PrusaSlicer-NonPlainar/src/libslic3r/Fill/FillRectilinear2.cpp

2346 lines
115 KiB
C++
Raw Normal View History

2016-09-13 09:26:38 +00:00
#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <random>
#include <boost/container/small_vector.hpp>
#include <boost/static_assert.hpp>
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "FillRectilinear2.hpp"
// #define SLIC3R_DEBUG
2016-09-13 09:26:38 +00:00
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#include "SVG.hpp"
#endif
#include <cassert>
2016-09-13 09:26:38 +00:00
// We want our version of assert.
#include "../libslic3r.h"
namespace Slic3r {
// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
// Verify that p1 lies on seg1. This is difficult to verify precisely,
// but at least verify, that p1 lies in the bounding box of seg1.
for (size_t i = 0; i < 2; ++ i) {
size_t seg = (i == 0) ? seg1 : seg2;
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa(0) > pb(0))
std::swap(pa(0), pb(0));
if (pa(1) > pb(1))
std::swap(pa(1), pb(1));
assert(px(0) >= pa(0) && px(0) <= pb(0));
assert(px(1) >= pa(1) && px(1) <= pb(1));
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
const Point *pThis = NULL;
coordf_t len = 0;
if (seg1 <= seg2) {
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
} else {
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
}
len += (*pPrev - p2).cast<double>().norm();
return len;
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2) {
// Nothing to append from this segment.
} else if (seg1 < seg2) {
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
}
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 >= seg2) {
out.reserve(seg1 - seg2);
for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
} else {
// it could be, that seg1 == seg2. In that case, append the complete loop.
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]);
for (size_t i = polygon.points.size(); i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
}
}
// Intersection point of a vertical line with a polygon segment.
struct SegmentIntersection
{
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
size_t iContour { 0 };
// Index of a segment in iContour, with which this vertical line intersects.
size_t iSegment { 0 };
// y position of the intersection, rational number.
int64_t pos_p { 0 };
uint32_t pos_q { 1 };
coord_t pos() const {
// Division rounds both positive and negative down to zero.
// Add half of q for an arithmetic rounding effect.
int64_t p = pos_p;
if (p < 0)
p -= int64_t(pos_q>>1);
else
p += int64_t(pos_q>>1);
return coord_t(p / int64_t(pos_q));
}
// Kind of intersection. With the original contour, or with the inner offestted contour?
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
enum SegmentIntersectionType : char {
OUTER_LOW = 0,
OUTER_HIGH = 1,
INNER_LOW = 2,
INNER_HIGH = 3,
UNKNOWN = -1
};
SegmentIntersectionType type { UNKNOWN };
// Left vertical line / contour intersection point.
// null if next_on_contour_vertical.
int32_t prev_on_contour { 0 };
// Right vertical line / contour intersection point.
// If next_on_contour_vertical, then then next_on_contour contains next contour point on the same vertical line.
int32_t next_on_contour { 0 };
enum class LinkType : uint8_t {
// Horizontal link (left or right).
Horizontal,
// Vertical link, up.
Up,
// Vertical link, down.
Down
};
enum class LinkQuality : uint8_t {
Invalid,
Valid,
// Valid link, to be followed when extruding.
// Link inside a monotonous region.
ValidMonotonous,
// Valid link, to be possibly followed when extruding.
// Link between two monotonous regions.
ValidNonMonotonous,
// Link from T to end of another contour.
FromT,
// Link from end of one contour to T.
ToT,
// Link from one T to another T, making a letter H.
H,
// Vertical segment
TooLong,
};
// Kept grouped with other booleans for smaller memory footprint.
LinkType prev_on_contour_type { LinkType::Horizontal };
LinkType next_on_contour_type { LinkType::Horizontal };
LinkQuality prev_on_contour_quality { true };
LinkQuality next_on_contour_quality { true };
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up { false };
// Was a segment of the inner perimeter contour consumed?
// Right means right from the vertical segment.
bool consumed_perimeter_right { false };
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
// If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
enum class Side {
Left,
Right
};
enum class Direction {
Up,
Down
};
bool has_left_horizontal() const { return this->prev_on_contour_type == LinkType::Horizontal; }
bool has_right_horizontal() const { return this->next_on_contour_type == LinkType::Horizontal; }
bool has_horizontal(Side side) const { return side == Side::Left ? this->has_left_horizontal() : this->has_right_horizontal(); }
bool has_left_vertical_up() const { return this->prev_on_contour_type == LinkType::Up; }
bool has_left_vertical_down() const { return this->prev_on_contour_type == LinkType::Down; }
bool has_left_vertical(Direction dir) const { return dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down(); }
bool has_left_vertical() const { return this->has_left_vertical_up() || this->has_left_vertical_down(); }
bool has_left_vertical_outside() const { return this->is_low() ? this->has_left_vertical_down() : this->has_left_vertical_up(); }
bool has_right_vertical_up() const { return this->next_on_contour_type == LinkType::Up; }
bool has_right_vertical_down() const { return this->next_on_contour_type == LinkType::Down; }
bool has_right_vertical(Direction dir) const { return dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down(); }
bool has_right_vertical() const { return this->has_right_vertical_up() || this->has_right_vertical_down(); }
bool has_right_vertical_outside() const { return this->is_low() ? this->has_right_vertical_down() : this->has_right_vertical_up(); }
bool has_vertical() const { return this->has_left_vertical() || this->has_right_vertical(); }
bool has_vertical(Side side) const { return side == Side::Left ? this->has_left_vertical() : this->has_right_vertical(); }
bool has_vertical_up() const { return this->has_left_vertical_up() || this->has_right_vertical_up(); }
bool has_vertical_down() const { return this->has_left_vertical_down() || this->has_right_vertical_down(); }
bool has_vertical(Direction dir) const { return dir == Direction::Up ? this->has_vertical_up() : this->has_vertical_down(); }
int left_horizontal() const { return this->has_left_horizontal() ? this->prev_on_contour : -1; }
int right_horizontal() const { return this->has_right_horizontal() ? this->next_on_contour : -1; }
int horizontal(Side side) const { return side == Side::Left ? this->left_horizontal() : this->right_horizontal(); }
int left_vertical_up() const { return this->has_left_vertical_up() ? this->prev_on_contour : -1; }
int left_vertical_down() const { return this->has_left_vertical_down() ? this->prev_on_contour : -1; }
int left_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down()) ? this->prev_on_contour : -1; }
int left_vertical() const { return this->has_left_vertical() ? this->prev_on_contour : -1; }
int left_vertical_outside() const { return this->is_low() ? this->left_vertical_down() : this->left_vertical_up(); }
int right_vertical_up() const { return this->has_right_vertical_up() ? this->prev_on_contour : -1; }
int right_vertical_down() const { return this->has_right_vertical_down() ? this->prev_on_contour : -1; }
int right_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down()) ? this->next_on_contour : -1; }
int right_vertical() const { return this->has_right_vertical() ? this->prev_on_contour : -1; }
int right_vertical_outside() const { return this->is_low() ? this->right_vertical_down() : this->right_vertical_up(); }
int vertical_up(Side side) const { return side == Side::Left ? this->left_vertical_up() : this->right_vertical_up(); }
int vertical_down(Side side) const { return side == Side::Left ? this->left_vertical_down() : this->right_vertical_down(); }
int vertical_outside(Side side) const { return side == Side::Left ? this->left_vertical_outside() : this->right_vertical_outside(); }
int vertical_up() const {
assert(! this->has_left_vertical_up() || ! this->has_right_vertical_up());
return this->has_left_vertical_up() ? this->left_vertical_up() : this->right_vertical_up();
}
LinkQuality vertical_up_quality() const {
assert(! this->has_left_vertical_up() || ! this->has_right_vertical_up());
return this->has_left_vertical_up() ? this->prev_on_contour_quality : this->next_on_contour_quality;
}
int vertical_down() const {
assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
return this->has_left_vertical_down() ? this->left_vertical_down() : this->right_vertical_down();
}
LinkQuality vertical_down_quality() const {
assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
return this->has_left_vertical_down() ? this->prev_on_contour_quality : this->next_on_contour_quality;
}
int vertical_outside() const { return this->is_low() ? this->vertical_down() : this->vertical_up(); }
// int next_up() const { return this->prev_on_contour_vertical ? -1 : this->prev_on_contour; }
// int next_right() const { return this->next_on_contour_vertical ? -1 : this->next_on_contour; }
// Compare two y intersection points given by rational numbers.
// Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
// This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
// We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
// we don't need the full 128bit precision anyway.
bool operator<(const SegmentIntersection &other) const
{
assert(pos_q > 0);
assert(other.pos_q > 0);
if (pos_p == 0 || other.pos_p == 0) {
// Because the denominators are positive and one of the nominators is zero,
// following simple statement holds.
return pos_p < other.pos_p;
} else {
// None of the nominators is zero.
2017-01-12 08:05:59 +00:00
int sign1 = (pos_p > 0) ? 1 : -1;
int sign2 = (other.pos_p > 0) ? 1 : -1;
int signs = sign1 * sign2;
assert(signs == 1 || signs == -1);
if (signs < 0) {
// The nominators have different signs.
return sign1 < 0;
} else {
// The nominators have the same sign.
// Absolute values
uint64_t p1, p2;
if (sign1 > 0) {
p1 = uint64_t(pos_p);
p2 = uint64_t(other.pos_p);
} else {
p1 = uint64_t(- pos_p);
p2 = uint64_t(- other.pos_p);
};
// Multiply low and high 32bit words of p1 by other_pos.q
// 32bit x 32bit => 64bit
// l_hi and l_lo overlap by 32 bits.
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
l_hi += (l_lo >> 32);
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
r_hi += (r_lo >> 32);
// Compare the high 64 bits.
if (l_hi == r_hi) {
// Compare the low 32 bits.
l_lo &= 0xffffffffll;
r_lo &= 0xffffffffll;
return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
}
return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
}
}
}
bool operator==(const SegmentIntersection &other) const
{
assert(pos_q > 0);
assert(other.pos_q > 0);
if (pos_p == 0 || other.pos_p == 0) {
// Because the denominators are positive and one of the nominators is zero,
// following simple statement holds.
return pos_p == other.pos_p;
}
// None of the nominators is zero, none of the denominators is zero.
bool positive = pos_p > 0;
if (positive != (other.pos_p > 0))
return false;
// The nominators have the same sign.
// Absolute values
uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
// Multiply low and high 32bit words of p1 by other_pos.q
// 32bit x 32bit => 64bit
// l_hi and l_lo overlap by 32 bits.
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
if (l_lo != r_lo)
return false;
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
}
};
static_assert(sizeof(SegmentIntersection::pos_q) == 4, "SegmentIntersection::pos_q has to be 32bit long!");
// A vertical line with intersection points with polygons.
struct SegmentedIntersectionLine
{
// Index of this vertical intersection line.
size_t idx;
// x position of this vertical intersection line.
coord_t pos;
// List of intersection points with polygons, sorted increasingly by the y axis.
std::vector<SegmentIntersection> intersections;
};
// A container maintaining an expolygon with its inner offsetted polygon.
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
struct ExPolygonWithOffset
{
public:
2016-09-13 09:26:38 +00:00
ExPolygonWithOffset(
const ExPolygon &expolygon,
float angle,
coord_t aoffset1,
coord_t aoffset2)
{
2016-09-13 09:26:38 +00:00
// Copy and rotate the source polygons.
polygons_src = expolygon;
polygons_src.contour.rotate(angle);
for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
2016-09-13 09:26:38 +00:00
it->rotate(angle);
double mitterLimit = 3.;
// for the infill pattern, don't cut the corners.
// default miterLimt = 3
//double mitterLimit = 10.;
assert(aoffset1 < 0);
assert(aoffset2 < 0);
assert(aoffset2 < aoffset1);
2019-06-25 11:06:04 +00:00
// bool sticks_removed =
remove_sticks(polygons_src);
// if (sticks_removed) printf("Sticks removed!\n");
polygons_outer = offset(polygons_src, float(aoffset1),
2016-09-13 09:26:38 +00:00
ClipperLib::jtMiter,
mitterLimit);
polygons_inner = offset(polygons_outer, float(aoffset2 - aoffset1),
2016-09-13 09:26:38 +00:00
ClipperLib::jtMiter,
mitterLimit);
// Filter out contours with zero area or small area, contours with 2 points only.
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
remove_small(polygons_outer, min_area_threshold);
remove_small(polygons_inner, min_area_threshold);
remove_sticks(polygons_outer);
remove_sticks(polygons_inner);
n_contours_outer = polygons_outer.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
2016-09-13 09:26:38 +00:00
polygons_ccw.assign(n_contours, false);
for (size_t i = 0; i < n_contours; ++ i) {
contour(i).remove_duplicate_points();
assert(! contour(i).has_duplicate_points());
polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
2016-09-13 09:26:38 +00:00
}
}
2016-09-13 09:26:38 +00:00
// Any contour with offset1
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
// Any contour with offset2
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
2016-09-13 09:26:38 +00:00
const Polygon& contour(size_t idx) const
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
2016-09-13 09:26:38 +00:00
Polygon& contour(size_t idx)
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
2016-09-13 09:26:38 +00:00
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
BoundingBox bounding_box_src() const
{ return get_extents(polygons_src); }
2016-09-13 09:26:38 +00:00
BoundingBox bounding_box_outer() const
{ return get_extents(polygons_outer); }
2016-09-13 09:26:38 +00:00
BoundingBox bounding_box_inner() const
{ return get_extents(polygons_inner); }
#ifdef SLIC3R_DEBUG
void export_to_svg(Slic3r::SVG &svg) {
svg.draw_outline(polygons_src, "black");
svg.draw_outline(polygons_outer, "green");
svg.draw_outline(polygons_inner, "brown");
}
#endif /* SLIC3R_DEBUG */
2016-09-13 09:26:38 +00:00
ExPolygon polygons_src;
2016-09-13 09:26:38 +00:00
Polygons polygons_outer;
Polygons polygons_inner;
size_t n_contours_outer;
size_t n_contours_inner;
size_t n_contours;
protected:
// For each polygon of polygons_inner, remember its orientation.
2016-09-13 09:26:38 +00:00
std::vector<unsigned char> polygons_ccw;
};
2016-09-13 09:26:38 +00:00
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
int d = int(seg2) - int(seg1);
if (! forward)
d = - d;
if (d < 0)
d += int(poly.points.size());
return d;
}
enum IntersectionTypeOtherVLine {
// There is no connection point on the other vertical line.
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
// Connection point on the other vertical segment was found
// and it could be followed.
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
// The connection segment connects to a middle of a vertical segment.
// Cannot follow.
INTERSECTION_TYPE_OTHER_VLINE_INNER,
// Cannot extend the contor to this intersection point as either the connection segment
// or the succeeding vertical segment were already consumed.
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
};
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
SegmentIntersection::Side side)
{
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
if (itsct_this.has_vertical(side))
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
return INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
int iIntersectionOther = itsct_this.horizontal(side);
if (iIntersectionOther == -1)
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
assert(side == SegmentIntersection::Side::Right ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentedIntersectionLine &il_other = segs[side == SegmentIntersection::Side::Right ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
assert(itsct_other.is_inner());
assert(iIntersectionOther > 0);
assert(iIntersectionOther + 1 < il_other.intersections.size());
2016-09-13 09:26:38 +00:00
// Is iIntersectionOther at the boundary of a vertical segment?
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
if (itsct_other2.is_inner())
// Cannot follow a perimeter segment into the middle of another vertical segment.
// Only perimeter segments connecting to the end of a vertical segment are followed.
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
assert(itsct_other.is_low() == itsct_other2.is_low());
if (side == SegmentIntersection::Side::Right ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
// This vertical segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
return INTERSECTION_TYPE_OTHER_VLINE_OK;
}
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Left);
}
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Right);
}
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersection2,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return coordf_t(-1);
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return coordf_t(-1);
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
assert(itsct.iContour == itsct2.iContour);
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
// const bool ccw = poly_with_offset.is_contour_ccw(il.iContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
2016-09-13 09:26:38 +00:00
const bool forward = itsct.is_low() == dir_is_next;
Point p1(il.pos, itsct.pos());
Point p2(il2.pos, itsct2.pos());
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
static inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iIntersection, iIntersection2, false);
}
static inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iIntersection, iIntersection2, true);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
assert(iVerticalLineOther < segs.size());
} else {
assert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
2016-09-13 09:26:38 +00:00
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
2016-09-13 09:26:38 +00:00
const bool forward = itsct.is_low() == dir_is_next;
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(Point(il2.pos, itsct2.pos()));
}
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersection2,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
assert(itsct.is_inner());
assert(itsct2.is_inner());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == itsct2.iContour);
Point p1(il.pos, itsct.pos());
Point p2(il.pos, itsct2.pos());
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
assert(itsct.is_inner());
assert(itsct2.is_inner());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == iInnerContour);
assert(itsct.iContour == itsct2.iContour);
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(Point(il.pos, itsct2.pos()));
}
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t i_vline,
size_t iIntersection)
{
const SegmentedIntersectionLine &il = segs[i_vline];
const SegmentIntersection &itsct = il.intersections[i_vline];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
assert(itsct.is_outer());
assert(itsct2.is_outer());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == itsct2.iContour);
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
// Error, return zero area.
return 0.f;
// Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
// Find possible connection points on the same vertical line.
int iAbove = iBelow = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iAbove = i; break; }
// Does the perimeter intersect the current vertical line below intrsctn?
for (int i = int(i_intersection) - 1; i > 0; -- i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iBelow = i; break; }
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
}
}
}
*/
enum DirectionMask
{
DIR_FORWARD = 1,
DIR_BACKWARD = 2
};
static std::vector<SegmentedIntersectionLine> slice_region_by_vertical_lines(const ExPolygonWithOffset &poly_with_offset, size_t n_vlines, coord_t x0, coord_t line_spacing)
{
2016-09-13 09:26:38 +00:00
// Allocate storage for the segments.
