PrusaSlicer-NonPlainar/src/libslic3r/SLA/SLASupportTreeIGL.cpp

484 lines
15 KiB
C++
Raw Normal View History

#include <cmath>
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLABoilerPlate.hpp"
#include "SLA/SLASpatIndex.hpp"
// Workaround: IGL signed_distance.h will define PI in the igl namespace.
#undef PI
// HEAVY headers... takes eternity to compile
// for concave hull merging decisions
#include "SLABoostAdapter.hpp"
#include "boost/geometry/index/rtree.hpp"
#include <igl/ray_mesh_intersect.h>
#include <igl/point_mesh_squared_distance.h>
#include <igl/remove_duplicate_vertices.h>
#include <igl/signed_distance.h>
2018-11-08 16:15:10 +00:00
#include <tbb/parallel_for.h>
#include "SLASpatIndex.hpp"
#include "ClipperUtils.hpp"
namespace Slic3r {
namespace sla {
// Bring back PI from the igl namespace
using igl::PI;
/* **************************************************************************
* SpatIndex implementation
* ************************************************************************** */
class SpatIndex::Impl {
public:
using BoostIndex = boost::geometry::index::rtree< SpatElement,
boost::geometry::index::rstar<16, 4> /* ? */ >;
BoostIndex m_store;
};
SpatIndex::SpatIndex(): m_impl(new Impl()) {}
SpatIndex::~SpatIndex() {}
SpatIndex::SpatIndex(const SpatIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
SpatIndex::SpatIndex(SpatIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
SpatIndex& SpatIndex::operator=(const SpatIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
SpatIndex& SpatIndex::operator=(SpatIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void SpatIndex::insert(const SpatElement &el)
{
m_impl->m_store.insert(el);
}
bool SpatIndex::remove(const SpatElement& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<SpatElement>
SpatIndex::query(std::function<bool(const SpatElement &)> fn)
{
namespace bgi = boost::geometry::index;
std::vector<SpatElement> ret;
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
return ret;
}
std::vector<SpatElement> SpatIndex::nearest(const Vec3d &el, unsigned k = 1)
{
namespace bgi = boost::geometry::index;
std::vector<SpatElement> ret; ret.reserve(k);
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
return ret;
}
size_t SpatIndex::size() const
{
return m_impl->m_store.size();
}
2019-03-05 15:28:18 +00:00
void SpatIndex::foreach(std::function<void (const SpatElement &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
/* ****************************************************************************
* EigenMesh3D implementation
* ****************************************************************************/
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
public:
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
};
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
static const double dEPS = 1e-6;
const stl_file& stl = tmesh.stl;
auto&& bb = tmesh.bounding_box();
m_ground_level += bb.min(Z);
Eigen::MatrixXd V;
Eigen::MatrixXi F;
V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
const stl_facet &facet = stl.facet_start[i];
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
F(i, 0) = int(3*i+0);
F(i, 1) = int(3*i+1);
F(i, 2) = int(3*i+2);
}
// We will convert this to a proper 3d mesh with no duplicate points.
