Prevent bad readings/issues if someone changes the bed thermistor that is "better" with lower min values and creates a custom firmware.
The firmware will now be in the range of the PINDAv2 thermistor independant from the bed thermistor (which may change and need adjustments)
- Changed DETECT_SUPERPINDA to SUPERPINDA_SUPPORT as on miniRAMo the thermistor readings below 30°C
aren't accurate egnough to determine if SUPERPINDA is connected or not
- Add LCD toggle menu Settings -> HW Setup -> SuperPINDA [Yes/No] to overwrite SuperPINDA detection
- If EEPROM_PINDA_TEMP_COMPENSTATION is empty = 0xff then detect SuperPINDA by checking thermistor
- If EEPROM_PINDA_TEMP_COMPENSTAION is 0 then forec enable for temperature compensation menues and functions
- If EEPROM_PINDA_TEMP_COMPENSATION is 1 then force disable for temperature compensation menues and functions
When unloading + preheat immediately followed by a load, the carriage is
raised first up to 20mm, then again to 50mm.
With PR #2318 it makes sense to make more space for the extra extrusion
anyway, so make them the same. This moves the carriage only once _while_
preheating, which is nice.
Preheating already raised Z to avoid scorching the PEI sheet, as does
filament loading/unloading to allow for excess material to be removed.
However, when loading/autoloading/unloading via the LCD with a cold
nozzle the preheating menu is performed before the carriage is raised,
leaving the carriage close to the sheet while heating the nozzle.
Pre-raise the carriage already while waiting, so that the subsequent
move is automagically skipped.
Set bFilamentWaitingFlag only once to perform both the LCD
initialization and raising to the appropriate height.
Should fix#2761
* Add missing translations
* Add missing CZ and IT translations
* Update CZ, FR, IT, ES translations
CZ thanks to @DRracer
FR thanks to Carlin Dcustom
ES tried myself
IT thanks to @wavexx
Only missing is PL
* Improve wording +change keys
* Add missing PL translations
* Fix copy paste error in Italian
fix double translations
* Make PL translation shorter
* Fix some length issues and capital letters
* Fixed again translations length issues
updated po files
* Update FR translation - thanks @awenelo
* Fix execution of lang-check.py
- Make lang-check.py executable
- Execute directly instead of specifying the python interpreter manually
("python" is no longer available on Debian, and would default to
version 2 prior to that despite being written for python 3)
* Fix permissions of translation files
Co-authored-by: D.R.racer <drracer@drracer.eu>
Co-authored-by: Yuri D'Elia <wavexx@thregr.org>
After fixing some LA15 issues, the strenght of LA15 increased.
As such, re-adjust the conversion factor so that:
Start K10 => 0.01 (previous minimum was K15)
PLA K30 => 0.05 (was 0.07, optimal 0.045-0.06)
PETG K45 => 0.08 (was 0.13, optimal 0.07-0.11 depending on material/temp)
The temperature and fsensor ISR re-enable interrupts while executing.
However, we still need to protect the epilogue of the ISR so that
the saved return address is not altered while returning.
We hoist the body of the function out of the isr in both cases for
clarity (and to avoid a stray return bypassing the lock/cli), so that
the re-entrant portion is clearly indicated.
This should fix the "STATIC MEMORY OVERWRITTEN" error messages randomly
happening when stepping at high frequency (where either isr is
preempted more frequently).
Factor-out MIN/MAXTEMP [BED/AMB] out of the error message, which is now
built at runtime instead.
Introduce two missing ultralcd functions lcd_setalertstatus and
lcd_updatestatus to handle regular strings.
246272 -> 246084 = 188 bytes saved
Partially revert 285b505c73a54e9af01816e3a614de73ad181851 so that
we ensure heaters are disabled ASAP in case of potential bugs
in the max_*_error functions.
Take advantage of the NTC thermistor found on the Einsy as an additional
safety measure, following the steps of the other MIN/MAXTEMP errors.
Introduce two configurable params AMBIENT_MINTEMP and AMBIENT_MAXTEMP
in the variant defines and set them for the MK3/MK3S to -30/+100
respectively.
AMBIENT_MINTEMP is primarily intended to catch a defective board
thermistor (to ensure MAXTEMP would be properly triggered) and thus the
trigger temperature is set just above the sensing limit and well below
the operating range.
AMBIENT_MAXTEMP is set at 100C, which is instead 20C above the maximum
recommended operating temperature of the Einsy. The NTC thermistor is
located just above the main power connector on the bottom of the board,
and could also help in detecting a faulty connection which can result in
rapid overheating of the contacts.
As for MAXTEMP, we cut power to the heaters, print fan and motors to
reduce power draw. Resume is not possible except by resetting the
printer, since the user is highly advised to inspect the board for
problems before attempting to continue.
In max/min_temp handlers remove the redundant disable_heater() call.
Handlers already need to call Stop(), which will disable all heaters
as the first step.
Fix comments in order to mention that all heaters get disabled.
Use "MAX/MINTEMP BED" correctly in both the LCD and serial.
Remove most of the original complexity from advance_spread.
Instead of accumulating time to be scheduled, plan ahead of time each
eISR tick using the next main interval + an accumulator (eISR_Err),
which keeps everything much simpler.
The distribution of the advance ticks is now using the real LA
frequency, which leaves a bit more time between the last LA tick and
the main stepper isr.
We take advantage of the accumulator to force a LA tick right after the
first main tick, which removes a +/- 1 scheduling error at higher step
rates.
When decompressing, we force 2 steps instead, so that the direction
reversal happens immediately (first tick zeros esteps, second inverts
the sign), removing another +/- 1 error at higher step rates.
If you're using flow to correct for an incorrect source diameter, which
is probably the main usage when using the LCD, then LA shouldn't be
adjusted.
It's still unclear what the effect of M221 in gcode should be regarding
overall extrusion width. If M221 means "thicker lines", then LA should
also be adjusted accordingly.
This stems from the fact that the source diameter/length needs to be
known in order to determine a compression factor which is independent of
the extrusion width, but the FW only ever sees one value currently (the
extrusion length) which combines both.
This makes it impossible for the FW to adjust for one OR the other
scenario, depending on what you expect for M221 to mean.
The e/D ratio should be calculated using the extrusion length.
As such, purify the e_D_ratio from the current extruder multiplier in
order to account correctly for flow adjustments.