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
for (coord_t i = 0; i < coord_t(n_vlines); ++ i) {
segs[i].idx = i;
segs[i].pos = x0 + i * line_spacing;
}
// For each contour
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
2016-09-13 09:26:38 +00:00
const Points &contour = poly_with_offset.contour(iContour).points;
if (contour.size() < 2)
continue;
// For each segment
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
const Point &p1 = contour[iPrev];
const Point &p2 = contour[iSegment];
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = p1(0);
coord_t r = p2(0);
if (l > r)
std::swap(l, r);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = (l - x0) / line_spacing;
while (il * line_spacing + x0 < l)
++ il;
il = std::max(int(0), il);
int ir = (r - x0 + line_spacing) / line_spacing;
while (ir * line_spacing + x0 > r)
-- ir;
ir = std::min(int(segs.size()) - 1, ir);
if (il > ir)
// No vertical line intersects this segment.
continue;
2019-06-25 11:06:04 +00:00
assert(il >= 0 && size_t(il) < segs.size());
assert(ir >= 0 && size_t(ir) < segs.size());
for (int i = il; i <= ir; ++ i) {
coord_t this_x = segs[i].pos;
assert(this_x == i * line_spacing + x0);
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
assert(l <= this_x);
assert(r >= this_x);
// Calculate the intersection position in y axis. x is known.
if (p1(0) == this_x) {
if (p2(0) == this_x) {
// Ignore strictly vertical segments.
continue;
}
is.pos_p = p1(1);
is.pos_q = 1;
} else if (p2(0) == this_x) {
is.pos_p = p2(1);
is.pos_q = 1;
} else {
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
if (p2(0) > p1(0)) {
is.pos_p = this_x - p1(0);
is.pos_q = p2(0) - p1(0);
} else {
is.pos_p = p1(0) - this_x;
is.pos_q = p1(0) - p2(0);
}
assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
// Make an intersection point from the 't'.
is.pos_p *= int64_t(p2(1) - p1(1));
is.pos_p += p1(1) * int64_t(is.pos_q);
}
// +-1 to take rounding into account.
assert(is.pos() + 1 >= std::min(p1(1), p2(1)));
assert(is.pos() <= std::max(p1(1), p2(1)) + 1);
segs[i].intersections.push_back(is);
}
}
}
// Sort the intersections along their segments, specify the intersection types.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// Sort the intersection points using exact rational arithmetic.
std::sort(sil.intersections.begin(), sil.intersections.end());
// Assign the intersection types, remove duplicate or overlapping intersection points.
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
// If such two segments are oriented equally, then one of them is removed.
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
2016-09-13 09:26:38 +00:00
size_t j = 0;
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
2016-09-13 09:26:38 +00:00
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment](0) - contour[iPrev](0);
2016-09-13 09:26:38 +00:00
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
// Two successive segments meet exactly at the vertical line.
#ifdef SLIC3R_DEBUG
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
size_t iSegment2 = sil.intersections[j-1].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
assert(iSegment == iPrev2 || iSegment2 == iPrev);
#endif /* SLIC3R_DEBUG */
if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line.
// Remove the second intersection point.
} else {
// This is a loop returning to the same point.
// It may as well be a vertex of a loop touching this vertical line.
// Remove both the lines.
-- j;
}
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two non successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
// of the Z shaped path is aligned with this vertical line.
// Remove one of the intersection points while maximizing the vertical segment length.
if (low) {
// Remove the second intersection point, keep the first intersection point.
} else {
// Remove the first intersection point, keep the second intersection point.
sil.intersections[j-1] = sil.intersections[i];
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
// Keep both intersection points.
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
2016-09-13 09:26:38 +00:00
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
2016-09-13 09:26:38 +00:00
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
}
2016-09-13 09:26:38 +00:00
// Shrink the list of intersections, if any of the intersection was removed during the classification.
if (j < sil.intersections.size())
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
}
// Verify the segments. If something is wrong, give up.
#define ASSERT_THROW(CONDITION) do { assert(CONDITION); throw InfillFailedException(); } while (0)
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// The intersection points have to be even.
ASSERT_THROW((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
ASSERT_THROW(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
ASSERT_THROW(j < sil.intersections.size());
ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
ASSERT_THROW(j < sil.intersections.size());
ASSERT_THROW((j & 1) == 1);
ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
ASSERT_THROW(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
i = j + 1;
}
}
#undef ASSERT_THROW
2016-09-13 09:26:38 +00:00
return segs;
}
// Connect each contour / vertical line intersection point with another two contour / vertical line intersection points.
// (fill in SegmentIntersection::{prev_on_contour, prev_on_contour_vertical, next_on_contour, next_on_contour_vertical}.
// These contour points are either on the same vertical line, or on the vertical line left / right to the current one.
static void connect_segment_intersections_by_contours(const ExPolygonWithOffset &poly_with_offset, std::vector<SegmentedIntersectionLine> &segs)
{
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
SegmentedIntersectionLine &il = segs[i_vline];
const SegmentedIntersectionLine *il_prev = i_vline > 0 ? &segs[i_vline - 1] : nullptr;
const SegmentedIntersectionLine *il_next = i_vline + 1 < segs.size() ? &segs[i_vline + 1] : nullptr;
for (size_t i_intersection = 0; i_intersection + 1 < il.intersections.size(); ++ i_intersection) {
SegmentIntersection &itsct = il.intersections[i_intersection];
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
// 1) Find possible connection points on the previous / next vertical line.
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
// at the same orientation as iIntersection, and being closest to iIntersection
// in the number of contour segments, when following the direction of the contour.
int iprev = -1;
if (il_prev) {
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il_prev->intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il_prev->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, false);
if (d < dmin) {
iprev = i;
dmin = d;
}
}
}
}
int inext = -1;
if (il_next) {
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il_next->intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il_next->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, true);
if (d < dmin) {
inext = i;
dmin = d;
}
}
}
}
// 2) Find possible connection points on the same vertical line.
int iabove = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < il.intersections.size(); ++ i)
if (il.intersections[i].iContour == itsct.iContour) {
iabove = i;
break;
}
// Does the perimeter intersect the current vertical line below intrsctn?
int ibelow = -1;
for (size_t i = i_intersection - 1; i > 0; -- i)
if (il.intersections[i].iContour == itsct.iContour) {
ibelow = i;
break;
}
// 3) Sort the intersection points, clear iprev / inext / iSegBelow / iSegAbove,
// if it is preceded by any other intersection point along the contour.
// The perimeter contour orientation.
const bool forward = itsct.is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
{
int d_horiz = (iprev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, il_prev->intersections[iprev].iSegment, itsct.iSegment, forward);
int d_down = (ibelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, il.intersections[ibelow].iSegment, itsct.iSegment, forward);
int d_up = (iabove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, il.intersections[ibelow].iSegment, itsct.iSegment, forward);
if (d_horiz < std::min(d_down, d_up)) {
itsct.prev_on_contour = iprev;
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Horizontal;
} else if (d_down < d_up) {
itsct.prev_on_contour = ibelow;
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Down;
} else {
itsct.prev_on_contour = iabove;
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Up;
}
// There should always be a link to the next intersection point on the same contour.
assert(itsct.prev_on_contour != -1);
}
{
int d_horiz = (inext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, il_next->intersections[inext].iSegment, forward);
int d_down = (ibelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, il.intersections[ibelow].iSegment, forward);
int d_up = (iabove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, il.intersections[iabove].iSegment, forward);
if (d_horiz < std::min(d_down, d_up)) {
itsct.next_on_contour = inext;
itsct.next_on_contour_type = SegmentIntersection::LinkType::Horizontal;
} else if (d_down < d_up) {
itsct.next_on_contour = ibelow;
itsct.next_on_contour_type = SegmentIntersection::LinkType::Down;
} else {
itsct.next_on_contour = iabove;
itsct.next_on_contour_type = SegmentIntersection::LinkType::Up;
}
// There should always be a link to the next intersection point on the same contour.
assert(itsct.next_on_contour != -1);
}
}
2016-09-13 09:26:38 +00:00
}
}
// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection.
