Added measuring sandbox for neighbors index creation

This commit is contained in:
tamasmeszaros 2021-06-01 15:49:19 +02:00
parent c542e6e14b
commit c8be2cdceb
11 changed files with 988 additions and 266 deletions

View File

@ -1,5 +1,6 @@
#add_subdirectory(slasupporttree) #add_subdirectory(slasupporttree)
#add_subdirectory(openvdb) #add_subdirectory(openvdb)
add_subdirectory(meshboolean) # add_subdirectory(meshboolean)
add_subdirectory(opencsg) add_subdirectory(its_neighbor_index)
# add_subdirectory(opencsg)
#add_subdirectory(aabb-evaluation) #add_subdirectory(aabb-evaluation)

View File

@ -0,0 +1,7 @@
add_executable(its_neighbor_index main.cpp ItsNeighborIndex.cpp ItsNeighborIndex.hpp)
target_link_libraries(its_neighbor_index libslic3r admesh)
if (WIN32)
prusaslicer_copy_dlls(its_neighbor_index)
endif()

View File

@ -0,0 +1,580 @@
#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include "ItsNeighborIndex.hpp"
#include "tbb/parallel_sort.h"
namespace Slic3r {
FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
std::unordered_map< EdgeID, Edge > edge_index;
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
return index;
}
std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
std::vector<EdgeToFace> edges_map;
edges_map.assign(its.indices.size() * 3, EdgeToFace());
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
for (int i = 0; i < 3; ++ i) {
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
e2f.vertex_low = its.indices[facet_idx][i];
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
if (e2f.vertex_low > e2f.vertex_high) {
// Sort the vertices
std::swap(e2f.vertex_low, e2f.vertex_high);
// and make the face_edge negative to indicate a flipped edge.
e2f.face_edge = - e2f.face_edge;
}
}
std::sort(edges_map.begin(), edges_map.end());
// Assign a unique common edge id to touching triangle edges.
int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) {
EdgeToFace &edge_i = edges_map[i];
if (edge_i.face == -1)
// This edge has been connected to some neighbor already.
continue;
// Unconnected edge. Find its neighbor with the correct orientation.
size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
}
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
// Assign an edge index to the 1st face.
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
// Mark the edge as connected.
edge_j.face = -1;
}
++ num_edges;
}
return out;
}
std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
std::vector<EdgeToFace> edges_map;
edges_map.assign(its.indices.size() * 3, EdgeToFace());
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
for (int i = 0; i < 3; ++ i) {
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
e2f.vertex_low = its.indices[facet_idx][i];
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
if (e2f.vertex_low > e2f.vertex_high) {
// Sort the vertices
std::swap(e2f.vertex_low, e2f.vertex_high);
// and make the face_edge negative to indicate a flipped edge.
e2f.face_edge = - e2f.face_edge;
}
}
tbb::parallel_sort(edges_map.begin(), edges_map.end());
// Assign a unique common edge id to touching triangle edges.
int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) {
EdgeToFace &edge_i = edges_map[i];
if (edge_i.face == -1)
// This edge has been connected to some neighbor already.
continue;
// Unconnected edge. Find its neighbor with the correct orientation.
size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
}
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
// Assign an edge index to the 1st face.
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
// Mark the edge as connected.
edge_j.face = -1;
}
++ num_edges;
}
return out;
}
FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
Benchmark bm;
bm.start();
// All vertex IDs will fit into this number of bits. (Used for hashing)
// const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
// assert(max_vertex_id_bits <= 32);
const uint64_t Vn = its.vertices.size();
// const uint64_t Fn = 3 * its.indices.size();
// double MaxQ = double(Vn) * (Vn + 1) / Fn;
// const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ));
// const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn)));
// const uint64_t Nfn = std::ceil(std::log2(Fn));
//// const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr));
// const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn);
const uint64_t Fn = 3 * its.indices.size();
std::vector< Edge > edge_index(3 * Fn);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
uint64_t C = Vn * a + b;
uint64_t Q = C / Fn, R = C % Fn;
return Q * Fn + R;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
bm.stop();
