01234567890123456789
Temp. cal. [Off] old
PINDA cal. [Off] new
Temp. cal. 1/6 old
PINDA cal. 1/6 new
MSG_TEMP_CALIBRATION -> MSG_PINDA_CALIBRATION
MSG_TEMP_CALIBRATION_DONE -> MSG_PINDA_CALIBRATION_DONE
Updated text
- MSG_PINDA_CALIBRATION_DONE
- MSG_PINDA_CAL_FAILED
Update status line during PINDA cal.
Changed PINDA cal. from submenu to function
- Deleted `lcd_pinda_calibration_menu()`
- Deleted `#MSG_CALIBRATE_PINDA c=17`
Tried to update translations
Updated po files
"PINDA cal status:" is always printed no matter what cal_status is so we can pull that out of the conditional statment.
cal_status is also a boolean, lets just print it directly. Its a simpler code.
Saves 32 bytes of flash and 22 bytes of SRAM
Change serial messages to PGM
I could not see any difference in the functionality when testing this locally
Changes save 818 bytes of flash memory
(I suspect this is due to dtostrf no longer being called in the firmware for MK3S?)
Explicitly show which axes are affected on the status line when a crash
has been detected.
When the crash recovery prompt is triggered, also show all axes which
have been affected during the detection interval (currently X, Y, or
both).
The timer detection has been simplified to match the MK3 optical
filament timeout handling, which makes more sense: a crash immediately
following a crash recovery prompt will trigger the prompt again. The
timer needs to properly expire in order to reset the crash count.
This helps crash detection tuning (and help users reporting issues with
crash detection) without having to monitor the serial line.
This currently abuses the MSG_CRASH_DETECTED message by prepending the
[X][Y] labels to the message, which is ok in english but might not
translate that well for all languages.
code_value() is float but in some cases we can save memory when the expected output is only 1 or 2 bytes.
Changes save 182 bytes of flash memory on my end.
Unfortunately this increases flash usages by 212 bytes (same usage as in current release) It seems it is most memory effcient to use int16_t (int). int8_t requires more memory.
Partially revert previous change: cancelling a single loop would often
advance the gcode stream to the next wait-for loop if executed at the
beginning of an SD print, implicitly turning off the flag again.
Cancel the loop directly in UnconditionalStop() which stops the command
queue as well in an atomic way, handling this correctly.
Remove most of the duplicated code inside temp_runaway_stop(),
making it identical to the other temperature handlers.
Move the lower-level functions required to stop the entirety of the
machine into UnconditionalStop(). Reuse this function inside
lcd_print_stop().
Set the LCD alert message before calling Stop(), as done in other safety
handlers, so that the error is visible while the printer is stopping.
This also avoids other temporary status messages to appear before
the real issue is shown and/or STEALING the first CRITICAL alert
level before we do.
- Move D23 into it's own function inside Dcodes
- Correctly include a break in the switch statement
- Show the dumper status (enabled/disabled) after toggling
- Allow to generate an immediate dump via g-code using D23 E for
symmetry with D20 E
This avoids the "busy" output interleaving with regular output in very
rare scenarios.
We should focus in finding which calls are not using manage_inactivity()
properly instead of working it around.
Code running in the temperature ISR needs to be fully reentrant, which
is hard to track down.
Move autoreporting to the main processing loop. This can make the
autoreporting slower or pause at times, but removes the reentrant
restriction, which allows us to use printf_P.
The longpress function is currently called within the temperature ISR,
which is bogus. Calling the longpress function at the wrong moment
can corrupt the menu buffers.
Move the call to the main loop by changing the logic slightly:
- still sample the lcd buttons inside the temperature ISR, which keeps
scrollong/pressing responsive, but...
- set a flag to indicate that longpress has been triggered instead of
calling the function directly
- call the function on the next manage_inactivity run
Combined with #3180 this removes _most_ unsafe operations out of the ISR
which can happen during a normal run (max/mintemp warnings are still an
exception).
