PrusaSlicer-NonPlainar/xs/src/libslic3r/Point.cpp

445 lines
11 KiB
C++
Raw Normal View History

#include "Point.hpp"
#include "Line.hpp"
2014-05-21 18:08:21 +00:00
#include "MultiPoint.hpp"
#include <algorithm>
#include <cmath>
namespace Slic3r {
Point::Point(double x, double y)
{
this->x = lrint(x);
this->y = lrint(y);
}
bool
Point::operator==(const Point& rhs) const
{
return this->coincides_with(rhs);
}
std::string
Point::wkt() const
{
std::ostringstream ss;
ss << "POINT(" << this->x << " " << this->y << ")";
return ss.str();
}
std::string
Point::dump_perl() const
{
std::ostringstream ss;
ss << "[" << this->x << "," << this->y << "]";
return ss.str();
}
void
Point::scale(double factor)
{
this->x *= factor;
this->y *= factor;
}
void
Point::translate(double x, double y)
{
this->x += x;
this->y += y;
}
void
Point::translate(const Vector &vector)
{
this->translate(vector.x, vector.y);
}
void
Point::rotate(double angle)
{
double cur_x = (double)this->x;
double cur_y = (double)this->y;
double s = sin(angle);
double c = cos(angle);
this->x = (coord_t)round(c * cur_x - s * cur_y);
this->y = (coord_t)round(c * cur_y + s * cur_x);
}
void
Point::rotate(double angle, const Point &center)
{
double cur_x = (double)this->x;
double cur_y = (double)this->y;
double s = sin(angle);
double c = cos(angle);
2016-09-12 11:52:31 +00:00
double dx = cur_x - (double)center.x;
double dy = cur_y - (double)center.y;
this->x = (coord_t)round( (double)center.x + c * dx - s * dy );
this->y = (coord_t)round( (double)center.y + c * dy + s * dx );
}
bool
Point::coincides_with_epsilon(const Point &point) const
{
return std::abs(this->x - point.x) < SCALED_EPSILON && std::abs(this->y - point.y) < SCALED_EPSILON;
}
int
Point::nearest_point_index(const Points &points) const
2013-11-23 20:39:05 +00:00
{
PointConstPtrs p;
2013-11-23 20:39:05 +00:00
p.reserve(points.size());
for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
2013-11-23 20:39:05 +00:00
p.push_back(&*it);
return this->nearest_point_index(p);
}
int
Point::nearest_point_index(const PointConstPtrs &points) const
{
int idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
/* If the X distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
2013-11-23 20:39:05 +00:00
double d = pow(this->x - (*it)->x, 2);
if (distance != -1 && d > distance) continue;
/* If the Y distance of the candidate is > than the total distance of the
best previous candidate, we know we don't want it */
2013-11-23 20:39:05 +00:00
d += pow(this->y - (*it)->y, 2);
if (distance != -1 && d > distance) continue;
idx = it - points.begin();
distance = d;
if (distance < EPSILON) break;
}
return idx;
}
/* This method finds the point that is closest to both this point and the supplied one */
size_t
Point::nearest_waypoint_index(const Points &points, const Point &dest) const
{
size_t idx = -1;
double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
for (Points::const_iterator p = points.begin(); p != points.end(); ++p) {
// distance from this to candidate
double d = pow(this->x - p->x, 2) + pow(this->y - p->y, 2);
// distance from candidate to dest
d += pow(p->x - dest.x, 2) + pow(p->y - dest.y, 2);
// if the total distance is greater than current min distance, ignore it
if (distance != -1 && d > distance) continue;
idx = p - points.begin();
distance = d;
if (distance < EPSILON) break;
}
return idx;
}
int
Point::nearest_point_index(const PointPtrs &points) const
{
PointConstPtrs p;
p.reserve(points.size());
for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
p.push_back(*it);
return this->nearest_point_index(p);
}
bool
Point::nearest_point(const Points &points, Point* point) const
{
int idx = this->nearest_point_index(points);
if (idx == -1) return false;
*point = points.at(idx);
return true;
}
bool
Point::nearest_waypoint(const Points &points, const Point &dest, Point* point) const
{
int idx = this->nearest_waypoint_index(points, dest);
if (idx == -1) return false;
*point = points.at(idx);
return true;
}
double
Point::distance_to(const Point &point) const
{
double dx = ((double)point.x - this->x);
double dy = ((double)point.y - this->y);
return sqrt(dx*dx + dy*dy);
}
/* distance to the closest point of line */
double
Point::distance_to(const Line &line) const
{
const double dx = line.b.x - line.a.x;
const double dy = line.b.y - line.a.y;
const double l2 = dx*dx + dy*dy; // avoid a sqrt
if (l2 == 0.0) return this->distance_to(line.a); // line.a == line.b case
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
// We find projection of this point onto the line.
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
const double t = ((this->x - line.a.x) * dx + (this->y - line.a.y) * dy) / l2;
if (t < 0.0) return this->distance_to(line.a); // beyond the 'a' end of the segment
else if (t > 1.0) return this->distance_to(line.b); // beyond the 'b' end of the segment
Point projection(
line.a.x + t * dx,
line.a.y + t * dy
);
return this->distance_to(projection);
}
double
Point::perp_distance_to(const Line &line) const
{
if (line.a.coincides_with(line.b)) return this->distance_to(line.a);
double n = (double)(line.b.x - line.a.x) * (double)(line.a.y - this->y)
- (double)(line.a.x - this->x) * (double)(line.b.y - line.a.y);
return std::abs(n) / line.length();
}
/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
* ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
* gives the signed area of the triangle formed by p1, p2 and this point.