std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl;
return index;
}
static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) {
if (vertex_index == triangle_indices[0]) return 0;
if (vertex_index == triangle_indices[1]) return 1;
if (vertex_index == triangle_indices[2]) return 2;
return -1;
}
Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices)
{
int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1;
coord_t vi0 = triangle_indices[edge_index];
coord_t vi1 = triangle_indices[next_edge_index];
return Vec2crd(vi0, vi1);
}
static std::vector<std::vector<size_t>> create_vertex_faces_index(
const std::vector<stl_triangle_vertex_indices>& indices, size_t count_vertices)
{
if (count_vertices == 0) return {};
std::vector<std::vector<size_t>> index;
size_t res = indices.size() / count_vertices;
index.assign(count_vertices, reserve_vector<size_t>(res));
for (size_t fi = 0; fi < indices.size(); ++fi) {
auto &face = indices[fi];
index[face(0)].emplace_back(fi);
index[face(1)].emplace_back(fi);
index[face(2)].emplace_back(fi);
}
return index;
}
std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its)
{
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
size_t vertices_size = its.vertices.size();
if (indices.empty() || vertices_size == 0) return {};
std::vector<std::vector<size_t>> vertex_triangles = create_vertex_faces_index(indices, vertices_size);
coord_t no_value = -1;
std::vector<Vec3crd> neighbors(indices.size(), Vec3crd(no_value, no_value, no_value));
for (const stl_triangle_vertex_indices& triangle_indices : indices) {
coord_t index = &triangle_indices - &indices.front();
Vec3crd& neighbor = neighbors[index];
for (int edge_index = 0; edge_index < 3; ++edge_index) {
// check if done
coord_t& neighbor_edge = neighbor[edge_index];
if (neighbor_edge != no_value) continue;
Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices);
// IMPROVE: use same vector for 2 sides of triangle
const std::vector<size_t> &faces = vertex_triangles[edge_indices[0]];
for (const size_t &face : faces) {
if (face <= index) continue;
const stl_triangle_vertex_indices &face_indices = indices[face];
int vertex_index = get_vertex_index(edge_indices[1], face_indices);
// NOT Contain second vertex?
if (vertex_index < 0) continue;
// Has NOT oposit direction?
if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
neighbor_edge = face;
neighbors[face][vertex_index] = index;
break;
}
// must be paired
assert(neighbor_edge != no_value);
}
}
return neighbors;
}
std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its)
{
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
struct Edge
{
uint64_t id = UNASSIGNED_EDGE;
size_t face_id = UNASSIGNED_FACE;
bool operator < (const Edge &e) const { return id < e.id; }
};
const size_t facenum = its.indices.size();
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
std::vector<Edge> edge_map(3 * facenum);
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < facenum; ++face_id) {
const Vec3i &face = its.indices[face_id];
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
}
std::sort(edge_map.begin(), edge_map.end());
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
};
for (auto it = edge_map.begin(); it != edge_map.end();) {
size_t face_id = it->face_id;
uint64_t edge_id = it->id;
while (++it != edge_map.end() && (it->id == edge_id)) {
size_t other_face_id = it->face_id;
add_neighbor(out[other_face_id], face_id);
add_neighbor(out[face_id], other_face_id);
}
}
return out;
}
std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its)
{
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
struct Edge
{
uint64_t id = UNASSIGNED_EDGE;
size_t face_id = UNASSIGNED_FACE;
bool operator < (const Edge &e) const { return id < e.id; }
};
const size_t facenum = its.indices.size();
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
std::vector<Edge> edge_map(3 * facenum);
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < facenum; ++face_id) {
const Vec3i &face = its.indices[face_id];
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
}
tbb::parallel_sort(edge_map.begin(), edge_map.end());
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
};
for (auto it = edge_map.begin(); it != edge_map.end();) {
size_t face_id = it->face_id;
uint64_t edge_id = it->id;
while (++it != edge_map.end() && (it->id == edge_id)) {
size_t other_face_id = it->face_id;
add_neighbor(out[other_face_id], face_id);
add_neighbor(out[face_id], other_face_id);
}
}
return out;
}
FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
std::map< EdgeID, Edge > edge_index;
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
return index;
}
} // namespace Slic3r

