PrusaSlicer-NonPlainar/lib/Slic3r/Layer.pm

431 lines
16 KiB
Perl
Raw Normal View History

2011-09-01 19:06:28 +00:00
package Slic3r::Layer;
use Moo;
2011-09-01 19:06:28 +00:00
use Math::Clipper ':all';
use Math::ConvexHull qw(convex_hull);
use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines nearest_point
line_length);
use Slic3r::Geometry::Clipper qw(union_ex);
2011-09-01 19:06:28 +00:00
use XXX;
use constant PI => 4 * atan2(1, 1);
2011-10-08 17:02:05 +00:00
use constant A => 0;
use constant B => 1;
# a sequential number of layer, starting at 0
2011-09-01 19:06:28 +00:00
has 'id' => (
is => 'ro',
#isa => 'Int',
2011-09-01 19:06:28 +00:00
required => 1,
);
# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
2011-09-01 19:06:28 +00:00
has 'lines' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Line]',
2011-09-01 19:06:28 +00:00
default => sub { [] },
);
# collection of surfaces generated by slicing the original geometry
2011-09-01 19:06:28 +00:00
has 'surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
2011-09-01 19:06:28 +00:00
default => sub { [] },
);
# collection of surfaces representing bridges
has 'bridges' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface::Bridge]',
default => sub { [] },
);
# collection of surfaces to make perimeters for
has 'perimeter_surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface]',
default => sub { [] },
);
# ordered collection of extrusion paths to build all perimeters
2011-09-02 19:10:20 +00:00
has 'perimeters' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
2011-09-05 18:00:59 +00:00
# ordered collection of extrusion paths to build skirt loops
has 'skirts' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
2011-09-05 18:00:59 +00:00
default => sub { [] },
);
# collection of surfaces generated by offsetting the innermost perimeter(s)
# they represent boundaries of areas to fill
has 'fill_surfaces' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Surface::Collection]',
2011-09-02 19:10:20 +00:00
default => sub { [] },
);
2011-09-05 10:21:27 +00:00
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionPath]',
2011-09-05 10:21:27 +00:00
default => sub { [] },
);
2011-09-01 19:06:28 +00:00
sub z {
my $self = shift;
return ($self->id * $Slic3r::layer_height + $Slic3r::layer_height/2) / $Slic3r::resolution;
2011-09-01 19:06:28 +00:00
}
sub add_surface {
my $self = shift;
my (@vertices) = @_;
# convert arrayref points to Point objects
@vertices = map Slic3r::Point->new($_), @vertices;
2011-09-01 19:06:28 +00:00
my $surface = Slic3r::Surface->new(
contour => Slic3r::Polyline::Closed->new(points => \@vertices),
2011-09-01 19:06:28 +00:00
);
push @{ $self->surfaces }, $surface;
# make sure our contour has its points in counter-clockwise order
$surface->contour->make_counter_clockwise;
2011-09-01 19:06:28 +00:00
return $surface;
}
sub add_line {
my $self = shift;
2011-10-04 15:55:55 +00:00
my ($line) = @_;
2011-09-01 19:06:28 +00:00
2011-10-08 17:02:05 +00:00
return if $line->a->coincides_with($line->b);
2011-09-01 19:06:28 +00:00
push @{ $self->lines }, $line;
return $line;
}
sub remove_line {
my $self = shift;
my ($line) = @_;
@{ $self->lines } = grep $_ ne $line, @{ $self->lines };
}
sub remove_surface {
my $self = shift;
my ($surface) = @_;
@{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces };
}
# build polylines from lines
sub make_surfaces {
2011-09-01 19:06:28 +00:00
my $self = shift;
# this algorithm can be further simplified:
# first remove all facetedges that are not connected to any other edge
# or that are connected to more than one edge: those are the edges
# tangent to our plane, that we don't care about;
# then we would have all points connecting two and only two lines,
# so a simple head-to-tail algorithm would work
2011-10-08 17:02:05 +00:00
my @lines = ();
2011-10-12 14:27:40 +00:00
push @lines, @{$self->lines};
#@lines = grep line_length($_) > xx, @lines;
2011-10-04 15:55:55 +00:00
2011-10-08 17:02:05 +00:00
#use Slic3r::SVG;
#Slic3r::SVG::output(undef, "lines.svg",
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#);
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
my (%pointmap, @pointmap_keys) = ();
2011-10-08 17:02:05 +00:00
foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
if (!exists $pointmap{$point_id}) {
$pointmap{$point_id} = [];
push @pointmap_keys, $line->[A];
}
2011-10-08 17:02:05 +00:00
push @{ $pointmap{$point_id} }, $line;
}
2011-10-08 17:02:05 +00:00
my $n = 0;