Instead of having to guess the PC where the SP was sampled, always take
both. This allows "seamless" stack decoding for both serial and xflash
dumps, since we don't have to guess which function generated the dump.
Make the core functions (doing the sampling) be ``noinline`` as well,
so that they always have valid frame.
Save SP which is closest to the crash location, which simplifies
debugging. For serial_dump, write SP just before the dump.
For xfdump, save SP in the dump header.
This makes xfdump_dump and xfdump_full_dump_and_reset() equivalent for
stack debugging.
Now that the stack_error function is truly minimal,
we can check for stack errors much more frequently.
Also move away stack_error from ultralcd to Marlin_main.
Rename EEPROM_CRASH_ACKNOWLEDGED to EEPROM_FW_CRASH_FLAG.
Use EEPROM_FW_CRASH_FLAG to always set the last crash reason, which
simplifies handling between the online/offline variants.
Make stack_error safe, by setting the flag and restarting immediately,
so that the error can be shown after restart.
When XFLASH is not available, allow users to request _online_ crash
dumps by using D23 (since these require active user cooperation).
Once enabled, instead of just rebooting, dump memory directly to
the serial.
As similarly done with EMERGENCY_DUMP, we have two features that can be
enabled:
EMERGENCY_SERIAL_DUMP: enables dumping on crash after being requested
MENU_SERIAL_DUMP: allow triggering the same manually through the support
menu.
As suggested by @3d-gussner, announce to the host that a dump is
available for retrieval using an action "dump_available".
Any kind of dump is announced (even if manually triggered).
To avoid reading from xflash twice, remove some duplication and return
the crash reason directly in xfdump_check_state().
If EMERGENCY_DUMP is defined, crash and dump using the new xflash dump
functionality instead of just continuing with an error message.
When an emergency crash is stored, the first restart after a crash
displays a message that debug data is available and to contact support
to submit the crash for analysis.
This requires expanding the dcode_core address type to 32bit type,
thus enlarges the D2/D3 implementation as a result.
Still allow to save all the original space if D6 is disabled, for now.
Farmers want to abuse a bug from the previous firmware releases
- they need to see the filename on the status screen instead of "Wait for user..."
So we won't update the message in farm mode...
Scale extruder motor current linearly with speed.
49% less heating when running at low speed and standstill, 4% more torque at maximum extrusion rate (15mm^3/s), 15% more torque in high speed movements (un/retractions).
StealthChop mode is used for low speeds (below 900mm/min)
spreadCycle is used above. Transition speed is well above maximum extrusion rate of 15mm^3/s (275mm/min) so mode transition is not expected to be visible on printed surface.
StealthChop is expected to improve printed surface quality (less artifacts).
Warning you can burn extruder motor if it is not the same impedance as original Prusa i3 Extruder stepper motor. There is no current feedback in low speed so lower impedance motor can be burned by over current.
Even there is no direct current feedback, there is no risk for original motor thermal runaway, as motor resistance increases with temperature, current decreases.
Standstill peak phase current is expected to be 500 mA and linearly increase with speed to 970 mA at 900mm/min where spreadCycle constant current regulation takes over and keeps peak current at 805 mA to maximum speed possible.
As motor heating increases with current squared, lowering low speed current from 700mA to 500mA decreases heating 49% in thate mode, where motor spends most of the time.
Enable E-motor cool mode in farm mode only (and experimental menu) - the experimental menu is visible AND the EEPROM_ECOOL variable has a value of the universal answer to all problems of the universe - i.e. two conditions must be met at the start of the FW to enable the E-cool mode. If the user enables the experimental menu, sets the E-cool mode and disables the menu afterwards, on the next start of the FW the E-cool mode will be DISABLED. This is still subject to discussion how much obscure (security through obscurity) we'd like this option to have .
Additional stuff:
* Add serial debug msg to verify if E-cool mode is on
* Avoid access to E-cool mode switch on machines without TMC2130
* Do not allow only M907 E in case of E-cool mode+warn the user on the serial line that the command was skipped
Co-authored-by: D.R.racer <drracer@drracer.eu>