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run_raw(const SegmentIntersection &start)
{
assert(start.type != SegmentIntersection::INNER_LOW);
// Step back to the beginning of the vertical segment to mark it as consumed.
auto *it = &start;
do {
++ it;
} while (it->type != SegmentIntersection::OUTER_HIGH);
if ((it - 1)->is_inner()) {
// Step back.
-- it;
assert(it->type == SegmentIntersection::INNER_HIGH);
}
return *it;
}
static SegmentIntersection& end_of_vertical_run_raw(SegmentIntersection &start)
{
return const_cast<SegmentIntersection&>(end_of_vertical_run_raw(std::as_const(start)));
}
// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection, traversing vertical up contours if enabled.
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run(const SegmentedIntersectionLine &il, const SegmentIntersection &start)
{
assert(start.type != SegmentIntersection::INNER_LOW);
const SegmentIntersection *end = &end_of_vertical_run_raw(start);
assert(end->type == SegmentIntersection::INNER_HIGH);
for (;;) {
int up = end->vertical_up();
if (up == -1 || (end->has_left_vertical_up() ? end->prev_on_contour_quality : end->next_on_contour_quality) != SegmentIntersection::LinkQuality::Valid)
break;
const SegmentIntersection &new_start = il.intersections[up];
assert(end->iContour == new_start.iContour);
assert(new_start.type == SegmentIntersection::INNER_LOW);
end = &end_of_vertical_run_raw(new_start);
}
assert(end->type == SegmentIntersection::INNER_HIGH);
return *end;
}
static SegmentIntersection& end_of_vertical_run(SegmentedIntersectionLine &il, SegmentIntersection &start)
{
return const_cast<SegmentIntersection&>(end_of_vertical_run(std::as_const(il), std::as_const(start)));
}
static void classify_vertical_runs(
const ExPolygonWithOffset &poly_with_offset, const FillParams &params, const coord_t link_max_length,
std::vector<SegmentedIntersectionLine> &segs, size_t i_vline)
{
SegmentedIntersectionLine &vline = segs[i_vline];
for (size_t i_intersection = 0; i_intersection + 1 < vline.intersections.size(); ++ i_intersection) {
if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW) {
if (vline.intersections[++ i_intersection].type == SegmentIntersection::INNER_LOW) {
for (;;) {
SegmentIntersection &start = vline.intersections[i_intersection];
SegmentIntersection &end = end_of_vertical_run_raw(start);
SegmentIntersection::LinkQuality link_quality = SegmentIntersection::LinkQuality::Valid;
// End of a contour starting at end and ending above end at the same vertical line.
int inext = end.vertical_outside();
if (inext == -1) {
i_intersection = &end - vline.intersections.data() + 1;
break;
}
SegmentIntersection &start2 = vline.intersections[inext];
if (params.dont_connect)
link_quality = SegmentIntersection::LinkQuality::TooLong;
else {
for (SegmentIntersection *it = &end + 1; it != &start2; ++ it)
if (it->is_inner()) {
link_quality = SegmentIntersection::LinkQuality::Invalid;
break;
}
if (link_quality == SegmentIntersection::LinkQuality::Valid && link_max_length > 0) {
// Measure length of the link.
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, i_intersection, inext, end.has_right_vertical_outside());
if (link_length > link_max_length)
link_quality = SegmentIntersection::LinkQuality::TooLong;
}
}
(end.has_left_vertical_up() ? end.prev_on_contour_quality : end.next_on_contour_quality) = link_quality;
(start2.has_left_vertical_down() ? start2.prev_on_contour_quality : start2.next_on_contour_quality) = link_quality;
if (link_quality != SegmentIntersection::LinkQuality::Valid) {
i_intersection = &end - vline.intersections.data() + 1;
break;
}
i_intersection = &start2 - vline.intersections.data();
}
} else
++ i_intersection;
} else
++ i_intersection;
}
}
static void classify_horizontal_links(
const ExPolygonWithOffset &poly_with_offset, const FillParams &params, const coord_t link_max_length,
std::vector<SegmentedIntersectionLine> &segs, size_t i_vline)
{
SegmentedIntersectionLine &vline_left = segs[i_vline];
SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
// Traverse both left and right together.
size_t i_intersection_left = 0;
size_t i_intersection_right = 0;
while (i_intersection_left + 1 < vline_left.intersections.size() && i_intersection_right + 1 < vline_right.intersections.size()) {
if (i_intersection_left < vline_left.intersections.size() && vline_left.intersections[i_intersection_left].type != SegmentIntersection::INNER_LOW) {
++ i_intersection_left;
continue;
}
if (i_intersection_right < vline_right.intersections.size() && vline_right.intersections[i_intersection_right].type != SegmentIntersection::INNER_LOW) {
++ i_intersection_right;
continue;
}
if (i_intersection_left + 1 >= vline_left.intersections.size()) {
// Trace right only.
} else if (i_intersection_right + 1 >= vline_right.intersections.size()) {
// Trace left only.
} else {
// Trace both.
SegmentIntersection &start_left = vline_left.intersections[i_intersection_left];
SegmentIntersection &end_left = end_of_vertical_run(vline_left, start_left);
SegmentIntersection &start_right = vline_right.intersections[i_intersection_right];
SegmentIntersection &end_right = end_of_vertical_run(vline_right, start_right);
// Do these runs overlap?
int end_right_horizontal = end_left.right_horizontal();
int end_left_horizontal = end_right.left_horizontal();
if (end_right_horizontal != -1) {
if (end_right_horizontal < &start_right - vline_right.intersections.data()) {
// Left precedes the right segment.
}
} else if (end_left_horizontal != -1) {
if (end_left_horizontal < &start_left - vline_left.intersections.data()) {
// Right precedes the left segment.
}
}
}
}
#if 0
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
if (segs.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW) {
if (segs.intersections[++ i_intersection].type == SegmentIntersection::INNER_LOW) {
for (;;) {
SegmentIntersection &start = segs.intersections[i_intersection];
SegmentIntersection &end = end_of_vertical_run_raw(start);
SegmentIntersection::LinkQuality link_quality = SegmentIntersection::LinkQuality::Valid;
// End of a contour starting at end and ending above end at the same vertical line.
int inext = end.vertical_outside();
if (inext == -1) {
i_intersection = &end - segs.intersections.data() + 1;
break;
}
SegmentIntersection &start2 = segs.intersections[inext];
if (params.dont_connect)
link_quality = SegmentIntersection::LinkQuality::TooLong;
else {
for (SegmentIntersection *it = &end + 1; it != &start2; ++ it)
if (it->is_inner()) {
link_quality = SegmentIntersection::LinkQuality::Invalid;
break;
}
if (link_quality == SegmentIntersection::LinkQuality::Valid && link_max_length > 0) {
// Measure length of the link.
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, i_intersection, inext, intrsctn->has_right_vertical_outside());
if (link_length > link_max_length)
link_quality = SegmentIntersection::LinkQuality::TooLong;
}
}
(end.has_left_vertical_up() ? end.prev_on_contour_quality : end.next_on_contour_quality) = link_quality;
(start2.has_left_vertical_down() ? start2.prev_on_contour_quality : start2.next_on_contour_quality) = link_quality;
if (link_quality != SegmentIntersection::LinkQuality::Valid) {
i_intersection = &end - segs.intersections.data() + 1;
break;
}
i_intersection = &start2 - segs.intersections.data();
}
} else
++ i_intersection;
} else
++ i_intersection;
}
#endif
}
static void disconnect_invalid_contour_links(
const ExPolygonWithOffset& poly_with_offset, const FillParams& params, const coord_t link_max_length, std::vector<SegmentedIntersectionLine>& segs)
{
// Make the links symmetric!
// Validate vertical runs including vertical contour links.
