PrusaSlicer-NonPlainar/src/libslic3r/SLA/Common.cpp

760 lines
24 KiB
C++
Raw Normal View History

#include <cmath>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/Clustering.hpp>
#include <libslic3r/AABBTreeIndirect.hpp>
// for concave hull merging decisions
#include <libslic3r/SLA/BoostAdapter.hpp>
#include "boost/geometry/index/rtree.hpp"
2019-07-18 14:32:04 +00:00
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <igl/remove_duplicate_vertices.h>
#ifdef SLIC3R_HOLE_RAYCASTER
#include <libslic3r/SLA/Hollowing.hpp>
#endif
2019-07-18 14:32:04 +00:00
#ifdef _MSC_VER
#pragma warning(pop)
#endif
2018-11-08 16:15:10 +00:00
namespace Slic3r {
namespace sla {
/* **************************************************************************
2019-06-17 16:06:52 +00:00
* PointIndex implementation
* ************************************************************************** */
2019-06-17 16:06:52 +00:00
class PointIndex::Impl {
public:
2019-06-17 16:06:52 +00:00
using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
boost::geometry::index::rstar<16, 4> /* ? */ >;
BoostIndex m_store;
};
2019-06-17 16:06:52 +00:00
PointIndex::PointIndex(): m_impl(new Impl()) {}
PointIndex::~PointIndex() {}
2019-06-17 16:06:52 +00:00
PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
2019-06-17 16:06:52 +00:00
PointIndex& PointIndex::operator=(const PointIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
2019-06-17 16:06:52 +00:00
PointIndex& PointIndex::operator=(PointIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
2019-06-17 16:06:52 +00:00
void PointIndex::insert(const PointIndexEl &el)
{
m_impl->m_store.insert(el);
}
2019-06-17 16:06:52 +00:00
bool PointIndex::remove(const PointIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl>
PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
{
namespace bgi = boost::geometry::index;
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl> ret;
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
return ret;
}
std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
{
namespace bgi = boost::geometry::index;
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl> ret; ret.reserve(k);
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
return ret;
}
2019-06-17 16:06:52 +00:00
size_t PointIndex::size() const
{
return m_impl->m_store.size();
}
2019-06-17 16:06:52 +00:00
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
{
for(const auto &el : m_impl->m_store) fn(el);
}
2019-06-17 16:06:52 +00:00
/* **************************************************************************
* BoxIndex implementation
* ************************************************************************** */
class BoxIndex::Impl {
public:
using BoostIndex = boost::geometry::index::
rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
2019-06-17 16:06:52 +00:00
BoostIndex m_store;
};
BoxIndex::BoxIndex(): m_impl(new Impl()) {}
BoxIndex::~BoxIndex() {}
BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void BoxIndex::insert(const BoxIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool BoxIndex::remove(const BoxIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
BoxIndex::QueryType qt)
{
namespace bgi = boost::geometry::index;
2019-06-17 16:06:52 +00:00
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
2019-06-17 16:06:52 +00:00
switch (qt) {
case qtIntersects:
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
break;
case qtWithin:
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
}
2019-06-17 16:06:52 +00:00
return ret;
}
size_t BoxIndex::size() const
{
return m_impl->m_store.size();
}
void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
2019-03-05 15:28:18 +00:00
{
for(auto& el : m_impl->m_store) fn(el);
}
/* ****************************************************************************
* EigenMesh3D implementation
* ****************************************************************************/
class EigenMesh3D::AABBImpl {
private:
AABBTreeIndirect::Tree3f m_tree;
public:
void init(const TriangleMesh& tm)
{
m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
tm.its.vertices, tm.its.indices);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, igl::Hit& hit)
{
AABBTreeIndirect::intersect_ray_first_hit(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hit);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, std::vector<igl::Hit>& hits)
{
AABBTreeIndirect::intersect_ray_all_hits(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hits);
}
double squared_distance(const TriangleMesh& tm,
const Vec3d& point, int& i, Eigen::Matrix<double, 1, 3>& closest) {
size_t idx_unsigned = 0;
Vec3d closest_vec3d(closest);
