PrusaSlicer-NonPlainar/src/libslic3r/MTUtils.hpp

250 lines
7.9 KiB
C++
Raw Normal View History

#ifndef MTUTILS_HPP
#define MTUTILS_HPP
#include <atomic> // for std::atomic_flag and memory orders
#include <mutex> // for std::lock_guard
#include <functional> // for std::function
#include <utility> // for std::forward
2019-06-18 09:24:50 +00:00
#include <vector>
#include <algorithm>
#include <cmath>
namespace Slic3r {
/// Handy little spin mutex for the cached meshes.
/// Implements the "Lockable" concept
class SpinMutex {
std::atomic_flag m_flg;
static const /*constexpr*/ auto MO_ACQ = std::memory_order_acquire;
static const /*constexpr*/ auto MO_REL = std::memory_order_release;
public:
inline SpinMutex() { m_flg.clear(MO_REL); }
inline void lock() { while(m_flg.test_and_set(MO_ACQ)); }
inline bool try_lock() { return !m_flg.test_and_set(MO_ACQ); }
inline void unlock() { m_flg.clear(MO_REL); }
};
/// A wrapper class around arbitrary object that needs thread safe caching.
template<class T> class CachedObject {
public:
// Method type which refreshes the object when it has been invalidated
using Setter = std::function<void(T&)>;
private:
T m_obj; // the object itself
bool m_valid; // invalidation flag
SpinMutex m_lck; // to make the caching thread safe
// the setter will be called just before the object's const value is about
// to be retrieved.
std::function<void(T&)> m_setter;
public:
// Forwarded constructor
template<class...Args> inline CachedObject(Setter fn, Args&&...args):
m_obj(std::forward<Args>(args)...), m_valid(false), m_setter(fn) {}
// invalidate the value of the object. The object will be refreshed at the
// next retrieval (Setter will be called). The data that is used in
// the setter function should be guarded as well during modification so the
// modification has to take place in fn.
inline void invalidate(std::function<void()> fn) {
std::lock_guard<SpinMutex> lck(m_lck); fn(); m_valid = false;
}
// Get the const object properly updated.
inline const T& get() {
std::lock_guard<SpinMutex> lck(m_lck);
if(!m_valid) { m_setter(m_obj); m_valid = true; }
return m_obj;
}
};
/// An std compatible random access iterator which uses indices to the source
/// vector thus resistant to invalidation caused by relocations. It also "knows"
/// its container. No comparison is neccesary to the container "end()" iterator.
/// The template can be instantiated with a different value type than that of
/// the container's but the types must be compatible. E.g. a base class of the
/// contained objects is compatible.
///
/// For a constant iterator, one can instantiate this template with a value
/// type preceded with 'const'.
template<class Vector, // The container type, must be random access...
class Value = typename Vector::value_type // The value type
>
class IndexBasedIterator {
static const size_t NONE = size_t(-1);
std::reference_wrapper<Vector> m_index_ref;
size_t m_idx = NONE;
public:
using value_type = Value;
using pointer = Value *;
using reference = Value &;
using difference_type = long;
using iterator_category = std::random_access_iterator_tag;
inline explicit
IndexBasedIterator(Vector& index, size_t idx):
m_index_ref(index), m_idx(idx) {}
// Post increment
inline IndexBasedIterator operator++(int) {
IndexBasedIterator cpy(*this); ++m_idx; return cpy;
}
inline IndexBasedIterator operator--(int) {
IndexBasedIterator cpy(*this); --m_idx; return cpy;
}
inline IndexBasedIterator& operator++() {
++m_idx; return *this;
}
inline IndexBasedIterator& operator--() {
--m_idx; return *this;
}
inline IndexBasedIterator& operator+=(difference_type l) {
m_idx += size_t(l); return *this;
}
inline IndexBasedIterator operator+(difference_type l) {
auto cpy = *this; cpy += l; return cpy;
}
inline IndexBasedIterator& operator-=(difference_type l) {
m_idx -= size_t(l); return *this;
}
inline IndexBasedIterator operator-(difference_type l) {
auto cpy = *this; cpy -= l; return cpy;
}
operator difference_type() { return difference_type(m_idx); }
/// Tesing the end of the container... this is not possible with std
/// iterators.
inline bool is_end() const { return m_idx >= m_index_ref.get().size();}
inline Value & operator*() const {
assert(m_idx < m_index_ref.get().size());
return m_index_ref.get().operator[](m_idx);
}
inline Value * operator->() const {
assert(m_idx < m_index_ref.get().size());
return &m_index_ref.get().operator[](m_idx);
}
/// If both iterators point past the container, they are equal...
inline bool operator ==(const IndexBasedIterator& other) {
size_t e = m_index_ref.get().size();
return m_idx == other.m_idx || (m_idx >= e && other.m_idx >= e);
}
inline bool operator !=(const IndexBasedIterator& other) {
return !(*this == other);
}
inline bool operator <=(const IndexBasedIterator& other) {
return (m_idx < other.m_idx) || (*this == other);
}
inline bool operator <(const IndexBasedIterator& other) {
return m_idx < other.m_idx && (*this != other);
}
inline bool operator >=(const IndexBasedIterator& other) {
return m_idx > other.m_idx || *this == other;
}
inline bool operator >(const IndexBasedIterator& other) {
return m_idx > other.m_idx && *this != other;
}
};
/// A very simple range concept implementation with iterator-like objects.
template<class It> class Range {
It from, to;
public:
// The class is ready for range based for loops.
It begin() const { return from; }
It end() const { return to; }
// The iterator type can be obtained this way.
using Type = It;
Range() = default;
Range(It &&b, It &&e):
from(std::forward<It>(b)), to(std::forward<It>(e)) {}
// Some useful container-like methods...
inline size_t size() const { return end() - begin(); }
inline bool empty() const { return size() == 0; }
};
template<class C> bool all_of(const C &container) {
return std::all_of(container.begin(),
container.end(),
[](const typename C::value_type &v) {
return static_cast<bool>(v);
});
}
2019-06-18 09:24:50 +00:00
template<class T>
struct remove_cvref
{
using type =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
};
template<class T>
using remove_cvref_t = typename remove_cvref<T>::type;
template<template<class> class C, class T>
class Container: public C<remove_cvref_t<T>> {
public:
explicit Container(size_t count, T&& initval):
C<remove_cvref_t<T>>(count, initval) {}
};
template<class T> using DefaultContainer = std::vector<T>;
/// Exactly like Matlab https://www.mathworks.com/help/matlab/ref/linspace.html
template<class T, class I, template<class> class C = DefaultContainer>
inline C<remove_cvref_t<T>> linspace(const T &start, const T &stop, const I &n)
{
Container<C, T> vals(n, T());
T stride = (stop - start) / n;
size_t i = 0;
std::generate(vals.begin(), vals.end(), [&i, start, stride] {
return start + i++ * stride;
});
return vals;
}
/// A set of equidistant values starting from 'start' (inclusive), ending
/// in the closest multiple of 'stride' less than or equal to 'end' and
/// leaving 'stride' space between each value.
/// Very similar to Matlab [start:stride:end] notation.
template<class T, template<class> class C = DefaultContainer>
inline C<remove_cvref_t<T>> grid(const T &start, const T &stop, const T &stride)
{
Container<C, T> vals(size_t(std::ceil((stop - start) / stride)), T());
int i = 0;
std::generate(vals.begin(), vals.end(), [&i, start, stride] {
return start + i++ * stride;
});
return vals;
}
}
#endif // MTUTILS_HPP