* In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
* z-component of their 3D cross product.
* We return double because it must be big enough to hold 2*max(|coordinate|)^2
*/
double
Point::ccw(const Point &p1, const Point &p2) const
{
return (double)(p2.x - p1.x)*(double)(this->y - p1.y) - (double)(p2.y - p1.y)*(double)(this->x - p1.x);
}
double
Point::ccw(const Line &line) const
{
return this->ccw(line.a, line.b);
}
// returns the CCW angle between this-p1 and this-p2
2014-12-21 21:51:45 +00:00
// i.e. this assumes a CCW rotation from p1 to p2 around this
double
Point::ccw_angle(const Point &p1, const Point &p2) const
{
2014-12-21 21:51:45 +00:00
double angle = atan2(p1.x - this->x, p1.y - this->y)
- atan2(p2.x - this->x, p2.y - this->y);
// we only want to return only positive angles
return angle <= 0 ? angle + 2*PI : angle;
}
2014-05-21 18:08:21 +00:00
Point
Point::projection_onto(const MultiPoint &poly) const
{
Point running_projection = poly.first_point();
double running_min = this->distance_to(running_projection);
Lines lines = poly.lines();
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
Point point_temp = this->projection_onto(*line);
if (this->distance_to(point_temp) < running_min) {
running_projection = point_temp;
running_min = this->distance_to(running_projection);
}
}
return running_projection;
}
Point
Point::projection_onto(const Line &line) const
{
if (line.a.coincides_with(line.b)) return line.a;
/*
(Ported from VisiLibity by Karl J. Obermeyer)
The projection of point_temp onto the line determined by
line_segment_temp can be represented as an affine combination
expressed in the form projection of
Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
must be closest to calling Point.
*/
double theta = ( (double)(line.b.x - this->x)*(double)(line.b.x - line.a.x) + (double)(line.b.y- this->y)*(double)(line.b.y - line.a.y) )
/ ( (double)pow(line.b.x - line.a.x, 2) + (double)pow(line.b.y - line.a.y, 2) );
if (0.0 <= theta && theta <= 1.0)
return theta * line.a + (1.0-theta) * line.b;
// Else pick closest endpoint.
if (this->distance_to(line.a) < this->distance_to(line.b)) {
return line.a;
} else {
return line.b;
}
}
Point
Point::negative() const
{
return Point(-this->x, -this->y);
}
Vector
Point::vector_to(const Point &point) const
{
return Vector(point.x - this->x, point.y - this->y);
}
2014-05-21 18:08:21 +00:00
Point
operator+(const Point& point1, const Point& point2)
{
return Point(point1.x + point2.x, point1.y + point2.y);
}
Point
operator-(const Point& point1, const Point& point2)
{
return Point(point1.x - point2.x, point1.y - point2.y);
}
2014-05-21 18:08:21 +00:00
Point
operator*(double scalar, const Point& point2)
{
return Point(scalar * point2.x, scalar * point2.y);
}
2015-05-02 19:43:22 +00:00
std::ostream&
operator<<(std::ostream &stm, const Pointf &pointf)
{
return stm << pointf.x << "," << pointf.y;
}
std::string
Pointf::wkt() const
{
std::ostringstream ss;
ss << "POINT(" << this->x << " " << this->y << ")";
return ss.str();
}
std::string
Pointf::dump_perl() const
{
std::ostringstream ss;
ss << "[" << this->x << "," << this->y << "]";
return ss.str();
}
void
Pointf::scale(double factor)
{
this->x *= factor;
this->y *= factor;
}
void
Pointf::translate(double x, double y)
{
this->x += x;
this->y += y;
}
2015-12-02 17:06:18 +00:00
void
Pointf::translate(const Vectorf &vector)
{
this->translate(vector.x, vector.y);
}
void
Pointf::rotate(double angle)
{
double cur_x = this->x;
double cur_y = this->y;
double s = sin(angle);
double c = cos(angle);
this->x = c * cur_x - s * cur_y;
this->y = c * cur_y + s * cur_x;
}
2014-08-02 22:20:55 +00:00
void
Pointf::rotate(double angle, const Pointf &center)
{
double cur_x = this->x;
double cur_y = this->y;
double s = sin(angle);
double c = cos(angle);
2016-09-12 11:52:31 +00:00
double dx = cur_x - center.x;
double dy = cur_y - center.y;
this->x = center.x + c * dx - s * dy;
this->y = center.y + c * dy + s * dx;
2014-08-02 22:20:55 +00:00
}
2014-12-15 00:28:11 +00:00
Pointf
Pointf::negative() const
{
return Pointf(-this->x, -this->y);
}
Vectorf
Pointf::vector_to(const Pointf &point) const
{
return Vectorf(point.x - this->x, point.y - this->y);
}
2014-01-07 11:48:09 +00:00
void
Pointf3::scale(double factor)
{
Pointf::scale(factor);
this->z *= factor;
}
void
Pointf3::translate(const Vectorf3 &vector)
{
this->translate(vector.x, vector.y, vector.z);
}
2014-01-07 11:48:09 +00:00
void
Pointf3::translate(double x, double y, double z)
{
Pointf::translate(x, y);
this->z += z;
}
double
Pointf3::distance_to(const Pointf3 &point) const
{
double dx = ((double)point.x - this->x);
double dy = ((double)point.y - this->y);
double dz = ((double)point.z - this->z);
return sqrt(dx*dx + dy*dy + dz*dz);
}
Pointf3
Pointf3::negative() const
{
return Pointf3(-this->x, -this->y, -this->z);
}
Vectorf3
Pointf3::vector_to(const Pointf3 &point) const
{
return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z);
}
}