Prusa-Firmware/Firmware/stepper.cpp

1620 lines
50 KiB
C++
Raw Normal View History

2016-07-22 13:28:01 +00:00
/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
#ifdef TMC2130
2017-06-29 16:35:43 +00:00
#include "tmc2130.h"
#endif //TMC2130
2017-06-29 16:35:43 +00:00
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
#include "fsensor.h"
int fsensor_counter; //counter for e-steps
#endif //FILAMENT_SENSOR
2016-07-22 13:28:01 +00:00
#include "mmu.h"
#include "ConfigurationStore.h"
2017-12-10 19:38:09 +00:00
#ifdef DEBUG_STACK_MONITOR
uint16_t SP_min = 0x21FF;
#endif //DEBUG_STACK_MONITOR
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
2017-07-06 11:19:11 +00:00
bool x_min_endstop = false;
bool x_max_endstop = false;
bool y_min_endstop = false;
bool y_max_endstop = false;
bool z_min_endstop = false;
bool z_max_endstop = false;
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static dda_isteps_t
counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
static int32_t acceleration_time, deceleration_time;
2016-07-22 13:28:01 +00:00
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static uint16_t acc_step_rate; // needed for deccelaration start point
static uint8_t step_loops;
static uint16_t OCR1A_nominal;
static uint8_t step_loops_nominal;
2016-07-22 13:28:01 +00:00
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
#endif
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
2016-07-22 13:28:01 +00:00
static bool old_x_max_endstop=false;
#endif
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
2016-07-22 13:28:01 +00:00
static bool old_y_max_endstop=false;
#endif
static bool old_x_min_endstop=false;
static bool old_y_min_endstop=false;
2016-07-22 13:28:01 +00:00
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
2017-06-29 16:35:43 +00:00
static bool check_endstops = true;
2016-07-22 13:28:01 +00:00
static bool check_z_endstop = false;
static bool z_endstop_invert = false;
2016-07-22 13:28:01 +00:00
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
void advance_isr_scheduler();
void advance_isr();
static const uint16_t ADV_NEVER = 0xFFFF;
static const uint8_t ADV_INIT = 0b01; // initialize LA
static const uint8_t ADV_ACC_VARY = 0b10; // varying acceleration phase
2019-05-18 19:55:03 +00:00
static uint16_t nextMainISR;
static uint16_t nextAdvanceISR;
2019-05-18 19:55:03 +00:00
static uint16_t main_Rate;
static uint16_t eISR_Rate;
static uint16_t eISR_Err;
static uint16_t current_adv_steps;
static uint16_t target_adv_steps;
static int8_t e_steps; // scheduled e-steps during each isr loop
static uint8_t e_step_loops; // e-steps to execute at most in each isr loop
static uint8_t e_extruding; // current move is an extrusion move
static int8_t LA_phase; // LA compensation phase
2019-05-18 19:55:03 +00:00
#define _NEXT_ISR(T) main_Rate = nextMainISR = T
2017-07-06 23:58:02 +00:00
#else
#define _NEXT_ISR(T) OCR1A = T
2017-07-06 23:58:02 +00:00
#endif
#ifdef DEBUG_STEPPER_TIMER_MISSED
extern bool stepper_timer_overflow_state;
extern uint16_t stepper_timer_overflow_last;
#endif /* DEBUG_STEPPER_TIMER_MISSED */
2016-07-22 13:28:01 +00:00
//===========================================================================
//=============================functions ============================
//===========================================================================
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
2016-07-22 13:28:01 +00:00
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("X")));
2016-07-22 13:28:01 +00:00
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT), PSTR("Y")));
2016-07-22 13:28:01 +00:00
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
// LCD_MESSAGERPGM(CAT2((MSG_ENDSTOPS_HIT),PSTR("Z")));
2016-07-22 13:28:01 +00:00
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
}
#endif
}
}
bool endstops_hit_on_purpose()
{
bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
return hit;
}
bool endstop_z_hit_on_purpose()
{
bool hit = endstop_z_hit;
endstop_z_hit=false;
return hit;
}
bool enable_endstops(bool check)
{
bool old = check_endstops;
check_endstops = check;
return old;
}
bool enable_z_endstop(bool check)
{
bool old = check_z_endstop;
check_z_endstop = check;
endstop_z_hit = false;
return old;
}
void invert_z_endstop(bool endstop_invert)
{
z_endstop_invert = endstop_invert;
2016-07-22 13:28:01 +00:00
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
2017-07-06 23:58:02 +00:00
ISR(TIMER1_COMPA_vect) {
2017-12-10 19:38:09 +00:00
#ifdef DEBUG_STACK_MONITOR
uint16_t sp = SPL + 256 * SPH;
if (sp < SP_min) SP_min = sp;
#endif //DEBUG_STACK_MONITOR
#ifdef LIN_ADVANCE
advance_isr_scheduler();
#else
isr();
#endif
// Don't run the ISR faster than possible
// Is there a 8us time left before the next interrupt triggers?