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
classify_vertical_runs(poly_with_offset, params, link_max_length, segs, i_vline);
if (i_vline > 0)
classify_horizontal_links(poly_with_offset, params, link_max_length, segs, i_vline - 1);
}
}
static void traverse_graph_generate_polylines(
const ExPolygonWithOffset& poly_with_offset, const FillParams& params, const coord_t link_max_length, std::vector<SegmentedIntersectionLine>& segs, Polylines& polylines_out)
{
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
for (size_t i_vline = 0; i_vline < segs.size(); ++i_vline) {
SegmentedIntersectionLine& seg = segs[i_vline];
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++i_intersection) {
if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
seg.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
// if (params.full_infill()) {
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
// } else
consumed = true;
seg.intersections[i_intersection].consumed_vertical_up = consumed;
}
}
}
// Now construct a graph.
// Find the first point.
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
// but that procedure does not create the longest continuous paths.
// A simple "sweep left to right" procedure achieves better results.
size_t i_vline = 0;
size_t i_intersection = size_t(-1);
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
Polyline* polyline_current = NULL;
if (!polylines_out.empty())
2016-09-13 09:26:38 +00:00
pointLast = polylines_out.back().points.back();
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++i_vline2) {
const SegmentedIntersectionLine& seg = segs[i_vline2];
if (!seg.intersections.empty()) {
assert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
assert((seg.intersections.size() & 1) == 0);
assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++i) {
const SegmentIntersection& intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
assert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i - 1].consumed_vertical_up;
if (!consumed) {
coordf_t dist2 = sqr(coordf_t(pointLast(0) - seg.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
i_intersection = i;
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
// by a shortest distance, while reversing the paths if needed.
//if (polylines_out.empty())
// Initial state, take the first line, which is the first from the left.
goto found;
}
}
}
}
}
}
if (i_intersection == size_t(-1))
// We are finished.
break;
found:
// Start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
// Emit the first point of a path.
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
polyline_current->points.push_back(pointLast);
}
// From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine& seg = segs[i_vline];
SegmentIntersection* intrsctn = &seg.intersections[i_intersection];
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
assert(!intrsctn->consumed_vertical_up);
assert(i_intersection + 1 < seg.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
if (intrsctn->is_inner()) {
assert(i_intersection > 0);
--intrsctn;
--i_intersection;
}
// Consume the complete vertical segment up to the outer contour.
do {
intrsctn->consumed_vertical_up = true;
++intrsctn;
++i_intersection;
assert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
--intrsctn;
--i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
assert(intrsctn->is_high());
assert(i_intersection > 0);
assert(!(intrsctn - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do {
assert(i_intersection > 0);
--intrsctn;
--i_intersection;
intrsctn->consumed_vertical_up = true;
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
if ((intrsctn + 1)->is_inner()) {
// Step back.
++intrsctn;
++i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
// 1) Find possible connection points on the previous / next vertical line.
IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection);
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection);
// Try to connect to a previous or next vertical line, making a zig-zag pattern.
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
int iPrev = intrsctn->left_horizontal();
int iNext = intrsctn->right_horizontal();
coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, i_intersection, iPrev);
coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, i_intersection, iNext);
// Take the shorter path.
//FIXME this may not be always the best strategy to take the shortest connection line now.
bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
(distNext < distPrev) :
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
assert(intrsctn->is_inner());
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
if (skip) {
// Just skip the connecting contour and start a new path.
goto dont_connect;
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
const SegmentedIntersectionLine& il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
} else {
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
if (iPrev != -1)
segs[i_vline - 1].intersections[iPrev].consumed_perimeter_right = true;
if (iNext != -1)
intrsctn->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line.
if (take_next) {
++i_vline;
i_intersection = iNext;
}
else {
--i_vline;
i_intersection = iPrev;
}
continue;
}
// 5) Try to connect to a previous or next point on the same vertical line.
if (int inext = intrsctn->vertical_outside(); inext != -1) {
bool valid = true;
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
// Verify, that the successive segment has not been consumed yet.
if (going_up) {
if (seg.intersections[inext].consumed_vertical_up)
valid = false;
else {
for (int i = (int)i_intersection + 1; i < inext && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
} else {
if (seg.intersections[inext - 1].consumed_vertical_up)
valid = false;
else {
for (int i = inext + 1; i < (int)i_intersection && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
}
if (valid) {
const Polygon& poly = poly_with_offset.contour(intrsctn->iContour);
assert(intrsctn->iContour == seg.intersections[inext].iContour);
int iSegNext = seg.intersections[inext].iSegment;
// Skip this perimeter line?
bool skip = params.dont_connect;
bool dir_forward = intrsctn->has_right_vertical_outside();
if (! skip && link_max_length > 0) {
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, i_intersection, inext, dir_forward);
skip = link_length > link_max_length;
}
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
if (skip) {
// Just skip the connecting contour and start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
polyline_current->points.push_back(Point(seg.pos, seg.intersections[inext].pos()));
} else {
// Consume the connecting contour and the next segment.
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, inext, *polyline_current, dir_forward);
}
2016-09-13 09:26:38 +00:00
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
// If there are any outer intersection points skipped (bypassed) by the contour,
// mark them as processed.
if (going_up) {
for (int i = (int)i_intersection; i < inext; ++i)
seg.intersections[i].consumed_vertical_up = true;
2016-09-13 09:26:38 +00:00
} else {
for (int i = inext; i < (int)i_intersection; ++i)
seg.intersections[i].consumed_vertical_up = true;
2016-09-13 09:26:38 +00:00
}
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
intrsctn->consumed_perimeter_right = true;
i_intersection = inext;
if (going_up)
++intrsctn;
else
--intrsctn;
intrsctn->consumed_perimeter_right = true;
2016-09-13 09:26:38 +00:00
continue;
}
}
dont_connect:
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
// This will finish the polyline, starting another polyline at a new point.
if (going_up)
++intrsctn;
else
--intrsctn;
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
assert(intrsctn->is_outer());
assert(intrsctn->is_high() == going_up);
pointLast = Point(seg.pos, intrsctn->pos());
polyline_current->points.push_back(pointLast);
2016-09-13 09:26:38 +00:00
// Handle duplicate points and zero length segments.
polyline_current->remove_duplicate_points();
assert(!polyline_current->has_duplicate_points());
2016-09-13 09:26:38 +00:00
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
2016-09-13 09:26:38 +00:00
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
}
struct MonotonousRegion;
struct NextMonotonousRegion
{
MonotonousRegion *region;
struct Path {
float length { 0 }; // Length of the link to the next region.
float visibility { 0 }; // 1 / length. Which length, just to the next region, or including the path accross the region?
float pheromone { 0 }; // <0, 1>
};
enum Index : int {
LowLow,
LowHigh,
HighLow,
HighHigh
};
Path paths[4];
};
struct MonotonousRegion
{
struct Boundary {
int vline;
int low;
int high;
};
Boundary left;
Boundary right;
// Length when starting at left.low
double len1;
// Length when starting at left.high
double len2;
// If true, then when starting at left.low, then ending at right.high and vice versa.
// If false, then ending at the same side as starting.
bool flips;
int left_intersection_point(bool region_flipped) const { return region_flipped ? left.high : left.low; }
int right_intersection_point(bool region_flipped) const { return (region_flipped == flips) ? right.low : right.high; }
// Left regions are used to track whether all regions left to this one have already been printed.
boost::container::small_vector<MonotonousRegion*, 4> left_neighbors;
// Right regions are held to pick a next region to be extruded using the "Ant colony" heuristics.
boost::container::small_vector<NextMonotonousRegion, 4> right_neighbors;
};
struct MonotonousRegionLink
{
MonotonousRegion *region;
bool flipped;
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
// is applied as defined.
NextMonotonousRegion::Path *next;
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
// is applied in reverse order as if the zig-zags were flipped.
