1) Removed virtual methods. There was not really need for them.
2) Some of the virtual methods were using conversion to Lines, which
was unnecessary and expensive.
3) Removed some nearest element search methods from Point.
provided for Perl bindings and their semantic was confusing.
Implemented free function angle() to measure angle between two vectors.
Reworked Polygon::convex/concave_points(), changed the meaning of their
angle threshold parameter.
Removed some unused methods from Perl bindings and tests.
Reworked the "wipe inside at the external perimeter" function
after Point::ccw_angle() was removed.
circular, convex, concave) and performs efficient collision detection agains these build
volumes. As of now, collision detection is performed against a convex
hull of a concave build volume for efficency.
GCodeProcessor::Result renamed out of GCodeProcessor to GCodeProcessorResult,
so it could be forward declared.
Plater newly exports BuildVolume, not Bed3D. Bed3D is a rendering class,
while BuildVolume is a purely geometric class.
Reduced usage of global wxGetApp, the Bed3D is passed as a parameter
to View3D/Preview/GLCanvas.
Convex hull code was extracted from Geometry.cpp/hpp to Geometry/ConvexHulll.cpp,hpp.
New test inside_convex_polygon().
New efficent point inside polygon test: Decompose convex hull
to bottom / top parts and use the decomposition to detect point inside
a convex polygon in O(log n). decompose_convex_polygon_top_bottom(),
inside_convex_polygon().
New Circle constructing functions: circle_ransac() and circle_taubin_newton().
New polygon_is_convex() test with unit tests.
1) Octree is built directly from the triangle mesh by checking
overlap of a triangle with an octree cell. This shall produce
a tighter octree with less dense cells.
2) The same method is used for both the adaptive / support cubic infill,
where for the support cubic infill the non-overhang triangles are
ignored.
The AABB tree is no more used.
3) Optimized extraction of continuous infill lines in O(1) instead of O(n^2)