if (OCR1A < TCNT1 + 16) {
#ifdef DEBUG_STEPPER_TIMER_MISSED
// Verify whether the next planned timer interrupt has not been missed already.
// This debugging test takes < 1.125us
// This skews the profiling slightly as the fastest stepper timer
// interrupt repeats at a 100us rate (10kHz).
if (OCR1A + 40 < TCNT1) {
// The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
// Give a warning.
stepper_timer_overflow_state = true;
stepper_timer_overflow_last = TCNT1 - OCR1A;
// Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
WRITE(BEEPER, HIGH);
}
#endif
// Fix the next interrupt to be executed after 8us from now.
OCR1A = TCNT1 + 16;
}
2017-07-06 23:58:02 +00:00
}
uint8_t last_dir_bits = 0;
#ifdef BACKLASH_X
uint8_t st_backlash_x = 0;
#endif //BACKLASH_X
#ifdef BACKLASH_Y
uint8_t st_backlash_y = 0;
#endif //BACKLASH_Y
FORCE_INLINE void stepper_next_block()
{
// Anything in the buffer?
//WRITE_NC(LOGIC_ANALYZER_CH2, true);
current_block = plan_get_current_block();
if (current_block != NULL) {
#ifdef BACKLASH_X
if (current_block->steps_x.wide)
{ //X-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 1)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
if (current_block->direction_bits & 1)
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
else
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
_delay_us(100);
for (uint8_t i = 0; i < st_backlash_x; i++)
{
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
_delay_us(100);
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
_delay_us(900);
}
}
last_dir_bits &= ~1;
last_dir_bits |= current_block->direction_bits & 1;
}
#endif
#ifdef BACKLASH_Y
if (current_block->steps_y.wide)
{ //Y-axis movement
if ((current_block->direction_bits ^ last_dir_bits) & 2)
{
printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
if (current_block->direction_bits & 2)
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
else
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
_delay_us(100);
for (uint8_t i = 0; i < st_backlash_y; i++)
{
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
_delay_us(100);
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
_delay_us(900);
}
}
last_dir_bits &= ~2;
last_dir_bits |= current_block->direction_bits & 2;
}
#endif
// The busy flag is set by the plan_get_current_block() call.
// current_block->busy = true;
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
deceleration_time = 0;
// Set the nominal step loops to zero to indicate, that the timer value is not known yet.
// That means, delay the initialization of nominal step rate and step loops until the steady
// state is reached.
step_loops_nominal = 0;
acc_step_rate = uint16_t(current_block->initial_rate);
acceleration_time = calc_timer(acc_step_rate, step_loops);
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
2019-05-18 19:55:03 +00:00
e_step_loops = current_block->advance_step_loops;
target_adv_steps = current_block->max_adv_steps;
2019-05-18 19:55:03 +00:00
} else {
e_step_loops = 1;
}
e_steps = 0;
nextAdvanceISR = ADV_NEVER;
LA_phase = -1;
#endif
if (current_block->flag & BLOCK_FLAG_E_RESET) {
count_position[E_AXIS] = 0;
}
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
counter_x.lo = -(current_block->step_event_count.lo >> 1);
counter_y.lo = counter_x.lo;
counter_z.lo = counter_x.lo;
counter_e.lo = counter_x.lo;
#ifdef LIN_ADVANCE
e_extruding = current_block->steps_e.lo != 0;
#endif
} else {
counter_x.wide = -(current_block->step_event_count.wide >> 1);
counter_y.wide = counter_x.wide;
counter_z.wide = counter_x.wide;
counter_e.wide = counter_x.wide;
#ifdef LIN_ADVANCE
e_extruding = current_block->steps_e.wide != 0;
#endif
2016-07-22 13:28:01 +00:00
}
step_events_completed.wide = 0;
// Set directions.
