version 120
uniform vec3 uniform_color;
void main()
{
gl_FragColor = vec4(uniform_color, 1.0);
}

View file

@ -0,0 +1,11 @@
#version 110
uniform float zoom;
// x = min, y = max
uniform vec2 point_sizes;
void main()
{
gl_PointSize = clamp(zoom, point_sizes.x, point_sizes.y);
gl_Position = ftransform();
}

View file

@ -0,0 +1,15 @@
#version 120
uniform vec3 uniform_color;
void main()
{
vec2 pos = gl_PointCoord - vec2(0.5, 0.5);
float sq_radius = pos.x * pos.x + pos.y * pos.y;
if (sq_radius > 0.25)
discard;
else if (sq_radius > 0.180625)
gl_FragColor = vec4(0.5 * uniform_color, 1.0);
else
gl_FragColor = vec4(uniform_color, 1.0);
}

View file

@ -0,0 +1,11 @@
#version 120
uniform float zoom;
// x = min, y = max
uniform vec2 point_sizes;
void main()
{
gl_PointSize = clamp(zoom, point_sizes.x, point_sizes.y);
gl_Position = ftransform();
}

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}

View file

@ -1,45 +0,0 @@
#version 110
#define INTENSITY_AMBIENT 0.3
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.0, 0.0, 1.0);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
uniform vec3 uniform_color;
varying vec3 eye_position;
varying vec3 eye_normal;
//varying float world_normal_z;
// x = tainted, y = specular;
vec2 intensity;
void main()
{
vec3 normal = normalize(eye_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
// // darkens fragments whose normal points downward
// if (world_normal_z < 0.0)
// intensity.x *= (1.0 + world_normal_z * (1.0 - INTENSITY_AMBIENT));
gl_FragColor = vec4(vec3(intensity.y, intensity.y, intensity.y) + uniform_color * intensity.x, 1.0);
}

View file

@ -1,17 +0,0 @@
#version 110
varying vec3 eye_position;
varying vec3 eye_normal;
//// world z component of the normal used to darken the lower side of the toolpaths
//varying float world_normal_z;
void main()
{
eye_position = (gl_ModelViewMatrix * gl_Vertex).xyz;
eye_normal = gl_NormalMatrix * vec3(0.0, 0.0, 1.0);
// eye_normal = gl_NormalMatrix * gl_Normal;
// world_normal_z = gl_Normal.z;
gl_Position = ftransform();
gl_PointSize = 15.0;
}