View File

@ -0,0 +1,14 @@
#include <libslic3r/TriangleMesh.hpp>
#include "libslic3r/MeshSplitImpl.hpp"
namespace Slic3r {
FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its);
std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its);
std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its);
FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its);
//FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its);
std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its);
std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its);
std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its);
FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its);
}

View File

@ -0,0 +1,121 @@
#include <iostream>
#include <fstream>
#include <vector>
#include <tuple>
#include "ItsNeighborIndex.hpp"
#include "libnest2d/tools/benchmark.h"
#include "libnest2d/utils/metaloop.hpp"
namespace Slic3r {
struct MeasureResult
{
double t_index_create = 0;
double t_split = 0;
double memory = 0;
double full_time() const { return t_index_create + t_split; }
};
template<class IndexCreatorFn>
static MeasureResult measure_index(const indexed_triangle_set &its, IndexCreatorFn fn)
{
Benchmark b;
b.start();
ItsNeighborsWrapper itsn{its, fn(its)};
b.stop();
MeasureResult r;
r.t_index_create = b.getElapsedSec();
b.start();
its_split(itsn);
b.stop();
r.t_split = b.getElapsedSec();
return r;
}
static TriangleMesh two_spheres(double detail)
{
TriangleMesh sphere1 = make_sphere(10., 2 * PI / detail), sphere2 = sphere1;
sphere1.translate(-5.f, 0.f, 0.f);
sphere2.translate( 5.f, 0.f, 0.f);
sphere1.merge(sphere2);
sphere1.require_shared_vertices();
return sphere1;
}
static const std::map<std::string, TriangleMesh> ToMeasure = {
{"simple", make_cube(10., 10., 10.) },
{"two_spheres", two_spheres(200.)},
{"two_spheres_detail", two_spheres(360.)},
{"two_spheres_high_detail", two_spheres(3600.)},
};
static const auto IndexFunctions = std::make_tuple(
std::make_pair("tamas's unordered_map based", its_create_neighbors_index_1),
std::make_pair("vojta std::sort based", its_create_neighbors_index_2),
std::make_pair("vojta tbb::parallel_sort based", its_create_neighbors_index_3),
std::make_pair("filip's vertex->face based", its_create_neighbors_index_5),
std::make_pair("tamas's std::sort based", its_create_neighbors_index_6),
std::make_pair("tamas's tbb::parallel_sort based", its_create_neighbors_index_7),
std::make_pair("tamas's map based", its_create_neighbors_index_8)
);
static constexpr size_t IndexFuncNum = std::tuple_size_v<decltype (IndexFunctions)>;
} // namespace Slic3r
int main(const int argc, const char * argv[])
{
using namespace Slic3r;
std::map<std::string, std::array<MeasureResult, IndexFuncNum> > results;
std::array<std::string, IndexFuncNum> funcnames;
for (auto &m : ToMeasure) {
auto &name = m.first;
auto &mesh = m.second;
libnest2d::opt::metaloop::apply([&mesh, &name, &results, &funcnames](int N, auto &e) {
MeasureResult r = measure_index(mesh.its, e.second);
funcnames[N] = e.first;
results[name][N] = r;
}, IndexFunctions);
}
std::string outfilename = "out.csv";
std::fstream outfile;
if (argc > 1) {
outfilename = argv[1];
outfile.open(outfilename, std::fstream::out);
std::cout << outfilename << " will be used" << std::endl;
}
std::ostream &out = outfile.is_open() ? outfile : std::cout;
out << "model;" ;
for (const std::string &funcname : funcnames) {
out << funcname << ";";
}
out << std::endl;
for (auto &[name, result] : results) {
out << name << ";";
for (auto &r : result)
out << r.full_time() << ";";
out << std::endl;
}
return 0;
}