2016-07-22 13:28:01 +00:00
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
2016-07-22 13:28:01 +00:00
count_direction[X_AXIS]=-1;
} else {
WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
2016-07-22 13:28:01 +00:00
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
2016-07-22 13:28:01 +00:00
count_direction[Y_AXIS]=-1;
} else {
WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
2016-07-22 13:28:01 +00:00
count_direction[Y_AXIS]=1;
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1;
} else { // +direction
WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
count_direction[Z_AXIS]=1;
2016-07-22 13:28:01 +00:00
}
if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
#ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN,
#ifdef SNMM
(mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
#endif // SNMM
INVERT_E0_DIR);
#endif /* LIN_ADVANCE */
count_direction[E_AXIS] = -1;
} else { // +direction
#ifndef LIN_ADVANCE
WRITE(E0_DIR_PIN,
#ifdef SNMM
(mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
#endif // SNMM
!INVERT_E0_DIR);
#endif /* LIN_ADVANCE */
count_direction[E_AXIS] = 1;
2016-07-22 13:28:01 +00:00
}
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
fsensor_st_block_begin(count_direction[E_AXIS] < 0);
#endif //FILAMENT_SENSOR
}
else {
_NEXT_ISR(2000); // 1kHz.
#ifdef LIN_ADVANCE
// reset LA state when there's no block
nextAdvanceISR = ADV_NEVER;
e_steps = 0;
// incrementally lose pressure to give a chance for
// a new LA block to be scheduled and recover
if(current_adv_steps)
--current_adv_steps;
#endif
}
//WRITE_NC(LOGIC_ANALYZER_CH2, false);
}
2016-07-22 13:28:01 +00:00
// Check limit switches.
FORCE_INLINE void stepper_check_endstops()
{
if(check_endstops)
{
2016-07-22 13:28:01 +00:00
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
2016-07-22 13:28:01 +00:00
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
2016-07-22 13:28:01 +00:00
#endif
{
#if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_min_endstop = x_min_endstop;
#endif
} else { // +direction
#if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
#else
// Normal homing
x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_x_max_endstop = x_max_endstop;
#endif
2016-07-22 13:28:01 +00:00
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
#endif
{
#if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
#endif
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_min_endstop = y_min_endstop;
#endif
} else { // +direction
#if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
#else
// Normal homing
y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
#endif
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_y_max_endstop = y_max_endstop;
2016-07-22 13:28:01 +00:00
#endif
}
if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
{
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (! check_z_endstop) {
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
2018-04-03 16:26:39 +00:00
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
2016-07-22 13:28:01 +00:00
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
2016-07-22 13:28:01 +00:00
}
old_z_min_endstop = z_min_endstop;
}
#endif
} else { // +direction
#if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
2018-04-03 16:26:39 +00:00
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_max_endstop = false;
else
#endif //TMC2130_STEALTH_Z
z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
#else
z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_max_endstop = z_max_endstop;
#endif
2016-07-22 13:28:01 +00:00
}
}
2016-07-22 13:28:01 +00:00
// Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
#if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
if (check_z_endstop) {
// Check the Z min end-stop no matter what.
// Good for searching for the center of an induction target.
#ifdef TMC2130_SG_HOMING
// Stall guard homing turned on
2018-04-03 16:26:39 +00:00
#ifdef TMC2130_STEALTH_Z
if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
else
#endif //TMC2130_STEALTH_Z
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
#endif //TMC2130_SG_HOMING
if(z_min_endstop && old_z_min_endstop) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed.wide = current_block->step_event_count.wide;
}
old_z_min_endstop = z_min_endstop;
}
#endif
}
2016-07-22 13:28:01 +00:00
FORCE_INLINE void stepper_tick_lowres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.lo += current_block->steps_x.lo;
if (counter_x.lo > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.lo -= current_block->step_event_count.lo;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.lo += current_block->steps_y.lo;
if (counter_y.lo > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.lo -= current_block->step_event_count.lo;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.lo += current_block->steps_z.lo;
if (counter_z.lo > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
counter_z.lo -= current_block->step_event_count.lo;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
// Step in E axis
counter_e.lo += current_block->steps_e.lo;
if (counter_e.lo > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
#endif /* LIN_ADVANCE */
counter_e.lo -= current_block->step_event_count.lo;
count_position[E_AXIS] += count_direction[E_AXIS];
#ifdef LIN_ADVANCE
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
2017-07-06 23:58:02 +00:00
#endif
}
if(++ step_events_completed.lo >= current_block->step_event_count.lo)
break;
}
}
FORCE_INLINE void stepper_tick_highres()
{
for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars.