Eigen::VectorXi SVI, SVJ;
igl::remove_duplicate_vertices(V, F, dEPS, m_V, SVI, SVJ, m_F);
// Build the AABB accelaration tree
m_aabb->init(m_V, m_F);
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
m_aabb->windtree.set_mesh(m_V, m_F);
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
}
EigenMesh3D::~EigenMesh3D() {}
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
m_aabb( new AABBImpl(*other.m_aabb) ) {}
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
{
m_V = other.m_V;
m_F = other.m_F;
m_ground_level = other.m_ground_level;
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
}
EigenMesh3D::hit_result
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
{
2019-01-15 10:09:00 +00:00
igl::Hit hit;
hit.t = std::numeric_limits<float>::infinity();
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
hit_result ret(*this);
ret.m_t = double(hit.t);
ret.m_dir = dir;
ret.m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_face_id = hit.id;
return ret;
}
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
p, sign, sqdst, i, c);
return si_result(sign * std::sqrt(sqdst), i, c);
}
bool EigenMesh3D::inside(const Vec3d &p) const {
return m_aabb->windtree.inside(p);
}
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double sqdst = 0;
Eigen::Matrix<double, 1, 3> pp = p;
Eigen::Matrix<double, 1, 3> cc;
sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
c = cc;
return sqdst;
}
2019-01-15 10:09:00 +00:00
/* ****************************************************************************
* Misc functions
* ****************************************************************************/
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
double eps = 0.05)
{
using Line3D = Eigen::ParametrizedLine<double, 3>;
auto line = Line3D::Through(e1, e2);
double d = line.distance(p);
return std::abs(d) < eps;
}
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
auto p = pp2 - pp1;
return std::sqrt(p.transpose() * p);
}
2019-02-25 12:24:01 +00:00
PointSet normals(const PointSet& points,
const EigenMesh3D& mesh,
double eps,
2019-02-26 17:09:33 +00:00
std::function<void()> thr, // throw on cancel
const std::vector<unsigned>& pt_indices = {})
2019-02-25 12:24:01 +00:00
{
if(points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
return {};
std::vector<unsigned> range = pt_indices;
if(range.empty()) {
range.resize(size_t(points.rows()), 0);
std::iota(range.begin(), range.end(), 0);
}
2019-02-26 17:09:33 +00:00
PointSet ret(range.size(), 3);
tbb::parallel_for(size_t(0), range.size(),
2019-02-26 17:09:33 +00:00
[&ret, &range, &mesh, &points, thr, eps](size_t ridx)
{
2019-02-26 17:09:33 +00:00
thr();
auto eidx = Eigen::Index(range[ridx]);
int faceid = 0;
Vec3d p;
2018-11-08 16:15:10 +00:00
2019-02-26 17:09:33 +00:00
mesh.squared_distance(points.row(eidx), faceid, p);
2019-02-26 17:09:33 +00:00
auto trindex = mesh.F().row(faceid);
const Vec3d& p1 = mesh.V().row(trindex(0));
const Vec3d& p2 = mesh.V().row(trindex(1));
const Vec3d& p3 = mesh.V().row(trindex(2));
// We should check if the point lies on an edge of the hosting triangle.
2019-02-25 12:24:01 +00:00
// If it does then all the other triangles using the same two points
// have to be searched and the final normal should be some kind of
// aggregation of the participating triangle normals. We should also
// consider the cases where the support point lies right on a vertex
// of its triangle. The procedure is the same, get the neighbor
// triangles and calculate an average normal.
// mark the vertex indices of the edge. ia and ib marks and edge ic
// will mark a single vertex.
int ia = -1, ib = -1, ic = -1;
if(std::abs(distance(p, p1)) < eps) {
ic = trindex(0);
}
else if(std::abs(distance(p, p2)) < eps) {
ic = trindex(1);
}
else if(std::abs(distance(p, p3)) < eps) {
ic = trindex(2);
}
else if(point_on_edge(p, p1, p2, eps)) {
ia = trindex(0); ib = trindex(1);
}
else if(point_on_edge(p, p2, p3, eps)) {
ia = trindex(1); ib = trindex(2);
}
else if(point_on_edge(p, p1, p3, eps)) {
ia = trindex(0); ib = trindex(2);
}
// vector for the neigboring triangles including the detected one.
std::vector<Vec3i> neigh;
if(ic >= 0) { // The point is right on a vertex of the triangle
for(int n = 0; n < mesh.F().rows(); ++n) {
2019-02-26 17:09:33 +00:00
thr();
Vec3i ni = mesh.F().row(n);
if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
neigh.emplace_back(ni);
}
}
else if(ia >= 0 && ib >= 0) { // the point is on and edge
// now get all the neigboring triangles
for(int n = 0; n < mesh.F().rows(); ++n) {
2019-02-26 17:09:33 +00:00
thr();
Vec3i ni = mesh.F().row(n);
if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
neigh.emplace_back(ni);
}
}
// Calculate the normals for the neighboring triangles
std::vector<Vec3d> neighnorms; neighnorms.reserve(neigh.size());
for(const Vec3i& tri : neigh) {
const Vec3d& pt1 = mesh.V().row(tri(0));
const Vec3d& pt2 = mesh.V().row(tri(1));
const Vec3d& pt3 = mesh.V().row(tri(2));
Eigen::Vector3d U = pt2 - pt1;
Eigen::Vector3d V = pt3 - pt1;
neighnorms.emplace_back(U.cross(V).normalized());
}
// Throw out duplicates. They would cause trouble with summing. We will
// use std::unique which works on sorted ranges. We will sort by the
// coefficient-wise sum of the normals. It should force the same
// elements to be consecutive.