View File

@ -205,6 +205,7 @@ add_library(libslic3r STATIC
TriangleMesh.hpp TriangleMesh.hpp
TriangleMeshSlicer.cpp TriangleMeshSlicer.cpp
TriangleMeshSlicer.hpp TriangleMeshSlicer.hpp
MeshSplitImpl.hpp
TriangulateWall.hpp TriangulateWall.hpp
TriangulateWall.cpp TriangulateWall.cpp
utils.cpp utils.cpp

View File

@ -0,0 +1,163 @@
#ifndef MESHSPLITIMPL_HPP
#define MESHSPLITIMPL_HPP
#include "TriangleMesh.hpp"
#include "libnest2d/tools/benchmark.h"
namespace Slic3r {
namespace meshsplit_detail {
template<class Its, class Enable = void> struct ItsWithNeighborsIndex_ {
using Index = typename Its::Index;
static const indexed_triangle_set &get_its(const Its &m) { return m.get_its();}
static const Index &get_index(const Its &m) { return m.get_index(); }
};
// Define a default neighbors index for indexed_triangle_set
template<> struct ItsWithNeighborsIndex_<indexed_triangle_set> {
using Index = std::vector<Vec3i>;
static const indexed_triangle_set &get_its(const indexed_triangle_set &its) noexcept { return its; }
static Index get_index(const indexed_triangle_set &its) noexcept
{
return its_create_neighbors_index(its);
}
};
// Visit all unvisited neighboring facets that are reachable from the first unvisited facet,
// and return them.
template<class NeighborIndex>
std::vector<size_t> its_find_unvisited_neighbors(
const indexed_triangle_set &its,
const NeighborIndex & neighbor_index,
std::vector<bool> & visited)
{
using stack_el = size_t;
auto facestack = reserve_vector<stack_el>(its.indices.size());
auto push = [&facestack] (const stack_el &s) { facestack.emplace_back(s); };
auto pop = [&facestack] () -> stack_el {
stack_el ret = facestack.back();
facestack.pop_back();
return ret;
};
// find the next unvisited facet and push the index
auto facet = std::find(visited.begin(), visited.end(), false);
std::vector<size_t> ret;
if (facet != visited.end()) {
ret.reserve(its.indices.size());
auto idx = size_t(facet - visited.begin());
push(idx);
ret.emplace_back(idx);
visited[idx] = true;
}
while (!facestack.empty()) {
size_t facet_idx = pop();
const auto &neighbors = neighbor_index[facet_idx];
for (auto neighbor_idx : neighbors) {
if (neighbor_idx >= 0 && !visited[size_t(neighbor_idx)]) {
visited[size_t(neighbor_idx)] = true;
push(stack_el(neighbor_idx));
ret.emplace_back(size_t(neighbor_idx));
}
}
}
return ret;
}
} // namespace meshsplit_detail
template<class IndexT> struct ItsNeighborsWrapper
{
using Index = IndexT;
const indexed_triangle_set *its;
IndexT index;
ItsNeighborsWrapper(const indexed_triangle_set &m, IndexT &&idx)
: its{&m}, index{std::move(idx)}
{}
const auto& get_its() const noexcept { return *its; }
const auto& get_index() const noexcept { return index; }
};
// Splits a mesh into multiple meshes when possible.
template<class Its, class OutputIt>
void its_split(const Its &m, OutputIt out_it)
{
using namespace meshsplit_detail;
const indexed_triangle_set &its = ItsWithNeighborsIndex_<Its>::get_its(m);
std::vector<bool> visited(its.indices.size(), false);
const size_t UNASSIGNED = its.vertices.size();
std::vector<size_t> vidx_conv(its.vertices.size());
const auto& neighbor_index = ItsWithNeighborsIndex_<Its>::get_index(m);
for (;;) {
std::vector<size_t> facets =
its_find_unvisited_neighbors(its, neighbor_index, visited);
if (facets.empty())
break;
std::fill(vidx_conv.begin(), vidx_conv.end(), UNASSIGNED);
// Create a new mesh for the part that was just split off.
indexed_triangle_set mesh;
// Assign the facets to the new mesh.
for (size_t face_id : facets) {
const auto &face = its.indices[face_id];
Vec3i new_face;
for (size_t v = 0; v < 3; ++v) {
auto vi = face(v);
if (vidx_conv[vi] == UNASSIGNED) {
vidx_conv[vi] = mesh.vertices.size();
mesh.vertices.emplace_back(its.vertices[size_t(vi)]);
}
new_face(v) = vidx_conv[vi];
}
mesh.indices.emplace_back(new_face);
}
out_it = std::move(mesh);
}
}
template<class Its>
std::vector<indexed_triangle_set> its_split(const Its &its)
{
auto ret = reserve_vector<indexed_triangle_set>(3);
its_split(its, std::back_inserter(ret));
return ret;
}
template<class Its> bool its_is_splittable(const Its &m)
{
using namespace meshsplit_detail;
const indexed_triangle_set &its = ItsWithNeighborsIndex_<Its>::get_its(m);
const auto& neighbor_index = ItsWithNeighborsIndex_<Its>::get_index(m);
std::vector<bool> visited(its.indices.size(), false);
its_find_unvisited_neighbors(its, neighbor_index, visited);
// Try finding an unvisited facet. If there are none, the mesh is not splittable.
auto it = std::find(visited.begin(), visited.end(), false);
return it != visited.end();
}
} // namespace Slic3r
#endif // MESHSPLITIMPL_HPP

