PrusaSlicer-NonPlainar/xs/src/libslic3r/Polygon.cpp

295 lines
7.6 KiB
C++
Raw Normal View History

#include <myinit.h>
#include "ClipperUtils.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
Polygon::operator Polygons() const
{
Polygons pp;
pp.push_back(*this);
return pp;
}
Polygon::operator Polyline() const
{
Polyline polyline;
this->split_at_first_point(&polyline);
return polyline;
}
Point&
Polygon::operator[](Points::size_type idx)
{
return this->points[idx];
}
const Point&
Polygon::operator[](Points::size_type idx) const
{
return this->points[idx];
}
Point
Polygon::last_point() const
{
return this->points.front(); // last point == first point for polygons
}
Lines
Polygon::lines() const
{
Lines lines;
this->lines(&lines);
return lines;
}
void
Polygon::lines(Lines* lines) const
{
lines->reserve(lines->size() + this->points.size());
2013-09-13 13:19:15 +00:00
for (Points::const_iterator it = this->points.begin(); it != this->points.end()-1; ++it) {
lines->push_back(Line(*it, *(it + 1)));
}
lines->push_back(Line(this->points.back(), this->points.front()));
}
void
Polygon::split_at_vertex(const Point &point, Polyline* polyline) const
2013-08-26 20:39:35 +00:00
{
// find index of point
for (Points::const_iterator it = this->points.begin(); it != this->points.end(); ++it) {
if (it->coincides_with(point)) {
this->split_at_index(it - this->points.begin(), polyline);
return;
}
2013-08-26 20:39:35 +00:00
}
2013-09-13 13:19:15 +00:00
CONFESS("Point not found");
2013-08-26 20:39:35 +00:00
}
void
Polygon::split_at_index(int index, Polyline* polyline) const
{
polyline->points.reserve(this->points.size() + 1);
2013-09-13 13:19:15 +00:00
for (Points::const_iterator it = this->points.begin() + index; it != this->points.end(); ++it)
polyline->points.push_back(*it);
2013-09-13 13:19:15 +00:00
for (Points::const_iterator it = this->points.begin(); it != this->points.begin() + index + 1; ++it)
polyline->points.push_back(*it);
}
void
Polygon::split_at_first_point(Polyline* polyline) const
{
this->split_at_index(0, polyline);
}
void
Polygon::equally_spaced_points(double distance, Points* points) const
{
Polyline polyline;
this->split_at_first_point(&polyline);
polyline.equally_spaced_points(distance, points);
}
2013-08-26 20:44:40 +00:00
double
2013-08-26 20:50:26 +00:00
Polygon::area() const
2013-08-26 20:44:40 +00:00
{
2013-11-20 14:59:19 +00:00
ClipperLib::Path p;
Slic3rMultiPoint_to_ClipperPath(*this, &p);
2013-08-26 20:44:40 +00:00
return ClipperLib::Area(p);
}
bool
2013-08-26 20:50:26 +00:00
Polygon::is_counter_clockwise() const
{
2013-11-21 13:15:38 +00:00
ClipperLib::Path p;
Slic3rMultiPoint_to_ClipperPath(*this, &p);
2013-11-21 13:15:38 +00:00
return ClipperLib::Orientation(p);
}
2013-08-26 23:26:44 +00:00
bool
Polygon::is_clockwise() const
{
return !this->is_counter_clockwise();
}
bool
Polygon::make_counter_clockwise()
{
if (!this->is_counter_clockwise()) {
this->reverse();
return true;
}
return false;
}
bool
Polygon::make_clockwise()
{
if (this->is_counter_clockwise()) {
this->reverse();
return true;
}
return false;
}
bool
Polygon::is_valid() const
{
return this->points.size() >= 3;
}
bool
Polygon::contains(const Point &point) const
{
// http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
2013-11-21 17:42:16 +00:00
bool result = false;
Points::const_iterator i = this->points.begin();
Points::const_iterator j = this->points.end() - 1;
for (; i != this->points.end(); j = i++) {
if ( ((i->y > point.y) != (j->y > point.y))
&& ((double)point.x < (double)(j->x - i->x) * (double)(point.y - i->y) / (double)(j->y - i->y) + (double)i->x) )
result = !result;
}
return result;
}
Polygons
Polygon::simplify(double tolerance) const
{