// Step in X axis
counter_x.wide += current_block->steps_x.wide;
if (counter_x.wide > 0) {
WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
counter_x.wide -= current_block->step_event_count.wide;
count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
}
// Step in Y axis
counter_y.wide += current_block->steps_y.wide;
if (counter_y.wide > 0) {
WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
counter_y.wide -= current_block->step_event_count.wide;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
}
// Step in Z axis
counter_z.wide += current_block->steps_z.wide;
if (counter_z.wide > 0) {
WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
counter_z.wide -= current_block->step_event_count.wide;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
}
// Step in E axis
counter_e.wide += current_block->steps_e.wide;
if (counter_e.wide > 0) {
#ifndef LIN_ADVANCE
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
#endif /* LIN_ADVANCE */
counter_e.wide -= current_block->step_event_count.wide;
count_position[E_AXIS]+=count_direction[E_AXIS];
#ifdef LIN_ADVANCE
e_steps += count_direction[E_AXIS];
#else
#ifdef FILAMENT_SENSOR
fsensor_counter += count_direction[E_AXIS];
#endif //FILAMENT_SENSOR
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
#endif
}
if(++ step_events_completed.wide >= current_block->step_event_count.wide)
break;
}
}
#ifdef LIN_ADVANCE
2019-05-26 12:58:57 +00:00
// @wavexx: fast uint16_t division for small dividends<5
// q/3 based on "Hacker's delight" formula
FORCE_INLINE uint16_t fastdiv(uint16_t q, uint8_t d)
{
if(d != 3) return q >> (d / 2);
else return ((uint32_t)0xAAAB * q) >> 17;
}
FORCE_INLINE void advance_spread(uint16_t timer)
{
if(eISR_Err > timer)
{
// advance-step skipped
eISR_Err -= timer;
eISR_Rate = timer;
nextAdvanceISR = timer;
return;
}
// at least one step
uint8_t ticks = 1;
uint32_t block = current_block->advance_rate;
uint16_t max_t = timer - eISR_Err;
while (block < max_t)
{
++ticks;
block += current_block->advance_rate;
}
if (block > timer)
eISR_Err += block - timer;
else
eISR_Err -= timer - block;
2019-05-26 12:58:57 +00:00
if (ticks <= 4)
eISR_Rate = fastdiv(timer, ticks);
else
2019-05-26 12:58:57 +00:00
{
// >4 ticks are still possible on slow moves
eISR_Rate = timer / ticks;
2019-05-26 12:58:57 +00:00
}
nextAdvanceISR = eISR_Rate / 2;
}
#endif
FORCE_INLINE void isr() {
//WRITE_NC(LOGIC_ANALYZER_CH0, true);
//if (UVLO) uvlo();
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL)
stepper_next_block();
if (current_block != NULL)
{
stepper_check_endstops();
if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
stepper_tick_lowres();
else
stepper_tick_highres();
#ifdef LIN_ADVANCE
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
uint8_t la_state = 0;
#endif
2019-05-26 15:14:06 +00:00
// Calculate new timer value
// 13.38-14.63us for steady state,
// 25.12us for acceleration / deceleration.
{
//WRITE_NC(LOGIC_ANALYZER_CH1, true);
if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
// v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += uint16_t(current_block->initial_rate);
// upper limit
if(acc_step_rate > uint16_t(current_block->nominal_rate))
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
uint16_t timer = calc_timer(acc_step_rate, step_loops);
_NEXT_ISR(timer);
acceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
if (step_events_completed.wide <= (unsigned long int)step_loops)
la_state = ADV_INIT | ADV_ACC_VARY;
}
#endif
2016-07-22 13:28:01 +00:00
}
else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
uint16_t step_rate;
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
2016-07-22 13:28:01 +00:00
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
// Result is negative or too small.
step_rate = uint16_t(current_block->final_rate);
}
// Step_rate to timer interval.
uint16_t timer = calc_timer(step_rate, step_loops);
_NEXT_ISR(timer);
deceleration_time += timer;
#ifdef LIN_ADVANCE
if (current_block->use_advance_lead) {
if (step_events_completed.wide <= (unsigned long int)current_block->decelerate_after + step_loops) {
target_adv_steps = current_block->final_adv_steps;
la_state = ADV_INIT | ADV_ACC_VARY;
}
}
#endif
}
else {
if (! step_loops_nominal) {
// Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
// the initial interrupt blocking.
OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate), step_loops);
step_loops_nominal = step_loops;
Release excess pressure within cruising blocks LA assumes all the nozzle pressure is released at the end of each extrusion, which makes calculating the required pressure advance during travels and retracts not normally necessary. This is not always true in our planner, since the E axis is explicitly ignored when not in use, but also due to E-jerk allowing a non-linear jump in speed. And since the compression factor is currently tied by XYZ axes and not independently calculated, this can result in a wrong estimation of final pressure in several conditions. To avoid overburdening the planner, change the underlying assumptions about backpressure: 1) Pressure is no longer lost when LA is disabled: if a retract is followed by an unretract of the same length, the pressure will be likely maintained entirely. This also holds true during travels, as long as the retract length can overcome all the backpressure (which is the case in all but the most noodly materials) 2) Pressure is released as soon as possible during travels: we now enable LA also during travels, but under the sole condition of undoing excess pressure. We do that by checking for backpressure at the start of any segment without an acceleration phase that doesn't have any E-steps (a result which can happen due to the above). If pressure is not nominal, we run the extruder in reverse at maximum jerk as long as the segment allows us, since proper acceleration would be prohibitive at this stage. As the pressure difference resulting by the above is still _very_ low, any wipe or short travel will be able to equalize the nozzle pressure *before* extrusion is resumed, avoiding ooze.
2020-04-08 20:49:48 +00:00
#ifdef LIN_ADVANCE
if(current_block->use_advance_lead) {
// Due to E-jerk, there can be discontinuities in pressure state where an
// acceleration or deceleration can be skipped or joined with the previous block.
// If LA was not previously active, re-check the pressure level
la_state = ADV_INIT;
Release excess pressure within cruising blocks LA assumes all the nozzle pressure is released at the end of each extrusion, which makes calculating the required pressure advance during travels and retracts not normally necessary. This is not always true in our planner, since the E axis is explicitly ignored when not in use, but also due to E-jerk allowing a non-linear jump in speed. And since the compression factor is currently tied by XYZ axes and not independently calculated, this can result in a wrong estimation of final pressure in several conditions. To avoid overburdening the planner, change the underlying assumptions about backpressure: 1) Pressure is no longer lost when LA is disabled: if a retract is followed by an unretract of the same length, the pressure will be likely maintained entirely. This also holds true during travels, as long as the retract length can overcome all the backpressure (which is the case in all but the most noodly materials) 2) Pressure is released as soon as possible during travels: we now enable LA also during travels, but under the sole condition of undoing excess pressure. We do that by checking for backpressure at the start of any segment without an acceleration phase that doesn't have any E-steps (a result which can happen due to the above). If pressure is not nominal, we run the extruder in reverse at maximum jerk as long as the segment allows us, since proper acceleration would be prohibitive at this stage. As the pressure difference resulting by the above is still _very_ low, any wipe or short travel will be able to equalize the nozzle pressure *before* extrusion is resumed, avoiding ooze.