View File

@ -21,6 +21,12 @@ class MultiPoint;
class Point; class Point;
using Vector = Point; using Vector = Point;
// Base template for eigen derived vectors
template<int N, int M, class T>
using Mat = Eigen::Matrix<T, N, M, Eigen::DontAlign, N, M>;
template<int N, class T> using Vec = Mat<N, 1, T>;
// Eigen types, to replace the Slic3r's own types in the future. // Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type. // Vector types with a fixed point coordinate base type.
using Vec2crd = Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign>; using Vec2crd = Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign>;
@ -488,4 +494,18 @@ namespace cereal {
template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); } template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
} }
namespace Eigen {
template<class T, int N, int M>
T* begin(Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
template<class T, int N, int M>
T* end(Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
template<class T, int N, int M>
const T* begin(const Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
template<class T, int N, int M>
const T* end(const Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
} // namespace Eigen
#endif #endif

View File

@ -1,8 +1,10 @@
#include "Exception.hpp" #include "Exception.hpp"
#include "TriangleMesh.hpp" #include "TriangleMesh.hpp"
#include "TriangleMeshSlicer.hpp" #include "TriangleMeshSlicer.hpp"
#include "MeshSplitImpl.hpp"
#include "ClipperUtils.hpp" #include "ClipperUtils.hpp"
#include "Geometry.hpp" #include "Geometry.hpp"
#include "Point.hpp"
#include <libqhullcpp/Qhull.h> #include <libqhullcpp/Qhull.h>
#include <libqhullcpp/QhullFacetList.h> #include <libqhullcpp/QhullFacetList.h>
@ -685,51 +687,24 @@ std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangl
return index; return index;
} }
void VertexFaceIndex::create(const indexed_triangle_set &its) // Create a mapping from triangle edge into face.
{ struct EdgeToFace {
m_vertex_to_face_start.assign(its.vertices.size() + 1, 0); // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
// 1) Calculate vertex incidence by scatter. int vertex_low;
for (auto &face : its.indices) { // Index of the 2nd vertex of the triangle edge.
++ m_vertex_to_face_start[face(0) + 1]; int vertex_high;
++ m_vertex_to_face_start[face(1) + 1]; // Index of a triangular face.
++ m_vertex_to_face_start[face(2) + 1]; int face;
} // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
// 2) Prefix sum to calculate offsets to m_vertex_faces_all. int face_edge;
for (size_t i = 2; i < m_vertex_to_face_start.size(); ++ i) bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
m_vertex_to_face_start[i] += m_vertex_to_face_start[i - 1]; bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
// 3) Scatter indices of faces incident to a vertex into m_vertex_faces_all. };
m_vertex_faces_all.assign(m_vertex_to_face_start.back(), 0);
for (size_t face_idx = 0; face_idx < its.indices.size(); ++ face_idx) {
auto &face = its.indices[face_idx];
for (int i = 0; i < 3; ++ i)
m_vertex_faces_all[m_vertex_to_face_start[face(i)] ++] = face_idx;
}
// 4) The previous loop modified m_vertex_to_face_start. Revert the change.
for (auto i = int(m_vertex_to_face_start.size()) - 1; i > 0; -- i)
m_vertex_to_face_start[i] = m_vertex_to_face_start[i - 1];
m_vertex_to_face_start.front() = 0;
}
// Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
// Two neighbor faces share a unique edge identifier even if they are flipped.
template<typename ThrowOnCancelCallback> template<typename ThrowOnCancelCallback>
static inline std::vector<Vec3i> create_face_neighbors_index_impl(const indexed_triangle_set &its, ThrowOnCancelCallback throw_on_cancel) static std::vector<EdgeToFace> create_edge_map(
const indexed_triangle_set &its, ThrowOnCancelCallback throw_on_cancel)
{ {
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
std::vector<EdgeToFace> edges_map; std::vector<EdgeToFace> edges_map;