my @polylines = ();
while (my $first_line = shift @lines) {
my @points = @$first_line;
my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
CYCLE: while (1) {
2011-10-09 20:18:06 +00:00
my $next_lines = $pointmap{ $get_point_id->($points[-1]) };
# shouldn't we find the point, let's try with a slower algorithm
# as approximation may make the coordinates differ
if (!$next_lines) {
my $nearest_point = nearest_point($points[-1], \@pointmap_keys);
#printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
if ($nearest_point) {
local $Slic3r::Geometry::epsilon = 1000000;
$next_lines = $pointmap{$get_point_id->($nearest_point)}
if points_coincide($points[-1], $nearest_point);
2011-10-09 20:18:06 +00:00
}
}
#Slic3r::SVG::output(undef, "lines.svg",
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# points => [ $points[-1] ],
# no_arrows => 1,
#) if !$next_lines;
2011-10-09 20:18:06 +00:00
$next_lines
or die sprintf("No lines start at point %s. This shouldn't happen", $get_point_id->($points[-1]));
2011-10-08 17:02:05 +00:00
last CYCLE if !@$next_lines;
2011-10-08 17:02:05 +00:00
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
2011-10-04 15:55:55 +00:00
2011-10-08 17:02:05 +00:00
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
2011-09-01 19:06:28 +00:00
2011-10-08 17:02:05 +00:00
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
}
2011-09-01 19:06:28 +00:00
2011-10-08 17:02:05 +00:00
$seen_points{$point_id} = $#points;
2011-09-01 19:06:28 +00:00
}
2011-10-08 17:02:05 +00:00
if (@points < 4 || !points_coincide($points[0], $points[-1])) {
next;
}
2011-10-08 17:02:05 +00:00
pop @points;
Slic3r::debugf "Discovered polyline of %d points\n", scalar(@points);
push @polylines, [@points];
2011-09-01 19:06:28 +00:00
}
{
my $expolygons = union_ex([ @polylines ]);
Slic3r::debugf " %d surface(s) detected from %d polylines\n",
scalar(@$expolygons), scalar(@polylines);
push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), @$expolygons;
2011-09-01 19:06:28 +00:00
}
#use Slic3r::SVG;
#Slic3r::SVG::output(undef, "surfaces.svg",
# polygons => [ map $_->contour->p, @{$self->surfaces} ],
# red_polygons => [ map $_->p, map @{$_->holes}, @{$self->surfaces} ],
#);
2011-09-01 19:06:28 +00:00
}
sub remove_small_surfaces {
my $self = shift;
my @good_surfaces = ();
my $surface_count = scalar @{$self->surfaces};
foreach my $surface (@{$self->surfaces}) {
next if !$surface->contour->is_printable;
@{$surface->holes} = grep $_->is_printable, @{$surface->holes};
push @good_surfaces, $surface;
}
@{$self->surfaces} = @good_surfaces;
Slic3r::debugf "removed %d small surfaces at layer %d\n",
($surface_count - @good_surfaces), $self->id
if @good_surfaces != $surface_count;
}
sub remove_small_perimeters {
my $self = shift;
my @good_perimeters = grep $_->is_printable, @{$self->perimeters};
Slic3r::debugf "removed %d unprintable perimeters at layer %d\n",
(@{$self->perimeters} - @good_perimeters), $self->id
if @good_perimeters != @{$self->perimeters};
@{$self->perimeters} = @good_perimeters;
}
# make bridges printable
sub process_bridges {
my $self = shift;
return if $self->id == 0;
# a bottom surface on a layer > 0 is either a bridge or a overhang
# or a combination of both
my @bottom_surfaces = grep $_->surface_type eq 'bottom', @{$self->surfaces} or return;
my @supporting_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces};
SURFACE: foreach my $surface (@bottom_surfaces) {
# since we can't print concave bridges, we transform the surface
# in a convex polygon; this will print thin membranes eventually
my $surface_p = convex_hull($surface->contour->p);
2011-10-09 20:18:06 +00:00
#use Slic3r::SVG;
#Slic3r::SVG::output(undef, "bridge.svg",
# green_polygons => [ map $_->p, @supporting_surfaces ],
# red_polygons => [ $surface_p ],
#);
# find all supported edges (as polylines, thus keeping notion of
# consecutive supported edges)
my @supported_polylines = ();
{
my @current_polyline = ();
EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) {
for my $supporting_surface (@supporting_surfaces) {
local $Slic3r::Geometry::epsilon = 1E+7;
if (Slic3r::Geometry::polygon_has_subsegment($supporting_surface->contour->p, $edge)) {
push @current_polyline, $edge;
next EDGE;
}
}
if (@current_polyline) {
push @supported_polylines, [@current_polyline];
@current_polyline = ();
}
}
push @supported_polylines, [@current_polyline] if @current_polyline;
}
# defensive programming, this shouldn't happen
if (@supported_polylines == 0) {