2020-04-08 20:49:48 +00:00
}
#endif
2017-07-06 23:58:02 +00:00
}
_NEXT_ISR(OCR1A_nominal);
}
//WRITE_NC(LOGIC_ANALYZER_CH1, false);
2016-07-22 13:28:01 +00:00
}
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
// avoid multiple instances or function calls to advance_spread
if (la_state & ADV_INIT) {
LA_phase = -1;
if (current_adv_steps == target_adv_steps) {
// nothing to be done in this phase, cancel any pending eisr
la_state = 0;
nextAdvanceISR = ADV_NEVER;
}
else {
eISR_Err = current_block->advance_rate / 4;
if ((la_state & ADV_ACC_VARY) && e_extruding && (current_adv_steps > target_adv_steps)) {
// LA could reverse the direction of extrusion in this phase
LA_phase = 0;
}
}
}
if (la_state & ADV_INIT || nextAdvanceISR != ADV_NEVER) {
// update timers & phase for the next iteration
advance_spread(main_Rate);
if (LA_phase >= 0) {
if (step_loops == e_step_loops)
LA_phase = (eISR_Rate > main_Rate);
else {
// avoid overflow through division. warning: we need to _guarantee_ step_loops
// and e_step_loops are <= 4 due to fastdiv's limit
LA_phase = (fastdiv(eISR_Rate, step_loops) > fastdiv(main_Rate, e_step_loops));
}
}
}
2019-05-26 15:14:06 +00:00
// Check for serial chars. This executes roughtly inbetween 50-60% of the total runtime of the
// entire isr, making this spot a much better choice than checking during esteps
MSerial.checkRx();
#endif
2016-07-22 13:28:01 +00:00
// If current block is finished, reset pointer
if (step_events_completed.wide >= current_block->step_event_count.wide) {
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
#endif //FILAMENT_SENSOR
2016-07-22 13:28:01 +00:00
current_block = NULL;
plan_discard_current_block();
}
#if !defined(LIN_ADVANCE) && defined(FILAMENT_SENSOR)
else if ((abs(fsensor_counter) >= fsensor_chunk_len))
{
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif //FILAMENT_SENSOR
2016-07-22 13:28:01 +00:00
}
2017-09-22 17:28:32 +00:00
#ifdef TMC2130
tmc2130_st_isr();
2017-09-22 17:28:32 +00:00
#endif //TMC2130
//WRITE_NC(LOGIC_ANALYZER_CH0, false);
2016-07-22 13:28:01 +00:00
}
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
// Timer interrupt for E. e_steps is set in the main routine.
FORCE_INLINE void advance_isr() {
if (current_adv_steps > target_adv_steps) {
2019-05-18 19:55:03 +00:00
// decompression
e_steps -= e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
if(current_adv_steps > e_step_loops)
current_adv_steps -= e_step_loops;
2019-05-18 19:55:03 +00:00
else
current_adv_steps = 0;
}
else if (current_adv_steps < target_adv_steps) {
2019-05-18 19:55:03 +00:00
// compression
e_steps += e_step_loops;
if (e_steps) WRITE_NC(E0_DIR_PIN, e_steps < 0? INVERT_E0_DIR: !INVERT_E0_DIR);
2019-05-18 19:55:03 +00:00
current_adv_steps += e_step_loops;
}
if (current_adv_steps == target_adv_steps) {
2019-05-18 19:55:03 +00:00
// advance steps completed
nextAdvanceISR = ADV_NEVER;
}
else {
// schedule another tick
nextAdvanceISR = eISR_Rate;
2019-05-18 19:55:03 +00:00
}
}
2019-05-18 19:55:03 +00:00
FORCE_INLINE void advance_isr_scheduler() {
// Integrate the final timer value, accounting for scheduling adjustments
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
{
if(nextAdvanceISR > OCR1A)
nextAdvanceISR -= OCR1A;
else
nextAdvanceISR = 0;
}
if(nextMainISR > OCR1A)
nextMainISR -= OCR1A;
else
nextMainISR = 0;
2019-05-18 19:55:03 +00:00
// Run main stepping ISR if flagged
if (!nextMainISR)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, true);
#endif
isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH0, false);
#endif
2019-05-18 19:55:03 +00:00
}
// Run the next advance isr if triggered
bool eisr = !nextAdvanceISR;
2019-05-18 19:55:03 +00:00
if (eisr)
{
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, true);
#endif
advance_isr();
#ifdef LA_DEBUG_LOGIC
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
}
// Tick E steps if any
if (e_steps && (LA_phase < 0 || LA_phase == eisr)) {
uint8_t max_ticks = (eisr? e_step_loops: step_loops);