edges_map.assign(its.indices.size() * 3, EdgeToFace()); edges_map.assign(its.indices.size() * 3, EdgeToFace());
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx) for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
@ -750,6 +725,18 @@ static inline std::vector<Vec3i> create_face_neighbors_index_impl(const indexed_
throw_on_cancel(); throw_on_cancel();
std::sort(edges_map.begin(), edges_map.end()); std::sort(edges_map.begin(), edges_map.end());
return edges_map;
}
// Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
// Two neighbor faces share a unique edge identifier even if they are flipped.
template<typename ThrowOnCancelCallback>
static inline std::vector<Vec3i> create_face_neighbors_index_impl(const indexed_triangle_set &its, ThrowOnCancelCallback throw_on_cancel)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
std::vector<EdgeToFace> edges_map = create_edge_map(its, throw_on_cancel);
// Assign a unique common edge id to touching triangle edges. // Assign a unique common edge id to touching triangle edges.
int num_edges = 0; int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) { for (size_t i = 0; i < edges_map.size(); ++ i) {
@ -1183,132 +1170,59 @@ float its_volume(const indexed_triangle_set &its)
return volume; return volume;
} }
std::vector<size_t> its_find_unvisited_neighbors( std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its)
const indexed_triangle_set &its,
const FaceNeighborIndex & neighbor_index,
std::vector<bool> & visited)
{ {
using stack_el = size_t; return its_split<>(its);
}
auto facestack = reserve_vector<stack_el>(its.indices.size()); bool its_is_splittable(const indexed_triangle_set &its)
auto push = [&facestack] (const stack_el &s) { facestack.emplace_back(s); }; {
auto pop = [&facestack] () -> stack_el { return its_is_splittable<>(its);
stack_el ret = facestack.back(); }
facestack.pop_back();
return ret;
};
// find the next unvisited facet and push the index std::vector<Vec3i> its_create_neighbors_index(const indexed_triangle_set &its)
auto facet = std::find(visited.begin(), visited.end(), false); {
std::vector<size_t> ret; std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
if (facet != visited.end()) { std::vector<EdgeToFace> edges_map = create_edge_map(its, []{});
ret.reserve(its.indices.size());
auto idx = size_t(facet - visited.begin());
push(idx);
ret.emplace_back(idx);
visited[idx] = true;
}
while (!facestack.empty()) { // Assign a unique common edge id to touching triangle edges.
size_t facet_idx = pop(); for (size_t i = 0; i < edges_map.size(); ++ i) {
const auto &neighbors = neighbor_index[facet_idx]; EdgeToFace &edge_i = edges_map[i];
for (size_t neighbor_idx : neighbors) { if (edge_i.face == -1)
if (!visited[neighbor_idx]) { // This edge has been connected to some neighbor already.
visited[neighbor_idx] = true; continue;
push(neighbor_idx); // Unconnected edge. Find its neighbor with the correct orientation.
ret.emplace_back(neighbor_idx); size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
} }
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
// Mark the edge as connected.
edge_j.face = -1;
} }
} }
return ret; return out;
}
bool its_is_splittable(const indexed_triangle_set &its,
const FaceNeighborIndex & neighbor_index)
{
std::vector<bool> visited(its.indices.size(), false);
its_find_unvisited_neighbors(its, neighbor_index, visited);
// Try finding an unvisited facet. If there are none, the mesh is not splittable.
auto it = std::find(visited.begin(), visited.end(), false);
return it != visited.end();
}
std::vector<indexed_triangle_set> its_split(
const indexed_triangle_set &its, const FaceNeighborIndex &neighbor_index)
{
auto ret = reserve_vector<indexed_triangle_set>(3);
its_split(its, std::back_inserter(ret), neighbor_index);
return ret;
}
FaceNeighborIndex its_create_neighbors_index(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
std::unordered_map< EdgeID, Edge > edge_index;
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
return index;
} }
} // namespace Slic3r } // namespace Slic3r