NextMonotonousRegion::Path *next_flipped;
};
static const SegmentIntersection& vertical_run_bottom(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
{
assert(start.is_inner());
const SegmentIntersection *it = &start;
// Find the lowest SegmentIntersection::INNER_LOW starting with right.
for (;;) {
while (it->type != SegmentIntersection::INNER_LOW)
-- it;
int down = it->vertical_down();
if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
break;
it = &vline.intersections[down];
}
return *it;
}
static SegmentIntersection& vertical_run_bottom(SegmentedIntersectionLine& vline, SegmentIntersection& start)
{
return const_cast<SegmentIntersection&>(vertical_run_bottom(std::as_const(vline), std::as_const(start)));
}
static const SegmentIntersection& vertical_run_top(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
{
assert(start.is_inner());
const SegmentIntersection *it = &start;
// Find the lowest SegmentIntersection::INNER_LOW starting with right.
for (;;) {
while (it->type != SegmentIntersection::INNER_HIGH)
++ it;
int up = it->vertical_up();
if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
break;
it = &vline.intersections[up];
}
return *it;
}
static SegmentIntersection& vertical_run_top(SegmentedIntersectionLine& vline, SegmentIntersection& start)
{
return const_cast<SegmentIntersection&>(vertical_run_top(std::as_const(vline), std::as_const(start)));
}
static SegmentIntersection* left_overlap_bottom(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
{
SegmentIntersection *left = nullptr;
for (SegmentIntersection *it = &start; it <= &end; ++ it) {
int i = it->left_horizontal();
if (i != -1) {
left = &vline_left.intersections[i];
break;
}
}
return left == nullptr ? nullptr : &vertical_run_bottom(vline_left, *left);
}
static SegmentIntersection* left_overlap_top(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
{
SegmentIntersection *left = nullptr;
for (SegmentIntersection *it = &end; it >= &start; -- it) {
int i = it->left_horizontal();
if (i != -1) {
left = &vline_left.intersections[i];
break;
}
}
return left == nullptr ? nullptr : &vertical_run_top(vline_left, *left);
}
static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
{
std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
out.first = left_overlap_bottom(start, end, vline_left);
if (out.first != nullptr)
out.second = left_overlap_top(start, end, vline_left);
return out;
}
static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_left)
{
assert((start_end.first == nullptr) == (start_end.second == nullptr));
return start_end.first == nullptr ? start_end : left_overlap(*start_end.first, *start_end.second, vline_left);
}
static SegmentIntersection* right_overlap_bottom(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
{
SegmentIntersection *right = nullptr;
for (SegmentIntersection *it = &start; it <= &end; ++ it) {
int i = it->right_horizontal();
if (i != -1) {
right = &vline_right.intersections[i];
break;
}
}
return right == nullptr ? nullptr : &vertical_run_bottom(vline_right, *right);
}
static SegmentIntersection* right_overlap_top(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
{
SegmentIntersection *right = nullptr;
for (SegmentIntersection *it = &end; it >= &start; -- it) {
int i = it->right_horizontal();
if (i != -1) {
right = &vline_right.intersections[i];
break;
}
}
return right == nullptr ? nullptr : &vertical_run_top(vline_right, *right);
}
static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
{
std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
out.first = right_overlap_bottom(start, end, vline_right);
if (out.first != nullptr)
out.second = right_overlap_top(start, end, vline_right);
return out;
}
static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_right)
{
assert((start_end.first == nullptr) == (start_end.second == nullptr));
return start_end.first == nullptr ? start_end : right_overlap(*start_end.first, *start_end.second, vline_right);
}
static std::vector<MonotonousRegion> generate_montonous_regions(std::vector<SegmentedIntersectionLine> &segs)
{
std::vector<MonotonousRegion> monotonous_regions;
for (size_t i_vline_seed = 0; i_vline_seed < segs.size(); ++ i_vline_seed) {
SegmentedIntersectionLine &vline_seed = segs[i_vline_seed];
for (size_t i_intersection_seed = 1; i_intersection_seed + 1 < vline_seed.intersections.size(); ) {
while (i_intersection_seed + 1 < vline_seed.intersections.size() &&
vline_seed.intersections[i_intersection_seed].type != SegmentIntersection::INNER_LOW)
++ i_intersection_seed;
SegmentIntersection *start = &vline_seed.intersections[i_intersection_seed];
SegmentIntersection *end = &end_of_vertical_run_raw(*start);
if (! start->consumed_vertical_up) {
// Draw a new monotonous region starting with this segment.
// while there is only a single right neighbor
start->consumed_vertical_up = true;
size_t i_vline = i_vline_seed;
std::pair<SegmentIntersection*, SegmentIntersection*> left(start, end);
MonotonousRegion region;
region.left.vline = i_vline;
region.left.low = left.first - vline_seed.intersections.data();
region.left.high = left.second - vline_seed.intersections.data();
region.right = region.left;
while (++ i_vline < segs.size()) {
SegmentedIntersectionLine &vline_left = segs[i_vline - 1];
SegmentedIntersectionLine &vline_right = segs[i_vline];
std::pair<SegmentIntersection*, SegmentIntersection*> right = right_overlap(left, vline_right);
std::pair<SegmentIntersection*, SegmentIntersection*> right_left = left_overlap(right, vline_left);
if (left != right_left)
// Left & right draws don't overlap exclusively.
break;
region.right.vline = i_vline;
region.right.low = right.first - vline_right.intersections.data();
region.right.high = right.second - vline_right.intersections.data();
right.first->consumed_vertical_up = true;
left = right;
}
}
i_intersection_seed = end - vline_seed.intersections.data() + 1;
}
}
return monotonous_regions;
}
static void connect_monotonous_regions(std::vector<MonotonousRegion> &regions, std::vector<SegmentedIntersectionLine> &segs)
{
// Map from low intersection to left / right side of a monotonous region.
using MapType = std::pair<SegmentIntersection*, MonotonousRegion*>;
std::vector<MapType> map_intersection_to_region_start;
std::vector<MapType> map_intersection_to_region_end;
map_intersection_to_region_start.reserve(regions.size());
map_intersection_to_region_end.reserve(regions.size());
for (MonotonousRegion &region : regions) {
map_intersection_to_region_start.emplace_back(&segs[region.left.vline].intersections[region.left.low], &region);
map_intersection_to_region_end.emplace_back(&segs[region.right.vline].intersections[region.right.low], &region);
}
auto intersections_lower = [](const MapType &l, const MapType &r){ return l.first < r.first ; };
auto intersections_equal = [](const MapType &l, const MapType &r){ return l.first == r.first ; };
std::sort(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), intersections_lower);
std::sort(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), intersections_lower);
// Scatter links to neighboring regions.
for (MonotonousRegion &region : regions) {
if (region.left.vline > 0) {
auto &vline = segs[region.left.vline];
auto begin = &vline.intersections[region.left.low];
auto end = &vline.intersections[region.left.high];
for (;;) {
MapType key(begin, nullptr);
auto it = std::lower_bound(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), key);
assert(it != map_intersection_to_region_end.end() && it->first == key.first);
NextMonotonousRegion next_region{ &region };
it->second->right_neighbors.emplace_back(next_region);
SegmentIntersection *next = &vertical_run_top(vline, *begin);
if (next == end)
break;
while (next->type != SegmentIntersection::INNER_LOW)
++ next;
begin = next;
}
}
if (region.right.vline + 1 < segs.size()) {
auto &vline = segs[region.right.vline];
auto begin = &vline.intersections[region.right.low];
auto end = &vline.intersections[region.right.high];
for (;;) {
MapType key(begin, nullptr);
auto it = std::lower_bound(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), key);
assert(it != map_intersection_to_region_start.end() && it->first == key.first);
it->second->left_neighbors.emplace_back(&region);
SegmentIntersection *next = &vertical_run_top(vline, *begin);
if (next == end)
break;
while (next->type != SegmentIntersection::INNER_LOW)
++ next;
begin = next;
}
}
}
}
// Raad Salman: Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem
// https://www.chalmers.se/en/departments/math/research/research-groups/optimization/OptimizationMasterTheses/MScThesis-RaadSalman-final.pdf
// Algorithm 6.1 Lexicographic Path Preserving 3-opt
// Optimize path while maintaining the ordering constraints.
void monotonous_3_opt(std::vector<MonotonousRegionLink> &path, std::vector<SegmentedIntersectionLine> &segs)
{
// When doing the 3-opt path preserving flips, one has to fulfill two constraints:
//
// 1) The new path should be shorter than the old path.
// 2) The precedence constraints shall be satisified on the new path.
//
// Branch & bound with KD-tree may be used with the shorter path constraint, but the precedence constraint will have to be recalculated for each
// shorter path candidate found, which has a quadratic cost for a dense precedence graph. For a sparse precedence graph the precedence
// constraint verification will be cheaper.
//
// On the other side, if the full search space is traversed as in the diploma thesis by Raad Salman (page 24, Algorithm 6.1 Lexicographic Path Preserving 3-opt),
// then the precedence constraint verification is amortized inside the O(n^3) loop. Now which is better for our task?
//
// It is beneficial to also try flipping of the infill zig-zags, for which a prefix sum of both flipped and non-flipped paths over
// MonotonousRegionLinks may be utilized, however updating the prefix sum has a linear complexity, the same complexity as doing the 3-opt
// exchange by copying the pieces.