double dist = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tm.its.vertices,
tm.its.indices,
m_tree, point, idx_unsigned, closest_vec3d);
i = int(idx_unsigned);
closest = closest_vec3d;
return dist;
}
};
static const constexpr double MESH_EPS = 1e-6;
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh)
: m_aabb(new AABBImpl()), m_tm(&tmesh)
{
auto&& bb = tmesh.bounding_box();
m_ground_level += bb.min(Z);
// Build the AABB accelaration tree
m_aabb->init(tmesh);
}
EigenMesh3D::~EigenMesh3D() {}
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
m_tm(other.m_tm), m_ground_level(other.m_ground_level),
m_aabb( new AABBImpl(*other.m_aabb) ) {}
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
{
m_tm = other.m_tm;
m_ground_level = other.m_ground_level;
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
}
EigenMesh3D &EigenMesh3D::operator=(EigenMesh3D &&other) = default;
EigenMesh3D::EigenMesh3D(EigenMesh3D &&other) = default;
const std::vector<Vec3f>& EigenMesh3D::vertices() const
{
return m_tm->its.vertices;
}
const std::vector<Vec3i>& EigenMesh3D::indices() const
{
return m_tm->its.indices;
}
const Vec3f& EigenMesh3D::vertices(size_t idx) const
{
return m_tm->its.vertices[idx];
}
const Vec3i& EigenMesh3D::indices(size_t idx) const
{
return m_tm->its.indices[idx];
}
Vec3d EigenMesh3D::normal_by_face_id(int face_id) const {
return m_tm->stl.facet_start[face_id].normal.cast<double>();
}
EigenMesh3D::hit_result
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
{
assert(is_approx(dir.norm(), 1.));
2019-01-15 10:09:00 +00:00
igl::Hit hit;
hit.t = std::numeric_limits<float>::infinity();
#ifdef SLIC3R_HOLE_RAYCASTER
if (! m_holes.empty()) {
// If there are holes, the hit_results will be made by
// query_ray_hits (object) and filter_hits (holes):
return filter_hits(query_ray_hits(s, dir));
}
#endif
m_aabb->intersect_ray(*m_tm, s, dir, hit);
hit_result ret(*this);
ret.m_t = double(hit.t);
ret.m_dir = dir;
ret.m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
ret.m_normal = this->normal_by_face_id(hit.id);
ret.m_face_id = hit.id;
}
return ret;
}
std::vector<EigenMesh3D::hit_result>
EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
{
std::vector<EigenMesh3D::hit_result> outs;
std::vector<igl::Hit> hits;
m_aabb->intersect_ray(*m_tm, s, dir, hits);
// The sort is necessary, the hits are not always sorted.
std::sort(hits.begin(), hits.end(),
[](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
// Remove duplicates. They sometimes appear, for example when the ray is cast
// along an axis of a cube due to floating-point approximations in igl (?)
hits.erase(std::unique(hits.begin(), hits.end(),
[](const igl::Hit& a, const igl::Hit& b)
{ return a.t == b.t; }),
hits.end());
// Convert the igl::Hit into hit_result
outs.reserve(hits.size());
for (const igl::Hit& hit : hits) {
outs.emplace_back(EigenMesh3D::hit_result(*this));
outs.back().m_t = double(hit.t);
outs.back().m_dir = dir;
outs.back().m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
outs.back().m_normal = this->normal_by_face_id(hit.id);
outs.back().m_face_id = hit.id;
}
}
return outs;
}
#ifdef SLIC3R_HOLE_RAYCASTER
EigenMesh3D::hit_result EigenMesh3D::filter_hits(
const std::vector<EigenMesh3D::hit_result>& object_hits) const
{
assert(! m_holes.empty());
hit_result out(*this);
if (object_hits.empty())
return out;
const Vec3d& s = object_hits.front().source();
const Vec3d& dir = object_hits.front().direction();
// A helper struct to save an intersetion with a hole
struct HoleHit {
HoleHit(float t_p, const Vec3d& normal_p, bool entry_p) :
t(t_p), normal(normal_p), entry(entry_p) {}
float t;
Vec3d normal;
bool entry;
};
std::vector<HoleHit> hole_isects;
2020-01-08 16:12:06 +00:00
hole_isects.reserve(m_holes.size());
auto sf = s.cast<float>();
auto dirf = dir.cast<float>();
// Collect hits on all holes, preserve information about entry/exit
for (const sla::DrainHole& hole : m_holes) {
std::array<std::pair<float, Vec3d>, 2> isects;
2020-01-08 16:12:06 +00:00
if (hole.get_intersections(sf, dirf, isects)) {
// Ignore hole hits behind the source
2020-01-08 16:12:06 +00:00
if (isects[0].first > 0.f) hole_isects.emplace_back(isects[0].first, isects[0].second, true);
if (isects[1].first > 0.f) hole_isects.emplace_back(isects[1].first, isects[1].second, false);
}
}
// Holes can intersect each other, sort the hits by t
std::sort(hole_isects.begin(), hole_isects.end(),
[](const HoleHit& a, const HoleHit& b) { return a.t < b.t; });
// Now inspect the intersections with object and holes, in the order of
// increasing distance. Keep track how deep are we nested in mesh/holes and
// pick the correct intersection.