View File

@ -139,70 +139,11 @@ int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit = true
using FaceNeighborIndex = std::vector< std::array<size_t, 3> >; using FaceNeighborIndex = std::vector< std::array<size_t, 3> >;
// Create index that gives neighbor faces for each face. Ignores face orientations. // Create index that gives neighbor faces for each face. Ignores face orientations.
FaceNeighborIndex its_create_neighbors_index(const indexed_triangle_set &its); std::vector<Vec3i> its_create_neighbors_index(const indexed_triangle_set &its);
// Visit all unvisited neighboring facets that are reachable from the first unvisited facet, std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its);
// and return them.
std::vector<size_t> its_find_unvisited_neighbors(
const indexed_triangle_set &its,
const FaceNeighborIndex & neighbor_index,
std::vector<bool> & visited);
// Splits a mesh into multiple meshes when possible. bool its_is_splittable(const indexed_triangle_set &its);
template<class OutputIt>
void its_split(const indexed_triangle_set & its,
OutputIt out_it,
const FaceNeighborIndex &neighbor_index_ = {})
{
const auto &neighbor_index = neighbor_index_.empty() ?
its_create_neighbors_index(its) :
neighbor_index_;
std::vector<bool> visited(its.indices.size(), false);
const size_t UNASSIGNED = its.vertices.size();
std::vector<size_t> vidx_conv(its.vertices.size());
for (;;) {
std::vector<size_t> facets =
its_find_unvisited_neighbors(its, neighbor_index, visited);
if (facets.empty())
break;
std::fill(vidx_conv.begin(), vidx_conv.end(), UNASSIGNED);
// Create a new mesh for the part that was just split off.
indexed_triangle_set mesh;
// Assign the facets to the new mesh.
for (size_t face_id : facets) {
const auto &face = its.indices[face_id];
Vec3i new_face;
for (size_t v = 0; v < 3; ++v) {
auto vi = face(v);
if (vidx_conv[vi] == UNASSIGNED) {
vidx_conv[vi] = mesh.vertices.size();
mesh.vertices.emplace_back(its.vertices[size_t(vi)]);
}
new_face(v) = vidx_conv[vi];
}
mesh.indices.emplace_back(new_face);
}
out_it = std::move(mesh);
}
}
std::vector<indexed_triangle_set> its_split(
const indexed_triangle_set &its,
const FaceNeighborIndex & neighbor_index = {});
bool its_is_splittable(const indexed_triangle_set &its,
const FaceNeighborIndex & neighbor_index = {});
// Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors. // Shrink the vectors of its.vertices and its.faces to a minimum size by reallocating the two vectors.
void its_shrink_to_fit(indexed_triangle_set &its); void its_shrink_to_fit(indexed_triangle_set &its);