// repeat first point at the end in order to apply Douglas-Peucker
// on the whole polygon
Points points = this->points;
points.push_back(points.front());
Polygon p(MultiPoint::_douglas_peucker(points, tolerance));
p.points.pop_back();
2013-11-22 01:16:10 +00:00
Polygons pp;
pp.push_back(p);
simplify_polygons(pp, &pp);
2013-11-22 01:16:10 +00:00
return pp;
}
void
Polygon::simplify(double tolerance, Polygons &polygons) const
{
Polygons pp = this->simplify(tolerance);
polygons.reserve(polygons.size() + pp.size());
polygons.insert(polygons.end(), pp.begin(), pp.end());
}
// Only call this on convex polygons or it will return invalid results
void
Polygon::triangulate_convex(Polygons* polygons) const
{
for (Points::const_iterator it = this->points.begin() + 2; it != this->points.end(); ++it) {
Polygon p;
p.points.reserve(3);
p.points.push_back(this->points.front());
p.points.push_back(*(it-1));
p.points.push_back(*it);
2014-04-24 15:06:16 +00:00
// this should be replaced with a more efficient call to a merge_collinear_segments() method
if (p.area() > 0) polygons->push_back(p);
}
}
// center of mass
Point
Polygon::centroid() const
{
double area_temp = this->area();
double x_temp = 0;
double y_temp = 0;
Polyline polyline;
this->split_at_first_point(&polyline);
for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) {
x_temp += (double)( point->x + (point+1)->x ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
y_temp += (double)( point->y + (point+1)->y ) * ( (double)point->x*(point+1)->y - (double)(point+1)->x*point->y );
}
return Point(x_temp/(6*area_temp), y_temp/(6*area_temp));
}
2014-11-15 22:06:15 +00:00
std::string
Polygon::wkt() const
{
std::ostringstream wkt;
wkt << "POLYGON((";
for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
wkt << p->x << " " << p->y;
if (p != this->points.end()-1) wkt << ",";
}
wkt << "))";
return wkt.str();
}
// find all concave vertices (i.e. having an internal angle greater than the supplied angle) */
void
Polygon::concave_points(double angle, Points* points) const
{
angle = 2*PI - angle;
// check whether first point forms a concave angle
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle)
points->push_back(this->points.front());
// check whether points 1..(n-1) form concave angles
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
if (p->ccw_angle(*(p-1), *(p+1)) <= angle) points->push_back(*p);
}
// check whether last point forms a concave angle
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle)
points->push_back(this->points.back());
}
void
Polygon::concave_points(Points* points) const
{
this->concave_points(PI, points);
}
// find all convex vertices (i.e. having an internal angle smaller than the supplied angle) */
void
Polygon::convex_points(double angle, Points* points) const
{
angle = 2*PI - angle;
// check whether first point forms a convex angle
if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle)
points->push_back(this->points.front());
// check whether points 1..(n-1) form convex angles
for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) {
if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points->push_back(*p);
}
// check whether last point forms a convex angle
if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle)
points->push_back(this->points.back());
}
void
Polygon::convex_points(Points* points) const
{
this->convex_points(PI, points);
}
#ifdef SLIC3RXS
REGISTER_CLASS(Polygon, "Polygon");
void
Polygon::from_SV_check(SV* poly_sv)
{
if (sv_isobject(poly_sv) && !sv_isa(poly_sv, perl_class_name(this)) && !sv_isa(poly_sv, perl_class_name_ref(this)))
CONFESS("Not a valid %s object", perl_class_name(this));
MultiPoint::from_SV_check(poly_sv);
}
#endif
}