2019-05-18 19:55:03 +00:00
max_ticks = min(abs(e_steps), max_ticks);
2019-05-26 17:56:31 +00:00
bool rev = (e_steps < 0);
do
2019-05-18 19:55:03 +00:00
{
WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
2019-05-26 17:56:31 +00:00
e_steps += (rev? 1: -1);
WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
fsensor_counter += (rev? -1: 1);
#endif
}
while(--max_ticks);
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
if (abs(fsensor_counter) >= fsensor_chunk_len)
{
fsensor_st_block_chunk(fsensor_counter);
fsensor_counter = 0;
}
#endif
}
2019-05-19 13:42:14 +00:00
// Schedule the next closest tick, ignoring advance if scheduled too
2019-05-18 19:55:03 +00:00
// soon in order to avoid skewing the regular stepper acceleration
if (nextAdvanceISR != ADV_NEVER && (nextAdvanceISR + 40) < nextMainISR)
OCR1A = nextAdvanceISR;
2019-05-18 19:55:03 +00:00
else
OCR1A = nextMainISR;
}
2017-07-06 23:58:02 +00:00
#endif // LIN_ADVANCE
2016-07-22 13:28:01 +00:00
void st_init()
{
#ifdef TMC2130
2017-06-29 16:35:43 +00:00
tmc2130_init();
#endif //TMC2130
2017-06-29 16:35:43 +00:00
st_current_init(); //Initialize Digipot Motor Current
2016-07-22 13:28:01 +00:00
microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
SET_OUTPUT(E1_DIR_PIN);
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
SET_OUTPUT(E2_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
SET_OUTPUT(E1_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
SET_OUTPUT(E2_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef TMC2130_SG_HOMING
SET_INPUT(X_TMC2130_DIAG);
WRITE(X_TMC2130_DIAG,HIGH);
SET_INPUT(Y_TMC2130_DIAG);
WRITE(Y_TMC2130_DIAG,HIGH);
SET_INPUT(Z_TMC2130_DIAG);
WRITE(Z_TMC2130_DIAG,HIGH);
SET_INPUT(E0_TMC2130_DIAG);
WRITE(E0_TMC2130_DIAG,HIGH);
#endif
2016-07-22 13:28:01 +00:00
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
SET_INPUT(TACH_0);
#ifdef TACH0PULLUP
WRITE(TACH_0, HIGH);
#endif
#endif
2016-07-22 13:28:01 +00:00
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
2016-07-22 13:28:01 +00:00
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
#ifdef PSU_Delta
init_force_z();
#endif // PSU_Delta
2016-07-22 13:28:01 +00:00
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2();
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
2019-05-18 19:55:03 +00:00
// Plan the first interrupt after 8ms from now.
OCR1A = 0x4000;
TCNT1 = 0;
2017-07-06 23:58:02 +00:00
#ifdef LIN_ADVANCE
2019-05-18 19:55:03 +00:00
#ifdef LA_DEBUG_LOGIC
LOGIC_ANALYZER_CH0_ENABLE;
LOGIC_ANALYZER_CH1_ENABLE;
WRITE_NC(LOGIC_ANALYZER_CH0, false);
WRITE_NC(LOGIC_ANALYZER_CH1, false);
#endif
// Initialize state for the linear advance scheduler
nextMainISR = 0;
nextAdvanceISR = ADV_NEVER;
2019-05-18 19:55:03 +00:00
main_Rate = ADV_NEVER;
current_adv_steps = 0;
2017-07-06 23:58:02 +00:00
#endif
2016-07-22 13:28:01 +00:00
enable_endstops(true); // Start with endstops active. After homing they can be disabled
ENABLE_STEPPER_DRIVER_INTERRUPT();
2016-07-22 13:28:01 +00:00
sei();
}
void st_reset_timer()
{
// Clear a possible pending interrupt on OCR1A overflow.
TIFR1 |= 1 << OCF1A;
// Reset the counter.
TCNT1 = 0;
// Wake up after 1ms from now.
OCR1A = 2000;
#ifdef LIN_ADVANCE
nextMainISR = 0;
2019-05-18 19:55:03 +00:00
if(nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
nextAdvanceISR = 0;
#endif
}
2016-07-22 13:28:01 +00:00
// Block until all buffered steps are executed
void st_synchronize()
{
while(blocks_queued())
{
#ifdef TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
if (!tmc2130_update_sg())
{
manage_inactivity(true);
lcd_update(0);
}
#else //TMC2130
manage_heater();
// Vojtech: Don't disable motors inside the planner!
manage_inactivity(true);
lcd_update(0);
#endif //TMC2130
}
2016-07-22 13:28:01 +00:00
}
void st_set_position(const long &x, const long &y, const long &z, const long &e)
{
CRITICAL_SECTION_START;
// Copy 4x4B.
// This block locks the interrupts globally for 4.56 us,
// which corresponds to a maximum repeat frequency of 219.18 kHz.