// This needs to be done twice - first to find out how deep in the structure
// the source is, then to pick the correct intersection.
int hole_nested = 0;
int object_nested = 0;
for (int dry_run=1; dry_run>=0; --dry_run) {
hole_nested = -hole_nested;
object_nested = -object_nested;
bool is_hole = false;
bool is_entry = false;
const HoleHit* next_hole_hit = hole_isects.empty() ? nullptr : &hole_isects.front();
const hit_result* next_mesh_hit = &object_hits.front();
while (next_hole_hit || next_mesh_hit) {
if (next_hole_hit && next_mesh_hit) // still have hole and obj hits
is_hole = (next_hole_hit->t < next_mesh_hit->m_t);
else
is_hole = next_hole_hit; // one or the other ran out
// Is this entry or exit hit?
is_entry = is_hole ? next_hole_hit->entry : ! next_mesh_hit->is_inside();
if (! dry_run) {
if (! is_hole && hole_nested == 0) {
// This is a valid object hit
return *next_mesh_hit;
}
if (is_hole && ! is_entry && object_nested != 0) {
// This holehit is the one we seek
out.m_t = next_hole_hit->t;
out.m_normal = next_hole_hit->normal;
out.m_source = s;
out.m_dir = dir;
return out;
}
}
// Increase/decrease the counter
(is_hole ? hole_nested : object_nested) += (is_entry ? 1 : -1);
// Advance the respective pointer
if (is_hole && next_hole_hit++ == &hole_isects.back())
next_hole_hit = nullptr;
if (! is_hole && next_mesh_hit++ == &object_hits.back())
next_mesh_hit = nullptr;
}
}
// if we got here, the ray ended up in infinity
return out;
}
#endif
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double sqdst = 0;
Eigen::Matrix<double, 1, 3> pp = p;
Eigen::Matrix<double, 1, 3> cc;
sqdst = m_aabb->squared_distance(*m_tm, pp, i, cc);
c = cc;
return sqdst;
}
2019-01-15 10:09:00 +00:00
/* ****************************************************************************
* Misc functions
* ****************************************************************************/
namespace {
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
double eps = 0.05)
{
using Line3D = Eigen::ParametrizedLine<double, 3>;
auto line = Line3D::Through(e1, e2);
double d = line.distance(p);
return std::abs(d) < eps;
}
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
auto p = pp2 - pp1;
return std::sqrt(p.transpose() * p);
}
}
2019-02-25 12:24:01 +00:00
PointSet normals(const PointSet& points,
const EigenMesh3D& mesh,
double eps,
2019-02-26 17:09:33 +00:00
std::function<void()> thr, // throw on cancel
const std::vector<unsigned>& pt_indices)
2019-02-25 12:24:01 +00:00
{
if (points.rows() == 0 || mesh.vertices().empty() || mesh.indices().empty())
return {};
std::vector<unsigned> range = pt_indices;
if (range.empty()) {
range.resize(size_t(points.rows()), 0);
std::iota(range.begin(), range.end(), 0);
}
PointSet ret(range.size(), 3);
// for (size_t ridx = 0; ridx < range.size(); ++ridx)
ccr::enumerate(
range.begin(), range.end(),
[&ret, &mesh, &points, thr, eps](unsigned el, size_t ridx) {
thr();
auto eidx = Eigen::Index(el);
int faceid = 0;
Vec3d p;
mesh.squared_distance(points.row(eidx), faceid, p);
auto trindex = mesh.indices(faceid);
const Vec3d &p1 = mesh.vertices(trindex(0)).cast<double>();
const Vec3d &p2 = mesh.vertices(trindex(1)).cast<double>();
const Vec3d &p3 = mesh.vertices(trindex(2)).cast<double>();
// We should check if the point lies on an edge of the hosting
// triangle. If it does then all the other triangles using the
// same two points have to be searched and the final normal should
// be some kind of aggregation of the participating triangle
// normals. We should also consider the cases where the support
// point lies right on a vertex of its triangle. The procedure is
// the same, get the neighbor triangles and calculate an average
// normal.