std::sort(neighnorms.begin(), neighnorms.end(),
[](const Vec3d& v1, const Vec3d& v2){
return v1.sum() < v2.sum();
});
auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
[](const Vec3d& n1, const Vec3d& n2) {
// Compare normals for equivalence. This is controvers stuff.
auto deq = [](double a, double b) { return std::abs(a-b) < 1e-3; };
return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z));
});
if(!neighnorms.empty()) { // there were neighbors to count with
2018-12-20 14:22:58 +00:00
// sum up the normals and then normalize the result again.
// This unification seems to be enough.
Vec3d sumnorm(0, 0, 0);
sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
sumnorm.normalize();
2019-02-26 17:09:33 +00:00
ret.row(long(ridx)) = sumnorm;
}
else { // point lies safely within its triangle
Eigen::Vector3d U = p2 - p1;
Eigen::Vector3d V = p3 - p1;
2019-02-26 17:09:33 +00:00
ret.row(long(ridx)) = U.cross(V).normalized();
}
2019-02-26 17:09:33 +00:00
});
return ret;
}
2019-03-05 15:28:18 +00:00
namespace bgi = boost::geometry::index;
using Index3D = bgi::rtree< SpatElement, bgi::rstar<16, 4> /* ? */ >;
ClusteredPoints cluster(Index3D& sindex, unsigned max_points,
std::function<std::vector<SpatElement>(const Index3D&, const SpatElement&)> qfn)
{
using Elems = std::vector<SpatElement>;
// Recursive function for visiting all the points in a given distance to
// each other
std::function<void(Elems&, Elems&)> group =
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
{
for(auto& p : pts) {
std::vector<SpatElement> tmp = qfn(sindex, p);
auto cmp = [](const SpatElement& e1, const SpatElement& e2){
return e1.second < e2.second;
};
std::sort(tmp.begin(), tmp.end(), cmp);
Elems newpts;
std::set_difference(tmp.begin(), tmp.end(),
cluster.begin(), cluster.end(),
std::back_inserter(newpts), cmp);
int c = max_points && newpts.size() + cluster.size() > max_points?
int(max_points - cluster.size()) : int(newpts.size());
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
std::sort(cluster.begin(), cluster.end(), cmp);
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
group(newpts, cluster);
}
};
std::vector<Elems> clusters;
for(auto it = sindex.begin(); it != sindex.end();) {
Elems cluster = {};
Elems pts = {*it};
group(pts, cluster);
for(auto& c : cluster) sindex.remove(c);
it = sindex.begin();
clusters.emplace_back(cluster);
}
ClusteredPoints result;
for(auto& cluster : clusters) {
result.emplace_back();
for(auto c : cluster) result.back().emplace_back(c.second);
}
return result;
}
namespace {
std::vector<SpatElement> distance_queryfn(const Index3D& sindex,
const SpatElement& p,
double dist,
unsigned max_points)
{
std::vector<SpatElement> tmp; tmp.reserve(max_points);
sindex.query(
bgi::nearest(p.first, max_points),
std::back_inserter(tmp)
);
for(auto it = tmp.begin(); it < tmp.end(); ++it)
if(distance(p.first, it->first) > dist) it = tmp.erase(it);
return tmp;
}
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
2019-03-05 15:28:18 +00:00
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
double dist,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
2019-03-05 15:28:18 +00:00
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const SpatElement& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
std::function<bool(const SpatElement&, const SpatElement&)> predicate,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[max_points, predicate](const Index3D& sidx, const SpatElement& p)
{
std::vector<SpatElement> tmp; tmp.reserve(max_points);
sidx.query(bgi::satisfies([p, predicate](const SpatElement& e){
return predicate(p, e);
}), std::back_inserter(tmp));
return tmp;
});
2019-03-05 15:28:18 +00:00
}
2019-03-05 15:28:18 +00:00
ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
2019-03-05 15:28:18 +00:00
// Build the index
for(Eigen::Index i = 0; i < pts.rows(); i++)
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const SpatElement& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
}
}