// This blocking is safe in the context of a 10kHz stepper driver interrupt
// or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
2016-07-22 13:28:01 +00:00
count_position[X_AXIS] = x;
count_position[Y_AXIS] = y;
count_position[Z_AXIS] = z;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
void st_set_e_position(const long &e)
{
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
long st_get_position(uint8_t axis)
{
long count_pos;
CRITICAL_SECTION_START;
count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
void st_get_position_xy(long &x, long &y)
{
CRITICAL_SECTION_START;
x = count_position[X_AXIS];
y = count_position[Y_AXIS];
CRITICAL_SECTION_END;
}
2016-07-22 13:28:01 +00:00
float st_get_position_mm(uint8_t axis)
{
float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / cs.axis_steps_per_unit[axis];
2016-07-22 13:28:01 +00:00
}
void quickStop()
{
DISABLE_STEPPER_DRIVER_INTERRUPT();
while (blocks_queued()) plan_discard_current_block();
current_block = NULL;
#ifdef LIN_ADVANCE
nextAdvanceISR = ADV_NEVER;
current_adv_steps = 0;
#endif
st_reset_timer();
2016-07-22 13:28:01 +00:00
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
//perform step
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
delayMicroseconds(1);
2016-07-22 13:28:01 +00:00
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
#ifdef DEBUG_XSTEP_DUP_PIN
WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
#endif //DEBUG_XSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
//get old pin state back.
WRITE(X_DIR_PIN,old_x_dir_pin);
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
//perform step
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
delayMicroseconds(1);
2016-07-22 13:28:01 +00:00
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef DEBUG_YSTEP_DUP_PIN
WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
#endif //DEBUG_YSTEP_DUP_PIN
2016-07-22 13:28:01 +00:00
//get old pin state back.
WRITE(Y_DIR_PIN,old_y_dir_pin);
}
break;
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
//setup new step
WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif
delayMicroseconds(1);
2016-07-22 13:28:01 +00:00
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif
//get old pin state back.
WRITE(Z_DIR_PIN,old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,old_z_dir_pin);
#endif
}
break;
default: break;
}
}
#endif //BABYSTEPPING
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
2016-07-22 13:28:01 +00:00
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//_delay(10);
2016-07-22 13:28:01 +00:00
}
#endif
2016-07-22 13:28:01 +00:00
void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
{
do
{
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
}while(--size);
}
void st_current_init() //Initialize Digipot Motor Current
2019-09-12 10:39:04 +00:00
{
#ifdef MOTOR_CURRENT_PWM_XY_PIN
uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
SilentModeMenu = SilentMode;
2016-07-22 13:28:01 +00:00
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
2018-04-25 18:47:19 +00:00
if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
2016-07-22 13:28:01 +00:00
motor_current_setting[0] = motor_current_setting_loud[0];
motor_current_setting[1] = motor_current_setting_loud[1];
motor_current_setting[2] = motor_current_setting_loud[2];
}else{
motor_current_setting[0] = motor_current_setting_silent[0];
motor_current_setting[1] = motor_current_setting_silent[1];
motor_current_setting[2] = motor_current_setting_silent[2];
}
st_current_set(0, motor_current_setting[0]);
st_current_set(1, motor_current_setting[1]);
st_current_set(2, motor_current_setting[2]);
2016-07-22 13:28:01 +00:00
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
2019-09-12 10:39:04 +00:00
#endif
2016-07-22 13:28:01 +00:00
}
#ifdef MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t driver, int current)
2016-07-22 13:28:01 +00:00
{
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
}
#else //MOTOR_CURRENT_PWM_XY_PIN
void st_current_set(uint8_t, int ){}
#endif //MOTOR_CURRENT_PWM_XY_PIN
2016-07-22 13:28:01 +00:00
void microstep_init()
{
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
const uint8_t microstep_modes[] = MICROSTEP_MODES;
2016-07-22 13:28:01 +00:00
pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
#endif
}
#ifndef TMC2130
2016-07-22 13:28:01 +00:00
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
if(ms1 > -1) switch(driver)
{
case 0: digitalWrite( X_MS1_PIN,ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break;
case 3: digitalWrite(E0_MS1_PIN,ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif
}
if(ms2 > -1) switch(driver)
{
case 0: digitalWrite( X_MS2_PIN,ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings()
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
#endif
}
#endif //TMC2130
#if defined(FILAMENT_SENSOR) && defined(PAT9125)
void st_reset_fsensor()
{
CRITICAL_SECTION_START;
fsensor_counter = 0;
CRITICAL_SECTION_END;
}
#endif //FILAMENT_SENSOR