Slic3r::debugf "Found bridge/overhang with no supports on layer %d; ignoring\n", $self->id;
next SURFACE;
}
if (@supported_polylines == 1) {
Slic3r::debugf "Found bridge/overhang with only one support on layer %d; ignoring\n", $self->id;
next SURFACE;
}
# now connect the first point to the last of each polyline
@supported_polylines = map [ $_->[0]->[0], $_->[-1]->[-1] ], @supported_polylines;
2011-10-08 17:02:05 +00:00
# @supported_polylines becomes actually an array of lines
# if we got more than two supports, get the longest two
if (@supported_polylines > 2) {
2011-10-08 17:02:05 +00:00
my %lengths = map { $_ => Slic3r::Geometry::line_length($_) } @supported_polylines;
@supported_polylines = sort { $lengths{"$a"} <=> $lengths{"$b"} } @supported_polylines;
2011-10-08 17:02:05 +00:00
@supported_polylines = @supported_polylines[-2,-1];
}
# connect the midpoints, that will give the the optimal infill direction
my @midpoints = map Slic3r::Geometry::midpoint($_), @supported_polylines;
my $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2);
Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle;
# detect which neighbor surfaces are now supporting our bridge
my @supporting_neighbor_surfaces = ();
foreach my $supporting_surface (@supporting_surfaces) {
local $Slic3r::Geometry::epsilon = 1E+7;
push @supporting_neighbor_surfaces, $supporting_surface
if grep Slic3r::Geometry::polygon_has_vertex($supporting_surface->contour->p, $_),
map $_->[0], @supported_polylines;
}
# defensive programming, this shouldn't happen
if (@supporting_neighbor_surfaces == 0) {
Slic3r::debugf "Couldn't find supporting surfaces on layer %d; ignoring\n", $self->id;
next SURFACE;
}
# now, extend our bridge by taking a portion of supporting surfaces
{
2011-10-08 17:02:05 +00:00
# offset the bridge by the specified amount of mm
my $bridge_offset = ${ offset([$surface_p], $Slic3r::bridge_overlap / $Slic3r::resolution, $Slic3r::resolution * 100, JT_MITER, 2) }[0];
# calculate the new bridge
my $clipper = Math::Clipper->new;
$clipper->add_subject_polygon($surface_p);
$clipper->add_subject_polygons([ map $_->p, @supporting_neighbor_surfaces ]);
$clipper->add_clip_polygon($bridge_offset);
my $intersection = $clipper->execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
push @{$self->bridges}, map Slic3r::Surface::Bridge->cast_from_polygon($_,
surface_type => 'bottom',
bridge_angle => $bridge_angle,
), @$intersection;
}
}
}
# generates a set of surfaces that will be used to make perimeters
# thus, we need to merge internal surfaces and bridges
sub detect_perimeter_surfaces {
my $self = shift;
# little optimization: skip the Clipper UNION if we have no bridges
if (!@{$self->bridges}) {
push @{$self->perimeter_surfaces}, @{$self->surfaces};
} else {
my $clipper = Math::Clipper->new;
$clipper->add_subject_polygons([ map $_->p, grep $_->surface_type =~ /internal/, @{$self->surfaces} ]);
$clipper->add_clip_polygons([ map $_->p, @{$self->bridges} ]);
my $union = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO);
push @{$self->perimeter_surfaces},
map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'),
@$union;
push @{$self->perimeter_surfaces},
grep $_->surface_type !~ /internal/ && ($_->surface_type ne 'bottom' || $self->id == 0),
@{$self->surfaces};
}
}
# splits fill_surfaces in internal and bridge surfaces
sub split_bridges_fills {
my $self = shift;
my $clipper = Math::Clipper->new;
foreach my $surf_coll (@{$self->fill_surfaces}) {
my @surfaces = @{$surf_coll->surfaces};
@{$surf_coll->surfaces} = ();
# intersect fill_surfaces with bridges to get actual bridges
foreach my $bridge (@{$self->bridges}) {
$clipper->clear;
$clipper->add_subject_polygons([ map $_->p, @surfaces ]);
$clipper->add_clip_polygon($bridge->contour->p);
my $intersection = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO);
push @{$surf_coll->surfaces}, map Slic3r::Surface::Bridge->cast_from_expolygon($_,
surface_type => 'bottom',
bridge_angle => $bridge->bridge_angle,
), @$intersection;
}
# difference between fill_surfaces and bridges are the other surfaces
foreach my $surface (@surfaces) {
$clipper->clear;
$clipper->add_subject_polygons([ $surface->p ]);
$clipper->add_clip_polygons([ map $_->contour->p, @{$self->bridges} ]);
my $difference = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO);
push @{$surf_coll->surfaces}, map Slic3r::Surface->cast_from_expolygon($_,
surface_type => $surface->surface_type), @$difference;
}
}
}
2011-09-01 19:06:28 +00:00
1;