// mark the vertex indices of the edge. ia and ib marks and edge
// ic will mark a single vertex.
int ia = -1, ib = -1, ic = -1;
if (std::abs(distance(p, p1)) < eps) {
ic = trindex(0);
} else if (std::abs(distance(p, p2)) < eps) {
ic = trindex(1);
} else if (std::abs(distance(p, p3)) < eps) {
ic = trindex(2);
} else if (point_on_edge(p, p1, p2, eps)) {
ia = trindex(0);
ib = trindex(1);
} else if (point_on_edge(p, p2, p3, eps)) {
ia = trindex(1);
ib = trindex(2);
} else if (point_on_edge(p, p1, p3, eps)) {
ia = trindex(0);
ib = trindex(2);
}
// vector for the neigboring triangles including the detected one.
std::vector<size_t> neigh;
if (ic >= 0) { // The point is right on a vertex of the triangle
for (size_t n = 0; n < mesh.indices().size(); ++n) {
thr();
Vec3i ni = mesh.indices(n);
if ((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
neigh.emplace_back(n);
}
} else if (ia >= 0 && ib >= 0) { // the point is on and edge
// now get all the neigboring triangles
for (size_t n = 0; n < mesh.indices().size(); ++n) {
thr();
Vec3i ni = mesh.indices(n);
if ((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
neigh.emplace_back(n);
}
}
// Calculate the normals for the neighboring triangles
std::vector<Vec3d> neighnorms;
neighnorms.reserve(neigh.size());
for (size_t &tri_id : neigh)
neighnorms.emplace_back(mesh.normal_by_face_id(tri_id));
// Throw out duplicates. They would cause trouble with summing. We
// will use std::unique which works on sorted ranges. We will sort
// by the coefficient-wise sum of the normals. It should force the
// same elements to be consecutive.
std::sort(neighnorms.begin(), neighnorms.end(),
[](const Vec3d &v1, const Vec3d &v2) {
return v1.sum() < v2.sum();
});
auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
[](const Vec3d &n1, const Vec3d &n2) {
// Compare normals for equivalence.
// This is controvers stuff.
auto deq = [](double a, double b) {
return std::abs(a - b) < 1e-3;
};
return deq(n1(X), n2(X)) &&
deq(n1(Y), n2(Y)) &&
deq(n1(Z), n2(Z));
});
if (!neighnorms.empty()) { // there were neighbors to count with
// sum up the normals and then normalize the result again.
// This unification seems to be enough.
Vec3d sumnorm(0, 0, 0);
sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
sumnorm.normalize();
ret.row(long(ridx)) = sumnorm;
} else { // point lies safely within its triangle
Eigen::Vector3d U = p2 - p1;
Eigen::Vector3d V = p3 - p1;
ret.row(long(ridx)) = U.cross(V).normalized();
}
});
return ret;
}
2019-03-05 15:28:18 +00:00
namespace bgi = boost::geometry::index;
2019-06-17 16:06:52 +00:00
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
namespace {
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
{
return e1.second < e2.second;
};
2019-06-17 16:06:52 +00:00
ClusteredPoints cluster(Index3D &sindex,
unsigned max_points,
std::function<std::vector<PointIndexEl>(
const Index3D &, const PointIndexEl &)> qfn)
{
2019-06-17 16:06:52 +00:00
using Elems = std::vector<PointIndexEl>;
// Recursive function for visiting all the points in a given distance to
// each other
std::function<void(Elems&, Elems&)> group =
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
{
for(auto& p : pts) {
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl> tmp = qfn(sindex, p);
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
Elems newpts;
std::set_difference(tmp.begin(), tmp.end(),
cluster.begin(), cluster.end(),
std::back_inserter(newpts), cmp_ptidx_elements);
int c = max_points && newpts.size() + cluster.size() > max_points?
int(max_points - cluster.size()) : int(newpts.size());
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
group(newpts, cluster);
}
};
std::vector<Elems> clusters;
for(auto it = sindex.begin(); it != sindex.end();) {
Elems cluster = {};
Elems pts = {*it};
group(pts, cluster);
for(auto& c : cluster) sindex.remove(c);
it = sindex.begin();
clusters.emplace_back(cluster);
}
ClusteredPoints result;
for(auto& cluster : clusters) {
result.emplace_back();
for(auto c : cluster) result.back().emplace_back(c.second);
}
return result;
}
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
const PointIndexEl& p,
double dist,
unsigned max_points)
{
2019-06-17 16:06:52 +00:00
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sindex.query(
bgi::nearest(p.first, max_points),
std::back_inserter(tmp)
);
for(auto it = tmp.begin(); it < tmp.end(); ++it)
if(distance(p.first, it->first) > dist) it = tmp.erase(it);
return tmp;
}
} // namespace
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
double dist,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
2019-03-05 15:28:18 +00:00
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
2019-06-17 16:06:52 +00:00
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
return predicate(p, e);
}), std::back_inserter(tmp));
return tmp;
});
2019-03-05 15:28:18 +00:00
}
2019-03-05 15:28:18 +00:00
ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
2019-03-05 15:28:18 +00:00
// Build the index
for(Eigen::Index i = 0; i < pts.rows(); i++)
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
return cluster(sindex, max_points,
2019-06-17 16:06:52 +00:00
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
} // namespace sla
} // namespace Slic3r