}
// Find a run through monotonous infill blocks using an 'Ant colony" optimization method.
static std::vector<MonotonousRegionLink> chain_monotonous_regions(
std::vector<MonotonousRegion> &regions, std::vector<SegmentedIntersectionLine> &segs, std::mt19937_64 &rng)
{
// Start point of a region (left) given the direction of the initial infill line.
auto region_start_point = [&segs](const MonotonousRegion &region, bool dir) {
SegmentedIntersectionLine &vline = segs[region.left.vline];
SegmentIntersection &ipt = vline.intersections[dir ? region.left.high : region.left.low];
return Vec2f(float(vline.pos), float(ipt.pos()));
};
// End point of a region (right) given the direction of the initial infill line and whether the monotonous run contains
// even or odd number of vertical lines.
auto region_end_point = [&segs](const MonotonousRegion &region, bool dir) {
SegmentedIntersectionLine &vline = segs[region.right.vline];
SegmentIntersection &ipt = vline.intersections[(dir == region.flips) ? region.right.low : region.right.high];
return Vec2f(float(vline.pos), float(ipt.pos()));
};
// Number of left neighbors (regions that this region depends on, this region cannot be printed before the regions left of it are printed).
std::vector<int32_t> left_neighbors_unprocessed(regions.size(), 0);
// Queue of regions, which have their left neighbors already printed.
std::vector<MonotonousRegion*> queue;
queue.reserve(regions.size());
for (MonotonousRegion &region : regions)
if (region.left_neighbors.empty())
queue.emplace_back(&region);
else
left_neighbors_unprocessed[&region - regions.data()] = region.left_neighbors.size();
// Make copy of structures that need to be initialized at each ant iteration.
auto left_neighbors_unprocessed_initial = left_neighbors_unprocessed;
auto queue_initial = queue;
std::vector<MonotonousRegionLink> path, best_path;
path.reserve(regions.size());
best_path.reserve(regions.size());
float best_path_length = std::numeric_limits<float>::max();
struct NextCandidate {
NextMonotonousRegion *region;
NextMonotonousRegion::Path *link;
NextMonotonousRegion::Path *link_flipped;
float cost;
bool dir;
};
std::vector<NextCandidate> next_candidates;
// How many times to repeat the ant simulation.
constexpr int num_runs = 10;
// With how many ants each of the run will be performed?
constexpr int num_ants = 10;
// Base (initial) pheromone level.
constexpr float pheromone_initial_deposit = 0.5f;
// Evaporation rate of pheromones.
constexpr float pheromone_evaporation = 0.1f;
// Probability at which to take the next best path. Otherwise take the the path based on the cost distribution.
constexpr float probability_take_best = 0.9f;
// Exponents of the cost function.
constexpr float pheromone_alpha = 1.f; // pheromone exponent
constexpr float pheromone_beta = 2.f; // attractiveness weighted towards edge length
// Cost of traversing a link between two monotonous regions.
auto path_cost = [pheromone_alpha, pheromone_beta](NextMonotonousRegion::Path &path) {
return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
};
for (int run = 0; run < num_runs; ++ run)
{
for (int ant = 0; ant < num_ants; ++ ant)
{
// Find a new path following the pheromones deposited by the previous ants.
path.clear();
queue = queue_initial;
left_neighbors_unprocessed = left_neighbors_unprocessed_initial;
while (! queue.empty()) {
// Sort the queue by distance to the last point.
// Take a candidate based on shortest distance? or ant colony?
if (path.empty()) {
// Pick randomly the first from the queue at random orientation.
int first_idx = std::uniform_int_distribution<>(0, int(queue.size()) - 1)(rng);
path.emplace_back(MonotonousRegionLink{ queue[first_idx], rng() > rng.max() / 2 });
*(queue.begin() + first_idx) = std::move(queue.back());
queue.pop_back();
} else {
// Pick the closest neighbor from the queue?
}
-- left_neighbors_unprocessed[path.back().region - regions.data()];
while (! path.back().region->right_neighbors.empty()) {
// Chain.
MonotonousRegion &region = *path.back().region;
bool dir = path.back().flipped;
Vec2f end_pt = region_end_point(region, dir);
// Sort by distance to pt.
next_candidates.reserve(region.right_neighbors.size() * 2);
for (NextMonotonousRegion &next : region.right_neighbors) {
int unprocessed = left_neighbors_unprocessed[next.region - regions.data()];
assert(unprocessed > 0);
if (unprocessed == 1) {
// Dependencies of the successive blocks are satisfied.
bool flip = dir == region.flips;
auto path_cost = [pheromone_alpha, pheromone_beta](NextMonotonousRegion::Path& path) {
return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
};
NextMonotonousRegion::Path &path_low = next.paths[flip ? NextMonotonousRegion::HighLow : NextMonotonousRegion::LowLow];
NextMonotonousRegion::Path &path_low_flipped = next.paths[flip ? NextMonotonousRegion::LowHigh : NextMonotonousRegion::HighHigh];
NextMonotonousRegion::Path &path_high = next.paths[flip ? NextMonotonousRegion::HighHigh : NextMonotonousRegion::LowHigh];
NextMonotonousRegion::Path &path_high_flipped = next.paths[flip ? NextMonotonousRegion::LowLow : NextMonotonousRegion::HighLow];
next_candidates.emplace_back(NextCandidate{ &next, &path_low, &path_low_flipped, path_cost(path_low), false });
next_candidates.emplace_back(NextCandidate{ &next, &path_high, &path_high_flipped, path_cost(path_high), true });
}
}
//std::sort(next_candidates.begin(), next_candidates.end(), [](const auto &l, const auto &r) { l.dist < r.dist; });
float dice = float(rng()) / float(rng.max());
std::vector<NextCandidate>::iterator take_path;
if (dice < probability_take_best) {
// Take the lowest cost path.
take_path = std::min_element(next_candidates.begin(), next_candidates.end(), [](auto &l, auto &r){ return l.cost < r.cost; });
} else {
// Take the path based on the cost.
// Calculate the total cost.
float total_cost = std::accumulate(next_candidates.begin(), next_candidates.end(), 0.f, [](const float l, const NextCandidate& r) { return l + r.cost; });
// Take a random path based on the cost.
float cost_threshold = floor(float(rng()) * total_cost / float(rng.max()));
take_path = next_candidates.end();
-- take_path;
for (auto it = next_candidates.begin(); it < next_candidates.end(); ++ it)
if (cost_threshold -= it->cost <= 0.) {
take_path = it;
break;
}
}
// Extend the path.
NextMonotonousRegion &next_region = *take_path->region;
bool next_dir = take_path->dir;
path.back().next = take_path->link;
path.back().next_flipped = take_path->link_flipped;
path.emplace_back(MonotonousRegionLink{ next_region.region, next_dir });
// Decrease the number of next block dependencies.
-- left_neighbors_unprocessed[next_region.region - regions.data()];
// Update pheromones along this link.
take_path->link->pheromone = (1.f - pheromone_evaporation) * take_path->link->pheromone + pheromone_evaporation * pheromone_initial_deposit;
}
}
// Perform 3-opt local optimization of the path.
monotonous_3_opt(path, segs);
// Measure path length.
float path_length = std::accumulate(path.begin(), path.end(), 0.f, [](const float l, const MonotonousRegionLink& r) { return l + r.next->length; });
// Save the shortest path.
if (path_length < best_path_length) {
best_path_length = path_length;
std::swap(best_path_length, path_length);
}
}
// Reinforce the path feromones with the best path.
float total_cost = best_path_length;
for (MonotonousRegionLink &link : path)
link.next->pheromone = (1.f - pheromone_evaporation) * link.next->pheromone + pheromone_evaporation / total_cost;
}
return best_path;
}
// Traverse path, produce polylines.
static void polylines_from_paths(const std::vector<MonotonousRegionLink> &path, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, Polylines &polylines_out)
{
Polyline *polyline = nullptr;
auto finish_polyline = [&polyline, &polylines_out]() {
polyline->remove_duplicate_points();
// Handle duplicate points and zero length segments.
assert(!polyline->has_duplicate_points());
// Handle nearly zero length edges.
if (polyline->points.size() <= 1 ||
(polyline->points.size() == 2 &&
std::abs(polyline->points.front()(0) - polyline->points.back()(0)) < SCALED_EPSILON &&
std::abs(polyline->points.front()(1) - polyline->points.back()(1)) < SCALED_EPSILON))
polylines_out.pop_back();
polyline = nullptr;
};
for (const MonotonousRegionLink &path_segment : path) {
MonotonousRegion &region = *path_segment.region;
bool dir = path_segment.flipped;
// From the initial point (i_vline, i_intersection), follow a path.
int i_intersection = region.left_intersection_point(dir);
int i_vline = region.left.vline;
if (polyline != nullptr && &path_segment != path.data()) {
// Connect previous path segment with the new one.
const MonotonousRegionLink &path_segment_prev = *(&path_segment - 1);
const MonotonousRegion &region_prev = *path_segment_prev.region;
bool dir_prev = path_segment_prev.flipped;
int i_vline_prev = region_prev.right.vline;
const SegmentedIntersectionLine &vline_prev = segs[i_vline_prev];
int i_intersection_prev = region_prev.right_intersection_point(dir_prev);
const SegmentIntersection *ip_prev = &vline_prev.intersections[i_intersection_prev];
bool extended = false;
if (i_vline_prev + 1 == i_vline) {
if (ip_prev->right_horizontal() == i_intersection && ip_prev->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
// Emit a horizontal connection contour.