View File

@ -4,15 +4,12 @@
#include "libslic3r/TriangleMesh.hpp" #include "libslic3r/TriangleMesh.hpp"
//#include "libnest2d/tools/benchmark.h"
TEST_CASE("Split empty mesh", "[its_split][its]") { TEST_CASE("Split empty mesh", "[its_split][its]") {
using namespace Slic3r; using namespace Slic3r;
indexed_triangle_set its; indexed_triangle_set its;
std::vector<indexed_triangle_set> res; std::vector<indexed_triangle_set> res = its_split(its);
its_split(its, std::back_inserter(res));
REQUIRE(res.empty()); REQUIRE(res.empty());
} }
@ -22,8 +19,7 @@ TEST_CASE("Split simple mesh consisting of one part", "[its_split][its]") {
TriangleMesh cube = make_cube(10., 10., 10.); TriangleMesh cube = make_cube(10., 10., 10.);
std::vector<indexed_triangle_set> res; std::vector<indexed_triangle_set> res = its_split(cube.its);
its_split(cube.its, std::back_inserter(res));
REQUIRE(res.size() == 1); REQUIRE(res.size() == 1);
REQUIRE(res.front().indices.size() == cube.its.indices.size()); REQUIRE(res.front().indices.size() == cube.its.indices.size());
@ -41,14 +37,7 @@ TEST_CASE("Split two merged spheres", "[its_split][its]") {
sphere1.merge(sphere2); sphere1.merge(sphere2);
sphere1.require_shared_vertices(); sphere1.require_shared_vertices();
// Benchmark bench; std::vector<indexed_triangle_set> parts = its_split(sphere1.its);
// bench.start();
auto index = its_create_neighbors_index(sphere1.its);
std::vector<indexed_triangle_set> parts = its_split(sphere1.its, index);
// bench.stop();
// std::cout << "split took " << bench.getElapsedSec() << " seconds." << std::endl;
REQUIRE(parts.size() == 2); REQUIRE(parts.size() == 2);
@ -60,32 +49,3 @@ TEST_CASE("Split two merged spheres", "[its_split][its]") {
#endif #endif
} }
//TEST_CASE("Split two merged spheres TriangleMesh", "[its_split][its]") {
// using namespace Slic3r;
// TriangleMesh sphere1 = make_sphere(10., 2 * PI / 200.), sphere2 = sphere1;
// sphere1.translate(-5.f, 0.f, 0.f);
// sphere2.translate( 5.f, 0.f, 0.f);
// sphere1.merge(sphere2);
// sphere1.require_shared_vertices();
// Benchmark bench;
// bench.start();
// TriangleMeshPtrs parts = sphere1.split();
// for (auto &part : parts) part->require_shared_vertices();
// bench.stop();
// std::cout << "split took " << bench.getElapsedSec() << " seconds." << std::endl;
// REQUIRE(parts.size() == 2);
////#ifndef NDEBUG
//// size_t part_idx = 0;
//// for (auto &part : parts) {
//// its_write_obj(part->its, (std::string("part_its") + std::to_string(part_idx++) + ".obj").c_str());
//// }
////#endif
//}