PrusaSlicer-NonPlainar/src/libslic3r/Line.hpp

160 lines
5.5 KiB
C++
Raw Normal View History

#ifndef slic3r_Line_hpp_
#define slic3r_Line_hpp_
#include "libslic3r.h"
#include "Point.hpp"
namespace Slic3r {
class BoundingBox;
class Line;
class Line3;
2014-12-16 00:12:37 +00:00
class Linef3;
2013-11-21 14:12:06 +00:00
class Polyline;
2016-03-19 14:33:58 +00:00
class ThickLine;
typedef std::vector<Line> Lines;
typedef std::vector<Line3> Lines3;
2016-03-19 14:33:58 +00:00
typedef std::vector<ThickLine> ThickLines;
2018-08-28 07:03:03 +00:00
Linef3 transform(const Linef3& line, const Transform3d& t);
namespace line_alg {
// Distance to the closest point of line.
template<class L, class T, int N>
double distance_to_squared(const L &line, const Vec<N, T> &point)
{
const Vec<N, double> v = line.vector().template cast<double>();
const Vec<N, double> va = (point - line.a).template cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// a == b case
return va.squaredNorm();
// Consider the line extending the segment, parameterized as a + t (b - a).
// We find projection of this point onto the line.
// It falls where t = [(this-a) . (b-a)] / |b-a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.squaredNorm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - line.b).template cast<double>().squaredNorm(); // beyond the 'b' end of the segment
return (t * v - va).squaredNorm();
}
template<class L, class T, int N>
double distance_to(const L &line, const Vec<N, T> &point)
{
return std::sqrt(distance_to_squared(line, point));
}
} // namespace line_alg
class Line
{
public:
Line() {}
Line(const Point& _a, const Point& _b) : a(_a), b(_b) {}
explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; }
void scale(double factor) { this->a *= factor; this->b *= factor; }
void translate(double x, double y) { Vector v(x, y); this->a += v; this->b += v; }
void rotate(double angle, const Point &center) { this->a.rotate(angle, center); this->b.rotate(angle, center); }
void reverse() { std::swap(this->a, this->b); }
double length() const { return (b - a).cast<double>().norm(); }
Point midpoint() const { return (this->a + this->b) / 2; }
bool intersection_infinite(const Line &other, Point* point) const;
bool operator==(const Line &rhs) const { return this->a == rhs.a && this->b == rhs.b; }
double distance_to_squared(const Point &point) const { return distance_to_squared(point, this->a, this->b); }
double distance_to(const Point &point) const { return distance_to(point, this->a, this->b); }
double perp_distance_to(const Point &point) const;
bool parallel_to(double angle) const;
bool parallel_to(const Line &line) const { return this->parallel_to(line.direction()); }
double atan2_() const { return atan2(this->b(1) - this->a(1), this->b(0) - this->a(0)); }
double orientation() const;
double direction() const;
Vector vector() const { return this->b - this->a; }
Vector normal() const { return Vector((this->b(1) - this->a(1)), -(this->b(0) - this->a(0))); }
bool intersection(const Line& line, Point* intersection) const;
double ccw(const Point& point) const { return point.ccw(*this); }
// Clip a line with a bounding box. Returns false if the line is completely outside of the bounding box.
bool clip_with_bbox(const BoundingBox &bbox);
// Extend the line from both sides by an offset.
void extend(double offset);
static inline double distance_to_squared(const Point &point, const Point &a, const Point &b) { return line_alg::distance_to_squared(Line{a, b}, Vec<2, coord_t>{point}); }
static double distance_to(const Point &point, const Point &a, const Point &b) { return sqrt(distance_to_squared(point, a, b)); }
Point a;
Point b;
2016-03-19 14:33:58 +00:00
};
class ThickLine : public Line
{
public:
ThickLine() : a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b) : Line(a, b), a_width(0), b_width(0) {}
ThickLine(const Point& a, const Point& b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {}
double a_width, b_width;
};
class Line3
{
public:
Line3() : a(Vec3crd::Zero()), b(Vec3crd::Zero()) {}
Line3(const Vec3crd& _a, const Vec3crd& _b) : a(_a), b(_b) {}
double length() const { return (this->a - this->b).cast<double>().norm(); }
Vec3crd vector() const { return this->b - this->a; }
Vec3crd a;
Vec3crd b;
};
2015-01-17 23:36:21 +00:00
class Linef
{
public:
Linef() : a(Vec2d::Zero()), b(Vec2d::Zero()) {}
Linef(const Vec2d& _a, const Vec2d& _b) : a(_a), b(_b) {}
Vec2d a;
Vec2d b;
2015-01-17 23:36:21 +00:00
};
2014-12-16 00:12:37 +00:00
class Linef3
{
public:
Linef3() : a(Vec3d::Zero()), b(Vec3d::Zero()) {}
Linef3(const Vec3d& _a, const Vec3d& _b) : a(_a), b(_b) {}
Vec3d intersect_plane(double z) const;
void scale(double factor) { this->a *= factor; this->b *= factor; }
Vec3d vector() const { return this->b - this->a; }
Vec3d unit_vector() const { return (length() == 0.0) ? Vec3d::Zero() : vector().normalized(); }
double length() const { return vector().norm(); }
Vec3d a;
Vec3d b;
2014-12-16 00:12:37 +00:00
};
BoundingBox get_extents(const Lines &lines);
} // namespace Slic3r
// start Boost
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
template <>
struct geometry_concept<Slic3r::Line> { typedef segment_concept type; };
template <>
struct segment_traits<Slic3r::Line> {
typedef coord_t coordinate_type;
typedef Slic3r::Point point_type;
static inline point_type get(const Slic3r::Line& line, direction_1d dir) {
return dir.to_int() ? line.b : line.a;
}
};
} }
// end Boost
#endif // slic3r_Line_hpp_