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline_prev, ip_prev->iContour, i_intersection_prev, i_intersection, *polyline, true);
extended = true;
}
}
if (! extended) {
// Finish the current vertical line,
assert(ip_prev->is_inner());
ip_prev->is_low() ? -- ip_prev : ++ ip_prev;
assert(ip_prev->is_outer());
polyline->points.back() = Point(vline_prev.pos, ip_prev->pos());
finish_polyline();
}
}
for (;;) {
const SegmentedIntersectionLine &seg = segs[i_vline];
const SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
const bool going_up = intrsctn->is_low();
if (polyline == nullptr) {
polylines_out.emplace_back();
polyline = &polylines_out.back();
// Extend the infill line up to the outer contour.
polyline->points.emplace_back(seg.pos, (intrsctn + (going_up ? - 1 : 1))->pos());
} else
polyline->points.emplace_back(seg.pos, intrsctn->pos());
int iright = intrsctn->right_horizontal();
if (going_up) {
// Consume the complete vertical segment up to the inner contour.
for (;;) {
do {
++ intrsctn;
iright = std::max(iright, intrsctn->right_horizontal());
} while (intrsctn->type != SegmentIntersection::INNER_HIGH);
polyline->points.emplace_back(seg.pos, intrsctn->pos());
int inext = intrsctn->vertical_up();
if (inext == -1)
break;
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
assert(intrsctn->iContour == seg.intersections[inext].iContour);
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, inext, *polyline, intrsctn->has_right_vertical_up());
intrsctn = seg.intersections.data() + inext;
}
} else {
// Going down.
assert(intrsctn->is_high());
assert(i_intersection > 0);
for (;;) {
do {
-- intrsctn;
if (int iright_new = intrsctn->right_horizontal(); iright_new != -1)
iright = iright_new;
} while (intrsctn->type != SegmentIntersection::INNER_LOW);
polyline->points.emplace_back(seg.pos, intrsctn->pos());
int inext = intrsctn->vertical_down();
if (inext == -1)
break;
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
assert(intrsctn->iContour == seg.intersections[inext].iContour);
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, intrsctn - seg.intersections.data(), inext, *polyline, intrsctn->has_right_vertical_down());
intrsctn = seg.intersections.data() + inext;
}
}
if (i_vline == region.right.vline)
break;
int inext = intrsctn->right_horizontal();
if (inext != -1 && intrsctn->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
// Emit a horizontal connection contour.
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, intrsctn - seg.intersections.data(), inext, *polyline, true);
i_intersection = inext;
} else {
// Finish the current vertical line,
going_up ? ++ intrsctn : -- intrsctn;
assert(intrsctn->is_outer());
assert(intrsctn->is_high() == going_up);
polyline->points.back() = Point(seg.pos, intrsctn->pos());
finish_polyline();
if (inext == -1) {
// Find the end of the next overlapping vertical segment.
const SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
const SegmentIntersection *right = going_up ?
&vertical_run_top(vline_right, vline_right.intersections[iright]) : &vertical_run_bottom(vline_right, vline_right.intersections[iright]);
i_intersection = right - vline_right.intersections.data();
} else
i_intersection = inext;
}
++ i_vline;
}
}
}
bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, float pattern_shift, Polylines &polylines_out)
{
// At the end, only the new polylines will be rotated back.
size_t n_polylines_out_initial = polylines_out.size();
// Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
// Rotate polygons so that we can work with vertical lines here
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
rotate_vector.first += angleBase;
assert(params.density > 0.0001f && params.density <= 1.f);
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
// On the polygons of poly_with_offset, the infill lines will be connected.
ExPolygonWithOffset poly_with_offset(
surface->expolygon,
- rotate_vector.first,
scale_(this->overlap - (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
scale_(this->overlap - 0.5 * this->spacing));
if (poly_with_offset.n_contours_inner == 0) {
// Not a single infill line fits.
//FIXME maybe one shall trigger the gap fill here?
return true;
}
BoundingBox bounding_box = poly_with_offset.bounding_box_src();
// define flow spacing according to requested density
if (params.full_infill() && !params.dont_adjust) {
line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
this->spacing = unscale<double>(line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
// Transform the reference point to the rotated coordinate system.
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
refpt));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min(0);
if (params.full_infill())
x0 += (line_spacing + SCALED_EPSILON) / 2;
#ifdef SLIC3R_DEBUG
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
}
iRun ++;
#endif /* SLIC3R_DEBUG */
std::vector<SegmentedIntersectionLine> segs = slice_region_by_vertical_lines(poly_with_offset, n_vlines, x0, line_spacing);
connect_segment_intersections_by_contours(poly_with_offset, segs);
#ifdef SLIC3R_DEBUG
// Paint the segments and finalize the SVG file.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
for (size_t i = 0; i < sil.intersections.size();) {
size_t j = i + 1;
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
if (i + 1 == j) {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
} else {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
}
i = j + 1;
}
}
svg.Close();
#endif /* SLIC3R_DEBUG */
bool monotonous_infill = params.density > 0.99;
if (monotonous_infill) {
std::vector<MonotonousRegion> regions = generate_montonous_regions(segs);
connect_monotonous_regions(regions, segs);
std::mt19937_64 rng;
std::vector<MonotonousRegionLink> path = chain_monotonous_regions(regions, segs, rng);
polylines_from_paths(path, poly_with_offset, segs, polylines_out);
} else
traverse_graph_generate_polylines(poly_with_offset, params, this->link_max_length, segs, polylines_out);
2016-09-13 09:26:38 +00:00
#ifdef SLIC3R_DEBUG
{
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
svg.draw(polylines_out[i].lines(), "black");
}
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
svg.draw(polylines_out[i_polyline].lines(), "black");
}
2016-09-13 09:26:38 +00:00
}
#endif /* SLIC3R_DEBUG */
// paths must be rotated back
2016-09-13 09:26:38 +00:00
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
assert(! it->has_duplicate_points());
it->rotate(rotate_vector.first);
2016-09-13 09:26:38 +00:00
//FIXME rather simplify the paths to avoid very short edges?
//assert(! it->has_duplicate_points());
2016-09-13 09:26:38 +00:00
it->remove_duplicate_points();
}
2016-09-13 09:26:38 +00:00
#ifdef SLIC3R_DEBUG
// Verify, that there are no duplicate points in the sequence.
for (Polyline &polyline : polylines_out)
assert(! polyline.has_duplicate_points());
2016-09-13 09:26:38 +00:00
#endif /* SLIC3R_DEBUG */
return true;
2016-09-13 09:26:38 +00:00
}
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
{
Polylines polylines_out;
2016-10-21 16:56:55 +00:00
if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
}
2016-09-13 09:26:38 +00:00
return polylines_out;
}
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers half of the target coverage.
FillParams params2 = params;
params2.density *= 0.5f;
2016-09-13 09:26:38 +00:00
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
printf("FillGrid2::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
FillParams params3 = params2;
params3.dont_connect = true;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0., polylines_out)) {
printf("FillTriangles::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillStars::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
FillParams params3 = params2;
params3.dont_connect = true;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
printf("FillStars::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
2016-10-21 16:56:55 +00:00
Polylines FillCubic::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
FillParams params3 = params2;
params3.dont_connect = true;
2016-10-21 16:56:55 +00:00
Polylines polylines_out;
coordf_t dx = sqrt(0.5) * z;
if (! fill_surface_by_lines(surface, params2, 0.f, dx, polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), - dx, polylines_out) ||
2016-10-21 16:56:55 +00:00
// Rotated by PI*2/3 + PI to achieve reverse sloping wall.
! fill_surface_by_lines(surface, params3, float(M_PI * 2. / 3.), dx, polylines_out)) {
2016-10-21 16:56:55 +00:00
printf("FillCubic::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
} // namespace Slic3r